首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aminoglycosides (AG) such as gentamicin are antimicrobial drugs widely used in the hospital setting due to their efficacy in the treatment of severe gram-negative bacterial infections. However, all AG have the potential to cause nephrotoxicity. Two studies have been conducted (1) to assess the protein level of a diet that would give the best renal outcome with gentamicin administration, and (2) to get a better idea about the rhythms of food ingestion associated with the different protein levels. Adult female Sprague–Dawley rats fully adapted to a standard chow diet, the standard chow with 20% or 55% added casein were chronically treated for 10 days with a nephrotoxic dose of gentamicin sulfate (40 mg/kg/day, i.p.) or a saline solution. Food ingestion patterns of rats were recorded every hour using a Diet Scan system and gentamicin nephrotoxicity indices were measured. The second study used rats that were fed the same diets and given a sham injection. Corticosterone was assayed to quantify the stress of the animals. Results showed that chronic gentamicin treatment leads to a decrease in food intake and flattening of the rhythms of food ingestion. Also, chow feeding and the 20% casein diet were found to be more protective against gentamicin-induced nephrotoxicity than the 55% casein diet. Therefore, while a protein-rich diet can be protective against gentamicin-induced nephrotoxicity, the present study demonstrates that a diet too high in protein might rather be harmful to the kidneys.  相似文献   

2.
Food intake and body weight gain of male adult Wistar rats were examined in two groups of animals. One group (n = 14) was allowed to select its diet from separate sources of protein (casein, 3.1 kcal/g), fat (lard and sunflower oil, 7.9 kcal/g) and carbohydrate (CHO, starch and sucrose, 3.3 kcal/g). Another group (n = 10) received a nutritionally complete diet (3.3 kcal/g). After 2 weeks of adaptation to the diets, body weights and meal patterns were recorded for at least 4 days. The total caloric intake was nearly identical for the two groups of rats. Rats given dietary choice gained less weight over 4 days than rats fed chow and showed reduced feed efficiency. During the 24-h period, self-selecting rats consumed 20.8% of calories as proteins, 21% as fats and 58.2% as CHO. Self-selecting rats ate significantly less calories during the day than did rats given chow. The chow diet consisting of 17.3% calories as protein, 7.6% as fat and 75.1% as CHO. When comparing the self-selecting group nutrient intakes to those of chow-fed group it was observed that 24-h protein calorie intakes were identical in both groups. Fat intake was significantly higher and CHO reduced as compared to chow-fed rats. During the day, CHO intake was higher in self-selecting rats, and fat intake was not significantly reduced. During the night, protein and fat intakes were significantly higher in self-selecting rats, while CHO intake was significantly decreased, particularly in the last periods of the night.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Obesity has been associated with increased consumption of sweetened beverages and a high-fat diet. We determined whether the composition of the dry pellet offered with liquid sucrose (LS) and lard influenced the development of obesity. We hypothesized that animals offered LS or LS and lard (choice), in addition to chow or purified low fat diet pellet (LFD; 10% fat), would gain more body fat than controls. We compared the effects of LFD vs. chow on voluntary consumption of LS and lard, serum triglyceride (TG), glucose, and body fat over 21 days. Male Sprague Dawley rats (n=10/group) were offered chow, chow+LS, chow choice, LFD, LFD+LS, LFD choice or solid high-sucrose diet (70% sucrose). Energy intakes of rats fed chow, LFD, and high-sucrose diets were similar. Energy intake was increased by 16% in chow+LS, 15% in LFD+LS, 11% in LFD choice, and 23% in chow choice rats. Chow choice rats consumed 142% more lard than LFD choice rats. Fasting glucose increased in all choice rats compared with the chow and high-sucrose diet rats. Fasting TG increased in LFD choice rats and were ~75% higher than those of chow, LFD, or high-sucrose rats. Chow choice had higher carcass fat than chow, chow+LS, and LFD groups however LFD choice was not different from their controls. Another experiment confirmed rats consumed 158% more lard when given chow choice compared to LFD choice. The diet offered to rats with free access to LS and lard influenced the development of obesity, sucrose and lard selection, and TG.  相似文献   

4.
Gentamicin (120 mg/kg/day) was administered for 10 days to Sprague-Dawley rats given either a low (5% w/w) or normal (18% w/w) protein diet. Serum protein concentrations remained normal in all rats during the study. Nephrotoxicity was slightly less severe in rats fed a low protein diet as shown by: (i) a mean creatinine clearance rate (14 +/- 4 ml/min) which was significantly greater than that (8 +/- 3 ml/min) recorded from the rats maintained on the normal diet (P less than 0.05); (ii) lower activities of urinary N-acetyl-beta-D glucosaminidase (NAG); and (iii) less marked histological changes. Mean tissue concentrations of gentamicin were considerably lower in both renal cortex and medulla from rats maintained on the low protein diet than from those animals on the normal diet (P less than 0.01 and P less than 0.05, respectively). These differences were, however, not reflected in the mean trough serum gentamicin concentrations which were not significantly different between the two groups. These results are discussed in relation to the proposed mechanisms involved in gentamicin-induced nephrotoxicity.  相似文献   

5.
Gentamicin (120 mg/kg/day) was administered for 10 days to Sprague-Dawley rats given either a low (5% w/w) or normal (18% w/w) protein diet. Serum protein concentrations remained normal in all rats during the study. Nephrotoxicity was slightly less severe in rats fed a low protein diet as shown by: (i) a mean creatinine clearance rate (14 +/- 4 ml/min) which was significantly greater than that (8 +/- 3 ml/min) recorded from the rats maintained on the normal diet (P less than 0.05); (ii) lower activities of urinary N-acetyl-beta-D glucosaminidase (NAG); and (iii) less marked histological changes. Mean tissue concentrations of gentamicin were considerably lower in both renal cortex and medulla from rats maintained on the low protein diet than from those animals on the normal diet (P less than 0.01 and P less than 0.05, respectively). These differences were, however, not reflected in the mean trough serum gentamicin concentrations which were not significantly different between the two groups. These results are discussed in relation to the proposed mechanisms involved in gentamicin-induced nephrotoxicity.  相似文献   

6.
Adult female rats were allowed to self-select their diet from separate sources of fat, protein, and carbohydrate (starch). Other rats were fed a composite diet that matched the nutrient composition chosen by the self-selecting rats (50% fat, 28% protein, 22% carbohydrate) or a low-fat, high-carbohydrate chow diet. Half of the rats in each diet condition were given access to a 32% sucrose solution for 30 days. Sucrose availability increased total caloric intake (approximately 20%) and body weight gain in all three groups compared to control groups not fed the sucrose solution. The selection animals compensated for their sucrose intake by reducing their fat intake, and to a lesser degree, their starch intake; protein intake was the least affected by sucrose availability. The selection rats consumed less sucrose than the chow-fed rats and displayed a smaller increase in weight, relative to controls, than the chow-fed rats. These differences were attributed to the high-fat intake of the selection animals since similar results were obtained with the rats fed the composite diet. In particular, both the selection and composite diets produced mild obesity in the absence of sucrose. The results demonstrate that sucrose-induced overeating and overweight is not an artifact of restraining the diet choices of rats to a pure sugar and a nutritionally complete diet.  相似文献   

7.
Since most of the weight-reduced obese humans are in a protein deficit state, this study was designed to examine whether a high protein diet (HP) enhances the restoration of lean body mass and facilitates the maintenance of weight loss. Obesity in rats was produced by 16 weeks of high fat diet (HF) feeding. In the 17th week, all HF-fed obese rats were fed a limited amount of control diet to normalize their body weights, but they still had more body fat content. The HF-fed rats were then divided into subgroups with different diets offered for 5 weeks: HP, HF or chow diet. A control group was fed the chow diet throughout the study. HP feeding maintained normal body weight and carcass composition in weight-reduced obese rats by reducing feeding efficiency levels to within normal ranges. Weight-reduced rats fed a chow diet, however, had more fat mass than controls and HF feeding stimulated weight gain again. Therefore, a HP diet has a higher probability of enhancing weight loss maintenance in weight-reduced obese subjects than does a usual well-balanced diet.  相似文献   

8.
Plant fats are low in saturated fats but high in unsaturated fats compared to animal fats, and are supposedly less obesogenic. This study compared the obesogenic effects of plant and animal derived fatty diets in Wistar rats. Rats of each gender were divided into three dietary (standard chow (SC), high fat diet rich in animal fat (HFDaf) and a high fat diet rich in plant fat (HFDpf)) groups of ten each and fed for 17 weeks. Anthropometric, Adiposity and nutritive variables were assessed using standard methods. Comparing HFDpf to HFDaf: Abdominal circumference (AC),initial feed intaken (IFI), final feed intake(FFI), final body weight (FBW), white adipose tissue (WAT) were increased but brown adipose tissue (BAT) decreased in male rats fed with HFDpf; also, there were increased body length, IFI, FFI but decreased AC, FBW, BAT in female rats fed with HFDpf. Comparing male to female rats: Thoracic circumference, IFI, FFI, energy intake were increased while Adiposity index decreased across diet groups in male rats; the AC, FBW increased while WAT, BAT decreased in HFDpf fed group, also, BAT was increased but AC, FBW decreased in HFDaf fed group in male rats. Palatability and high feed efficiency of consumed diets were more associated with obesogenic risk than just the level of saturation. Therefore, Obesogenic effects of fatty diets in both genders is more dependent on the quantity (amount) of fatty diet consumed than the dietary fat composition alone.  相似文献   

9.
Streptozotocin-diabetic male rats were hyperphagic relative to nondiabetic controls when offered only high carbohydrate (CHO) laboratory chow. Diabetics and controls ate about the same amount of high fat diets made from 67% w/w chow and 33% either coconut oil (saturated) or safflower oil (unsaturated). However, when offered a simultaneous choice of high fat diets and chow, nondiabetics and low dose (35 mg/kg) streptozotocin-diabetics showed a preference for the high fat diet: in contrast the high dose (65 mg/kg) streptozotocin diabetics developed a preference for chow. When pairs of isocaloric synthetic diets were offered, diabetics again preferred low fat/high CHO to high fat/low CHO diets, but the actual intake of fat was not constant across different diet pairs. Nondiabetics also selected away from the high fat diets in these synthetic diet pairs, even when saccharin was added to the high fat diet in an attempt to equate its sweetness with that of the paired low fat-high CHO diet. Plasma ketone levels of diabetics during obligatory high fat diet consumption were negatively correlated with their subsequent preference for the fat diet over simultaneously-offered chow. These data show that strong dietary preferences do not develop for fat in diabetics and suggest that high fat diets do not have net beneficial postingestional effects in these rats.  相似文献   

10.
Though not universally observed, moderately low-protein diets have been found to increase caloric intake and body fat. It appears that animals overeat in calories in order to obtain more dietary protein. For animals to control protein intake, they must be able to distinguish between two isocaloric diets containing different percentages of protein and make the appropriate dietary selection on the basis of their previous history of protein intake. Experiment 1 examined the 24-h diet selection (5 vs. 35% casein) of Sprague-Dawley rats that had been previously fed diets containing various percentages of dietary protein (5, 10, 20, 35, or 60% casein). Animals fed 5, 10, or 20% dietary protein showed a preference for the higher protein selection diet. In contrast, no significant diet preference was found in animals pre-fed the two higher levels of dietary protein (35 or 60% casein). In this study, daily food intake and body fat of rats fed the low-protein diets (5 and 10% casein) were similar to rats fed the 20% casein diet. Experiment 2 examined the effects of the level of methionine supplementation on rats fed 10% casein. In this study, food intake and body fat were increased by approximately 20% in rats fed 10% casein diets, regardless of the level of methionine supplementation (0.3 vs. 0.15%). Together, the results suggest that the presence of low-protein-induced hyperphagia helps maintain body protein levels in the face of moderately low dietary protein and promotes an increase in the amount of body fat and energy.  相似文献   

11.
Analyses of natural feeding behavior in albino male Sprague-Dawley rats demonstrate that, when allowed to self-select from pure macronutrient diets (protein, carbohydrate and fat), these rats of the same genetic strain can be categorized into 3 subpopulations according to either their 24-h or their 12-h nocturnal patterns of nutrient intake. A majority of the animals (HC for high carbohydrate, 50% of the total population) consumed a diet rich in carbohydrate relative to protein or fat, while a smaller population of rats (HF, 30%) preferred the fat diet, and an even smaller population (HP, 20%) chose a high-protein diet. These 3 subpopulations, after a few weeks of maintenance on the diets, differed in their body weight, with the HF rats having a higher body weight than the HP animals, who tended to weigh more than the lightest HC rats. Whereas all subgroups exhibited a similar bimodal distribution of feeding during the nocturnal cycle, with peaks during the early and late dark periods, they were distinguishable on the basis of their nutrient consumption during specific phases of the dark cycle. This difference was most apparent in the early dark phase, when the 3 subgroups exhibited exaggerated preferences for the specific nutrient that was generally preferred over the 24-h cycle. This is in contrast to the middle dark phase, when diet preferences were attenuated or lost, and the late dark phase, when most rats were similar in showing an increased preference for protein and fat and a decreased preference for carbohydrate. The HF group was further distinguished by an unusually strong burst of feeding during the first 2 h of the dark period and an extra peak of feeding in the middle dark period (7th h), both of which were relatively high in fat content.  相似文献   

12.
We recently demonstrated that capsaicin-treated rats consume more of an unfamiliar high-fat diet than vehicle-treated controls, but only on initial exposure (Chavez et al, 1997). We hypothesized that negative feedback signals carried by capsaicin-sensitive visceral afferents are critical for the regulation of intake of novel foods, but redundant pathways take over during subsequent exposures. To examine the role of nutrient content of the novel diet, rats were systemically treated with capsaicin (n = 15) or vehicle (n = 10), and exposed to 1) a fat/olestra diet that was isocaloric with chow; 2) a readily accepted fat-free cake; and 3) pure corn oil. Each 3-h feeding trial was preceded by 24-h food deprivation. Treated rats did not overconsume familiar chow, but did consume 50% more than controls of both the fat/olestra diet and the corn oil on first exposure; this suggests that capsaicin eliminated visceral afferents that normally carry satiety signals. However, the effect with the fat/olestra mixture was due primarily to depressed intake by controls, unlike the pure fat diets; this apparent neophobic response was blunted in treated rats. Because treated rats failed to overconsume the fat-free cakes, the neural system damaged by capsaicin appears to be linked to energy or fat sensory mechanisms, and possibly to hedonic responsiveness.  相似文献   

13.
Morphometric analyses of liver parenchymal cells were performed on male albino rats fed a semipurified diet supplemented with two levels of copper and zinc. These metals were administered in demineralized drinking water to four groups of animals at two levels. (1) 0.25 μgm Cu/ml, 2.5 μgm Zn/ml, and (2) 1.0 μgm Cu/ml, 10 μgm Zn/ml. Cadmium, also administered in the drinking water daily to rats at 17.2 μgm cadmium/ml, was given to one group of animals on each of the two semipurified diets. Two groups of rats were given laboratory chow plus 17.2 μgm Cd/ml for 71 days and for 280 days. Volume densities of all organelles diminished significantly when levels of copper and zinc were lowest. Surface densities of rough and smooth endoplasmic reticulum were significantly decreased. Higher levels of copper and zinc produced morphologic and morphometric parameters which fell just below those obtained for rats fed chow. Glycogen accumulation was highest when the levels of metal were low. Lipid inclusions were more frequent with semipurified diets than with chow. Hepatocytes from rats fed the semipurified diet with low copper and zinc plus cadmium demonstrated a significant increase in smooth endoplasmic reticulum compared to animals fed the semipurified diet alone. The smooth endoplasmic reticulum changed little when cadmium was given to rats receiving adequate copper and zinc. Smooth endoplasmic reticulum increased when diets included chow and cadmium whereas rough endoplasmic reticulum decreased. Cup-shaped and elongated mitochondria with longitudinal cristae appeared in hepatocytes from animals fed chow with cadmium. These were not seen with semipurified diets and cadmium.  相似文献   

14.
Female rats with ventromedial hypothalamic (VMH) lesions, parasagittal hypothalamic knife cuts (KC), or dorsolateral tegmental (DLT) lesions were maintained successively on 0.2 and 0.4% quinine chow, plain chow, pellets, wet mash, and high fat diets (15–45 days each). Only VMH rats overate the 0.2% quinine diet and only KC rats underate the 0.4% quinine diet. Although DLT rats did not overeat the unadulterated chow and pellet diets, as did VMH and KC rats, all three surgical groups attained roughly comparable elevated body weight means after access to the wet mash and high fat diets. Thus, dietary manipulations clearly induce differential patterns of feeding behavior in these three obesity syndromes.  相似文献   

15.
The influence of dietary fat on food intake and weight gain was assessed by feeding adult female rats diets that differed in the type and form of fat, as well as in the availability of other macro- and micronutrients. Compared to chow-fed controls, the various fat diets increased total food intake by 4% to 27%. Specifically, rats fed chow and a separate source of fat (fat option diet) consumed more fat and total calories, and gained more weight when the fat source was emulsified corn oil rather than pure corn oil or was vegetable shortening rather than corn oil. However, corn oil and shortening had similar effects on caloric intake and weight gain when presented as emulsified gels. Also, pure and emulsified-gel forms of shortening did not differ in their effects on caloric intake and weight gain. Supplementing the vegetable shortening with micronutrients, however, enhanced its hyperphagia-promoting effect. The results of two-choice tests revealed that the rats' preferences for the orosensory properties of the various fat sources did not account for the differential hyperphagias obtained. Rather, it appears that long-term fat selection and caloric intake are influenced primarily by postingestive factors. Fat selection and total intake were determined not only by the fat source itself, but also by the other diet options. That is, rats selected more fat and consumed more calories when chow was the alternative food than when separate sources of carbohydrate and protein were available.  相似文献   

16.
Effects of diet and exercise training on thermogenesis in adult female rats   总被引:1,自引:0,他引:1  
The effects of a cafeteria diet on body weight gain, food intake, resting metabolic rate (RMR) and the thermic effect of food (TEF) were compared in female Charles River albino rats that were either sedentary or exercise-trained. The food intakes of the exercise-trained rats on the cafeteria diet were increased to the same degree as those of the sedentary rats, however, they gained less body weight and body fat than sedentary controls. The exercise training increased RMR independent of diet, but differentially increased TEF in rats given the cafeteria diet. Conversely, sedentary rats on the cafeteria diet had significantly lower RMR, but their TEF were not different from control animals on lab chow. Thus, in addition to the direct cost of the exercise, training increased thermogenesis (RMR and TEF) which also helped prevent the dietary obesity which normally occurs with cafeteria diets.  相似文献   

17.
Radiofrequency heat lesions were made in the medial hypothalamus of 12-week old male and female Holtzman rats. Two to three days later rats were offered a palatable cafeteria diet in addition to chow or were fed chow alone for the next 3-4 weeks. Male lesioned rats were only slightly hyperphagic on the chow diet and gained little extra weight. When fed the cafeteria diet, energy intake of male lesioned rats almost doubled in comparison with chow-fed lesioned rats and a very rapid extra weight gain occurred. Despite the marked hyperphagia, thermogenesis in brown adipose tissue was suppressed in the cafeteria-fed lesioned rats, as indicated by low mitochondrial guanosine diphosphate (GDP) binding. In female rats, lesions induced much greater hyperphagia and body weight gain than in male rats, particularly when they ate the cafeteria diet. Again, thermogenesis in brown adipose tissue was suppressed in the cafeteria-fed female lesioned rats. The proportion of energy derived from carbohydrate was not altered by the cafeteria diet in either male or female rats, whether lesioned or not, but there was an increase in the proportion of energy derived from fat at the expense of protein. No sex differences in food selection were observed. The accumulation of body fat was always greater in female lesioned rats than in male lesioned rats for similar food intakes. It is concluded that medial hypothalamic lesions prevent the normal occurrence of diet-induced thermogenesis in brown adipose tissue despite extreme overeating by the rats of a palatable cafeteria diet.  相似文献   

18.
The purpose of this study was to determine the effect of chronic food restriction and reduced dietary fat on feeding behavior and body weight. Young female rats were fed ad lib or food restricted on a low-fat (LF) or a fat-free (FF) diet for 4 weeks. Rats then received 24-h free access to 2 diets, the maintenance diet (LF or FF) plus a novel high-fat (HF) diet (24-h intake test). After the test, all the rats were allowed chronic free access to the HF diet until body weight was stable. During the 24-h test, the restricted groups ate significantly more calories than the ad lib groups, and the FF-restricted rats ate significantly more total food, carbohydrate and protein than the LF-restricted rats; there were no differences between the two ad lib groups. During chronic free access to the HF diet, the formerly restricted rats achieved and defended lower body weights than the formerly non-restricted rats. Throughout the experiment, the ad lib groups had more body fat than the restricted groups independent of the dietary subgroup. Hence, a history of chronic food restriction predisposes to consuming more food in acute feeding situations, particularly when dietary fat is reduced, and lowers the level of body weight maintained and defended. Chronic food restriction accompanied by reduced dietary fat may increase risk for bouts of overeating.  相似文献   

19.
Although exogenous administration of the peptide cholecystokinin (CCK) has been shown to reduce food intake in a variety of experimental situations, few studies have examined the influence of dietary content upon CCK's effectiveness, particularly in obese states. To evaluate the effectiveness of CCK administration in animals consuming high fat diets, groups of obese and lean Zucker rats were maintained on laboratory chow (CH), a high fat diet isocaloric to chow (IF), or a hypercaloric fat diet (HF). After a 17 hr fast, rats were given intraperitoneal injections of saline or ascending doses of 0.06 to 2.0 micrograms/kg of the synthetic octapeptide of CCK. On all diets, obese rats required higher doses of CCK to significantly reduce feeding and showed smaller intake reductions than lean rats (p less than 0.001). Despite higher baseline caloric intakes (p less than 0.001), rats of both genotypes maintained on HF displayed larger reductions of intake than those fed IF or CH (p less than 0.001). Intake reductions by either genotype maintained on IF or CH were not reliably different. The manner in which the satiety effect of CCK was enhanced in rats consuming the calorically dense, palatable HF diet is unclear but may be related to orosensory and/or postingestive attributes of the diet.  相似文献   

20.
《Physiology & behavior》1986,38(4):509-515
The effects of dietary protein level on food intake and body weight were examined in adult female rats during a 35-day pre-mating period and during gestation and lactation. During the pre-mating period, no differences in daily food intake were observed among rats fed a 6% casein, 8% casein or 25% casein diet. However, during this period, rats fed the 6% casein diet gained significantly less weight than those with ad lib access to the 8% or 25% casein diets or than rats pair-fed the 25% casein diet in amounts equivalent to that consumed by rats in the 6% or 8% casein groups. Additionally, rats fed the 6% casein diet displayed decreased efficiency of energy utilization, calculated as weight gain per 100 kilocalories consumed, relative to rats fed the 8% or 25% casein diets. No differences in food intake were observed among the groups during gestation. However, rats fed the 6% casein diet gained less weight than rats fed the 8% or 25% casein diets. During lactation rats fed either the 6% or 8% casein diet consumed significantly less food than animals given the 25% casein diet ad lib. During the second week of lactation, rats receiving ad lib access to the 25% casein diet gained weight while those receiving the 6% or 8% casein diets continued to lose weight. At parturition, body weights of pups did not differ as a function of dietary condition. However, by day 12 of life, pups whose dams had ad lib access to the 25% casein diet weighed significantly more than pups whose dams consumed the 6% or 8% casein diet or whose dams were pair-fed the 25% casein diet in amounts equivalent to those consumed by rats fed the 6% or 8% casein diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号