首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objective The aims of this study were to evaluate the impact of the CYP2D6 polymorphism on both the steady-state plasma concentrations (Cp) and the clinical outcome of donepezil, a selective acetylcholinesterase inhibitor used in the treatment of Alzheimer’s disease (AD).Methods Forty-two patients of Caucasian ethnicity affected by probable AD were included in the study. All had been receiving therapy with donepezil for at least 3 months: 31 patients with 5 mg/day and 11 patients with 10 mg/day. The CYP2D6 genotype was analysed, and donepezil Cp was measured by using high-performance liquid chromatography.Results On the basis of their CYP2D6 genotype, 30 patients could be classified as homozygous extensive metabolizers (EM), 10 as heterozygous EM and 2 as ultrarapid metabolizers (UM). No poor metabolizer was found. The dose and body weight-corrected median donepezil Cp were slightly, though not significantly, lower in homozygous than in heterozygous EM (0.33 vs. 0.41 ng/ml/mg/kg, respectively). The latter group consistently showed a better clinical response to treatment, as measured by change in Mini-Mental State Examination score (median: 1.40 vs. −1.30, respectively). UM patients had lower Cp than EM patients and showed no clinical improvement.Conclusions Our preliminary data suggest that the CYP2D6 polymorphism influences both donepezil metabolism and therapeutic outcome and that a knowledge of a patient’s CYP2D6 genotype together with donepezil concentration measurements might be useful in the context of improving the clinical efficacy of donepezil therapy.  相似文献   

2.
The role of certain drug metabolizing enzymes in cardiotoxicity, such as CYP2D6 for thioridazine, has been suggested. Risperidone has been shown to inhibit the delayed rectifier leading to lengthening of cardiac repolarization. The heart-rate corrected QT (QTc) interval lengthening has been reported in psychiatric patients receiving risperidone under steady-state conditions. CYP2D6 is involved in the metabolism of risperidone to 9-hydroxy (OH)-risperidone. CYP2C9 enzyme is also involved in the metabolism of several psychotropic drugs, although there are no data about its implication in risperidone metabolism. The present study aimed to evaluate the influence of CYP2D6 and CYP2C9 genotypes, and plasma concentrations of risperidone and 9-OH-risperidone on the QTc interval in patients under steady-state conditions. The relevance of CYP2D6 and CYP2C9 genotypes on risperidone metabolism was also analysed. Thirty-five White European psychiatric patients receiving risperidone monotherapy were studied. QTc interval was longer (p < 0.05) in subjects with one active CYP2D6 gene compared to those with two. The number of CYP2D6 active genes was related to the dose-corrected plasma concentration of risperidone (p < 0.05), the active moiety (risperidone plus 9-OH-risperidone) (p < 0.05) and the risperidone/9-OH-risperidone ratio (p < 0.05). CYP2C9 genotypes were not related to plasma concentrations of risperidone or 9-OH-risperidone, nor QTc interval. The results suggest that CYP2D6, but not CYP2C9, may be related to QTc lengthening during treatment with risperidone. The effect of the CYP2D6 genotype in risperidone metabolism is also shown.  相似文献   

3.
CYP2D6 participates in the biotransformation of many commonly used drugs. Large genetic variability in CYP2D6 results in a wide interindividual variability in the response to CYP2D6 substrate drugs. Previous studies have assessed the phenotype and genotype distributions of CYP2D6 in relatively small Finnish population samples. The aim of our study was to investigate the frequencies of CYP2D6 genotypes in a larger Finnish population cohort of 857 healthy volunteers. The volunteers were genotyped for 10 CYP2D6 genetic variants (*2, *3, *4, *5, *6, *9, *10, *17, *39, *41) and copy number variation performed with TaqMan genotyping assays and copy number assay targeting exon 9. CYP2D6 phenotypes were inferred from the genotype data with the classical and activity score methods. According to the classical method, a large majority of the study cases were extensive metabolizers (EM; 87.3%; 95% confidence interval 84.9–89.3) and the second largest group was ultrarapid metabolizers (UM; 7.2%; 5.7–9.2%). Intermediate (IM) and poor metabolizers (PM) were in clear minority (3.0%; 2.1–4.4% and 2.3%; 1.5–3.6%, respectively). The activity score method yielded similar phenotype predictions. These results show that the frequency of UM genotype is higher and that of PM and IM genotype is lower in the Finnish population than in other North European populations. Accordingly, CYP2D6 genetic profile of the Finnish population differs from its geographically close neighbours, which has implications for the effective and safe use of drugs metabolized by CYP2D6.  相似文献   

4.
The relationship between theCYP2D6 genotype and the steady state plasma levels of nortriptyline (NT), its main active metabolite 10-hydroxynortriptyline (10-OH-NT) and the NT/10-OH-NT ratio were studied in 21 Caucasian depressed patients treated with 100–150 mg NT daily. The patients had participated in a previously published study investigating the role of NT and 10-OH-NT for the therapeutic effect of NT, and the plasma level data were from that study. In the present follow-up study, the patients were genotyped with respect to the polymorphicCYP2D6 by allelespecific PCR amplification andEcoRIRFLP. One poor metabolizer (PM) was identified and she had the highest plasma concentration of NT. Among the 20 extensive metabolizers (EM), the genotype (homozygous versus heterozygous EM) alone was not found to explain the variance in dose-corrected NT concentrations, but contributed significantly when gender was also taken into account. Together, these factors accounted for 59% of the variability in NT levels. Female patients had higher plasma levels of NT than male patients. 10-OH-NT levels were influenced by genotype, and NT/10-OH-NT ratio by genotype and gender. The present follow-up study confirms a relationship between theCYP2D6 genotype and the plasma levels of NT and its active metabolite. Identification of PM by genotyping should be of value for the prediction of the plasma levels and, consequently, the lower than average dose of NT required for optimal therapy. Also among EM, the genotype contributes to the variability in NT and 10-OH-NT levels but alone is of limited practical value for the prediction of optimal dosage.  相似文献   

5.
The aim of this study was to evaluate the bioequivalence of risperidone in healthy male subjects representing different CYP2D6 genotypes with respect to risperidone, 9-hydroxyrisperidone (9-OH-risperidone), and active moiety. A total of 506 Korean subjects were genotyped for CYP2D6*10 by means of allele-specific polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Based on the genotype analysis, 24 subjects, 7 homozygous for CYP2D6*1, 10 for *10, and 7 heterozygous for *10, were recruited and received a single oral dose of 2 mg risperidone tablet in this study. Serum concentrations of risperidone and 9-OHrisperidone up to 48 h were simultaneously determined. There were no significant differences of the active moiety, risperidone, and 9-OH-risperidone between the two preparations in AUC0-proportinal to, and Cmax. The 90% confidence intervals (CIs) for the ratio of means of the log-transformed AUC0-proportional to. and Cmax for the active moiety, risperidone, and 9-OH-risperidone were all within the bioequivalence acceptance criteria of 0.80-1.25. The CYP2D6*10 allele particularly was associated with higher serum concentrations of risperidone and the risperidone/9-OH-risperidone ratio compared with the CYP2D6*1 allele. The results demonstrate that the two preparations of risperidone are bioequivalent and it can be assumed that they are therapeutically equivalent and exchangeable in clinical practice. Furthermore, the pharmacokinetic parameters of risperidone and the risperidone/9-OH-risperidone ratio are highly dependent on the CYP2D6 genotypes.  相似文献   

6.
Within‐subject coefficient of variation (CVw) plays a decisive role in the determination of sample size in bioequivalence clinical trials. Highly variable drugs may require the participation of a large number of subjects. The aim of this study was to investigate whether gender and polymorphisms in CYP2D6 affect the CVw of risperidone. Two single‐dose, two‐period crossover studies of risperidone (n = 70) were reanalysed to calculate CVw for AUCt and Cmax. Subjects were classified into four different CYP2D6 phenotype groups [poor metabolizers (PM), intermediate metabolizers (IM), extensive metabolizers (EM) and ultrarapid metabolizers (UM)]. The effect of gender was evaluated in EM and IM. CVw was lower in PM (13.3% for AUCt and 10.9% for Cmax) and UM (17.4% and 8.7%) than in EM (28.7% and 34.7%) and IM (33.2% and 27.3%). Variability was slightly lower in women (27.9% for AUCt and 25.7% for Cmax) than in men (33.3% and 37.2%, respectively). Genetic polymorphisms affect within‐subject variability more than gender and could considerably affect sample size calculation. Therefore, subjects participating in bioequivalence trials should be genotyped.  相似文献   

7.
Allelic variation at the CYP2D6 gene has been suggested to be associated with CNS disorders, including Parkinson's disease and Lewy body dementia. In order to elucidate whether a relationship exists between CYP2D6 polymorphism and the risk of developing Alzheimer's disease (AD), CYP2D6 allele and genotype frequencies have been evaluated in 94 patients from Southern Italy (29 men and 65 women, aged 74+/-8 years) with AD, and in 350 healthy controls (204 men, 146 women, aged 33+/-9 years) from the same geographical region. Allele frequencies among AD patients were not significantly different from those in healthy controls. Subjects could be divided in four CYP2D6 genotype groups: 52 (56%) patients and 205 (59%) controls carried no mutated alleles (homozygous extensive metabolizers (EM)), 33 (35%) patients and 109 (31%) controls carried one mutated allele (heterozygous EM), while 4 (4%) patients and 11 (3%) controls were found to have two mutated alleles (poor metabolizers (PM)). Five (5%) patients and 25 (7%) controls carried extra copies of a functional gene (ultrarapid metabolizers (UM)). Our results indicate that CYP2D6 polymorphism is unlikely to represent a major risk factor in susceptibility to Alzheimer's disease.  相似文献   

8.
The hydroxylation of the new antipsychotic drug risperidone to its main, active metabolite 9-hydroxyrisperidone is catalyzed by the hepatic cytochrome P450 enzyme CYP2D6, and cosegregates with the polymorphic hydroxylation of debrisoquin. We have previously examined central D2 dopamine and 5-HT2 receptor occupancy after 1 mg risperidone orally in three healthy subjects who were extensive metabolizers (EM) of debrisoquin, using positron emission tomography and the radioligands [11C]raclopride and [11C]NMSP. In this study, the same experimental design was repeated in two healthy poor metabolizers (PM) of debrisoquin to compare the D2 and 5-HT2 receptor occupancy induced by risperidone in EM and PM. The two PM had much higher plasma concentrations and longer elimination half-lives of risperidone than the three EM. Plasma concentrations of the sum of risperidone and 9-hydroxyrisperidone partly overlapped among the EM and PM. D2 receptor occupancy was 50% and 54% in the two PM, as compared to 40%, 43% and 55% in the EM. 5-HT2 receptor occupancy was 63% and 73%, as compared to 45%, 56% and 68% in the EM. These findings support the view that the active 9-hydroxyl metabolite of risperidone contributes to the in vivo effects of risperidone in humans, and thus partly counterbalances the marked variability in the disposition of risperidone.  相似文献   

9.
OBJECTIVE: In order to evaluate whether poor metabolizers (PM) of debrisoquine are overrepresented among patients with acute dystonic reactions and chronic movement disorders associated with the administration of antipsychotic drugs, the CYP2D6 genotype was determined in schizophrenic patients. METHODS: Allele status for CYP2D6*3, CYP2D6*4, CYP2D6*5, and CYP2D6*6 as well as gene duplication was determined by allele-specific PCR, long-PCR and restriction fragment length polymorphism analysis (RFLP) in 119 schizophrenic patients (99 males and 20 females). All subjects were treated with antipsychotics metabolized, at least partially, by this isozyme. Sixty-three of the patients (52.9%) had a history of extrapyramidal side effects (EPS), while 56 (47.1%) had not experienced such problems (controls). RESULTS: Sixty-five patients (54.6%) were homozygous for a functional CYP2D6*1 allele, 44 (37.0%) were heterozygous for detrimental alleles, and 4 (3.4%), who carried two detrimental alleles, were classified as PM. In six patients (5.0%) duplication of a functional CYP2D6 gene was found, and they were consequently classified as ultrarapid metabolizers (UM). Homo- and heterozygous extensive metabolizers (EM) as well as UM were equally distributed between patients with and without EPS, whereas all the PM had a history of EPS. No significant differences in allele frequencies between the two groups were found. CONCLUSION: Although the results cannot be considered conclusive due to the small number of PM patients in our study, the PM genotype may be a predisposing factor for antipsychotic-induced EPS. Knowledge of the CYP2D6 genotype, before starting antipsychotic therapy, might be useful in identifying subjects at risk of developing EPS.  相似文献   

10.
CYP2D6 genotyping was carried out by XbaI restriction fragment length polymorphism analysis and polymerase chain reaction in 168 healthy Danish volunteers, 77 extensive metabolizers (EM) and 91 poor metabolizers (PM) of sparteine. All EM were genotyped correctly as heterozygous or homozygous for the functional (wild type) gene, D6-wt. However, the D6-wt gene was apparently also present in 11 (12%) of the PM who accordingly were incorrectly genotyped as EM. The specificity of genotyping PM thus was 100% but the sensitivity was only 88%. The most common allele was the D6-wt with an apparent frequency of 0.741 (0.026) in the Danish population and the second most common allele was the D6-B with an apparent frequency of 0.194 (0.024). The median (range) of the sparteine metabolic ratio (MR) in 47 homozygous D6-wt EM was 0.28 (0.11–4.10) and the corresponding value in heterozygous EM was 0.36 (0.11–9.10). The median difference was 0.09 (95% confidence interval: 0.02–0.16). CYP2D6 phenotyping is a promising tool in tailoring the individual dose of tricyclic antidepressants, some neuroleplics and some antiarrhythmics. However if the genotype test could be improved with regard to both sensitivity in PM and the ability to predict CYP2D6 activity in EM then it would be of even greater clinical value in therapeutic drug monitoring.  相似文献   

11.
Objective: To examine the distribution of the cytochrome P 450 (CYP) CYP2D6 phenotype and its relation to genotype, concomitant medication, and disease state in human immunodeficiency virus (HIV)-positive patients. Design: A cross sectional study with a longitudinal component compared individual genotypes for CYP2D6 to the CYP2D6 phenotype. Methods: Sixty-one predominately male Caucasian, HIV-positive patients were recruited and CYP2D6 genotypes [extensive metabolizer (EM) or poor metabolizer (PM)] determined by polymerase chain reaction (PCR)-based amplification, followed by restriction fragment-length analysis. The patients were also phenotyped using dextromethorphan (DM) to determine their respective enzyme activity and assigned either a CYP2D6 EM or PM phenotype. Complete medical and treatment histories were compiled. A total of 44 patients were tested longitudinally. Results: Fifty-nine patients (97%) possessed an EM genotype, consistent with previously observed distributions in demographically similar populations. In healthy seronegative populations, genotype and phenotype have been shown to be essentially interchangeable measures of CYP2D6 activity. In this cohort, 2 of the 59 patients with an EM genotype expressed a PM phenotype. In addition, 4 EM patients were less extensive DM metabolizers than any of the patients receiving medication known to inhibit CYP2D6. This apparent shift toward the PM phenotype from the EM genotype was associated with the presence of active illness. Conclusion: Changes may occur in HIV-positive patients such that their CYP2D6 activity approaches that of PMs, despite having an EM genotype. Neither active disease nor drug interactions alone explain the shift. Received: 1 September 1999 / Accepted in revised form: 10 February 2000  相似文献   

12.
AIMS: To assess CYP2D6 activity and genotype in a group of patients undergoing methadone maintenance treatment (MMT). METHODS: Blood samples from 34 MMT patients were genotyped by a polymerase chain reaction-based method, and results were compared with CYP2D6 phenotype (n = 28), as measured by the molar metabolic ratio (MR) of dextromethorphan (DEX)/dextrorphan (DOR) in plasma. RESULTS: Whereas 9% of patients (3/34) were poor metabolizers (PM) by genotype, 57% (16/28) were PM by phenotype (P < 0.005). Eight patients, who were genotypically extensive metabolizers (EM), were assigned as PM by their phenotype. The number of CYP2D6*4 alleles and sex were significant determinants of CYP2D6 activity in MMT patients, whereas other covariates (methadone dose, age, weight) did not contribute to variation in CYP2D6 activity. CONCLUSIONS: There was a discordance between genotype and in vivo CYP2D6 activity in MMT patients. This finding is consistent with inhibition of CYP2D6 activity by methadone and may have implications for the safety and efficacy of other CYP2D6 substrates taken by MMT patients.  相似文献   

13.
Debrisoquine-hydroxylase (P450 2D6) not equal to phenotype was determined in 116 individuals using dextromethorphan as the substrate probe. Polymerase chain reaction and restriction fragment length polymorphism analyses were used to detect inactivating mutations in the CYP2D6 gene and assign genotype in all 116 individuals. Using a urinary metabolic ratio (DM/DT) of > or = 0.3 to define poor metabolizer (PM) phenotypes, 96 subjects were extensive metabolizers (EM) and 20 were PMs. The CYP2D6(B) mutation was the most common mutation, present in 18% of phenotypic EM alleles and 66% of the alleles in PM phenotypes. The CYP2D6(A) mutation (8% of PM alleles) and the CYP2D6 gene deletion (2.6% of PM alleles) were found less frequently. Seven different variants of the CYP2D6 gene were found. In subjects with two mutant alleles, genotype correctly predicted the PM phenotype in 100% (n = 13). Overall, genotype agreed with phenotype assignments in 109 of 116 (94%) subjects. Seven subjects with a wild-type allele at the CYP2D6(A) and CYP2D6(B) loci were phenotypic PMs, representing the only discrepant results. These discrepancies could be due to the imprecision of phenotype assignment or to as yet unknown mutations in CYP2D6. Although the median urinary metabolic ratio was significantly lower in homozygous EMs compared with heterozygous EMs, there was extensive overlap in metabolic ratios in these two groups, indicating that the DM/DT metabolic ratio cannot reliably discriminate homozygous EMs from heterozygous EMs.  相似文献   

14.
SUMMARY: The effects of paroxetine on steady-state plasma concentrations of risperidone and its active metabolite 9-hydroxyrisperidone (9-OH-risperidone) were studied in 10 patients with schizophrenia or schizoaffective disorder. Patients stabilized using risperidone therapy (4-8 mg/d) also received paroxetine (20 mg/d) for 4 weeks. During paroxetine administration, mean plasma concentrations of risperidone increased significantly (P < 0.01), whereas levels of 9-OH-risperidone decreased slightly but not significantly. After 4 weeks of paroxetine treatment, the sum of the concentrations of risperidone and 9-OH-risperidone (active moiety) increased significantly by 45% (P < 0.05) over baseline. The mean plasma risperidone/9-OH-risperidone ratio was also significantly modified (P < 0.001) during paroxetine treatment. The drug combination was generally well tolerated with the exception of one patient who developed Parkinsonian symptoms in the second week of adjunctive therapy. In this patient total plasma levels of risperidone and its active metabolite increased by 62% during paroxetine co-administration. The authors' findings indicate that paroxetine, a potent inhibitor of CYP2D6, may impair the elimination of risperidone, primarily by inhibiting CYP2D6-mediated 9-hydroxylation and to a lesser extent by simultaneously affecting the further metabolism of 9-OH-risperidone or other pathways of risperidone biotransformation. Careful clinical observation and possibly monitoring of plasma risperidone levels may be useful whenever paroxetine is co-administered with risperidone.  相似文献   

15.
Studies that focus on multidrug interactions in natural settings are sparse. In this investigation, data from therapeutic drug monitoring (TDM) were used to study the impact of multiple cytochrome P450 enzyme (CYP) 2D6 substrates and inhibitors on plasma risperidone levels. CYP2D6 catalyzes the conversion of risperidone to the active metabolite 9-OH-risperidone. The question whether CYP2D6 activity is important for the level of the "active moiety" (ie, the sum of risperidone and 9-OH-risperidone) is controversial. Concentration-to-dose (C:D) ratios of risperidone and 9-OH-risperidone in 218 patients were associated with the number of concomitantly used substrates or inhibitors of CYP2D6. The C:D ratios of risperidone in patients with 0, 1, and >1 numbers of CYP2D6 inhibitors were 2.6, 8.5, and 17 nmol L mg, respectively. Differences between the groups were highly significant (P < 0.001). All patients with >1 CYP2D6 inhibitors were administered at least 1 potent CYP2D6 inhibitor, that is fluoxetine, paroxetine, thioridazine, and/or levomepromazine. The C:D ratios of the active moiety (risperidone + 9-OH-risperidone) in patients with 0, 1, and >1 numbers of concomitant CYP2D6 inhibitors were 17, 24, and 30 nmol L mg, respectively (P = 0.001), which was explained by higher levels of risperidone without any change in the levels of 9-OH-risperidone. Concomitant use of 1 or several drugs recognized as substrates for CYP2D6, without any proven inhibitory effect, had no apparent influence on the levels of risperidone or 9-OH-risperidone, suggesting that the risk of drug-drug interactions between different substrates of CYP2D6 is low when used in therapeutic doses. In conclusion, the results suggest that an increase in the number of concomitant inhibitors may be associated with a lower CYP2D6 activity, although the type of inhibitor is probably more important. Drug-dependent inhibition of CYP2D6 increases the active moiety of risperidone. An indication for risperidone TDM should therefore include concomitant medication with established CYP inhibitors.  相似文献   

16.
A case of a 46-year-old woman with schizophrenia who was treated with risperidone and followed up for 1 year is reported. She was genotyped as a CYP2D6 poor metabolizer (PM): CYP2D6-4*/*6, which was confirmed by a dextromethorphan (DM) test (metabolic ratio = 5.8). Genotypes of ABCB1 (MDR1) were 2677TT and 3435TT. Because risperidone is CYP2D6 and P-glycoprotein substrate, the patient might have been expected to accumulate risperidone and suffer from significant side effects. However, the patient tolerated the drug extremely well. Plasma concentration of risperidone was 73.2 nmol/L and of 9-OH-risperidone was below the limit of quantitation (6.1 nmol/L). Target range of risperidone plus 9-hydroxyrisperidone is 50-150 nmol/L. During the follow-up, patient was continuously taking 3 mg/day of risperidone. Plasma levels of risperidone and 9-OH-risperidone were 70.2 and 18.1 nmol/L, respectively. We repeated a DM test, metabolic ratio was 3.6, thus confirming that the patient remained a PM. Psychopathology was assessed with Positive and Negative Syndrome Scale, and stable remission of illness was achieved over the stated period. No adverse effects were observed or reported by the patient. We conclude that PM phenotype for CYP2D6 does not necessarily have clinical significance in regard to risperidone treatment. DM and risperidone are both CYP2D6 and P-glycoprotein substrates and significant interactions might occur with both drugs, in parallel with the possible impact of ABCB1 and CYP2D6 polymorphic gene variants.  相似文献   

17.
AIMS: The polymorphic enzyme CYP2D6 is expressed not only in liver but also in brain at low concentrations. CYP2D6 mediates, to some extent, the synthesis of the neurotransmitters, serotonin and dopamine. We investigated a possible association between the genetic polymorphism of CYP2D6 and individual personality trait. METHODS: Mentally and physically healthy volunteers were recruited (n = 342). Temperament and Character Inventory (TCI) and CYP2D6 genotyping were performed in all subjects. We detected mutated alleles which were identified using the Amplichip CYP450 DNA chip. RESULTS: The number of phenotypes, assumed by genotype for ultrarapid metabolizers (UM), extensive metabolizers (EM), intermediate metabolizers (IM) and poor metabolizers (PM) were 4 (1.1%), 262 (76.6%), 75 (21.9%) and 1 (0.3%), respectively. There were no differences in scores for novelty seeking, harm avoidance, reward dependence or persistence among the CYP2D6 phenotypes. The number of mutated alleles for CYP2D6 did not differ for scores of novelty seeking, harm avoidance, reward dependence or persistence. In subitem analyses, only RD3 (attachment) had a significant difference both in the CYP2D6 phenotype (P < 0.05) and genotype (P < 0.05). CONCLUSIONS: This study did not demonstrate a significant association between CYP2D6 activity and personality trait because of the small interindividual variability in CYP2D6 activity within the Japanese population.  相似文献   

18.
CYP2D6 polymorphisms and the impact on tamoxifen therapy   总被引:2,自引:0,他引:2  
The cytochrome P450 2D6 (CYP2D6) is an enzyme known to metabolize a variety of xenobiotics and drugs. Inter-individual variation in the metabolic capacity of this enzyme has been extensively studied and associations with genotype have been established. Genetic polymorphisms have been grouped as nonfunctional, reduced function, functional, and multiplication alleles phenotypically. Individuals carrying these alleles are presumed to correspond to poor, intermediate, extensive, and ultrarapid metabolizers (UM), respectively. Tamoxifen has been shown to be metabolized by CYP2D6 to the more potent metabolite endoxifen. Poor metabolizers (PM) of tamoxifen have lower levels of endoxifen and poorer clinical outcomes as compared to extensive metabolizers (EM). Here, we will provide an overview of the history and application of CYP2D6 pharmacogenetics, and will discuss the clinical implications of recent developments relating to the involvement of CYP2D6 in tamoxifen treatment.  相似文献   

19.

Background and purpose:

There is high interindividual variability in the activity of drug-metabolizing enzymes catalysing the oxidation of oxycodone [cytochrome P450 (CYP) 2D6 and 3A], due to genetic polymorphisms and/or drug–drug interactions. The effects of CYP2D6 and/or CYP3A activity modulation on the pharmacokinetics of oxycodone remains poorly explored.

Experimental approach:

A randomized crossover double-blind placebo-controlled study was performed with 10 healthy volunteers genotyped for CYP2D6 [six extensive (EM), two deficient (PM/IM) and two ultrarapid metabolizers (UM)]. The volunteers randomly received on five different occasions: oxycodone 0.2 mg·kg−1 and placebo; oxycodone and quinidine (CYP2D6 inhibitor); oxycodone and ketoconazole (CYP3A inhibitor); oxycodone and quinidine+ketoconazole; placebo. Blood samples for plasma concentrations of oxycodone and metabolites (oxymorphone, noroxycodone and noroxymorphone) were collected for 24 h after dosing. Phenotyping for CYP2D6 (with dextromethorphan) and CYP3A (with midazolam) were assessed at each session.

Key results:

CYP2D6 activity was correlated with oxymorphone and noroxymorphone AUCs and Cmax (−0.71 < Spearman correlation coefficient ρs < −0.92). Oxymorphone Cmax was 62% and 75% lower in PM than EM and UM. Noroxymorphone Cmax reduction was even more pronounced (90%). In UM, oxymorphone and noroxymorphone concentrations increased whereas noroxycodone exposure was halved. Blocking CYP2D6 (with quinidine) reduced oxymorphone and noroxymorphone Cmax by 40% and 80%, and increased noroxycodone AUC by 70%. Blocking CYP3A4 (with ketoconazole) tripled oxymorphone AUC and reduced noroxycodone and noroxymorphone AUCs by 80%. Shunting to CYP2D6 pathway was observed after CYP3A4 inhibition.

Conclusions and implications:

Drug–drug interactions via CYP2D6 and CYP3A affected oxycodone pharmacokinetics and its magnitude depended on CYP2D6 genotype.  相似文献   

20.
The effect of fluoxetine on the steady-state plasma concentrations of risperidone and its active metabolite 9-hydroxyrisperidone (9-OH-risperidone) was evaluated in 10 patients with schizophrenia or schizoaffective disorder. Patients stabilized on risperidone (4-6 mg/day) received additional fluoxetine (20 mg/day) to treat concomitant depression. One patient dropped out after 1 week due to the occurrence of akathisia associated with markedly increased plasma risperidone concentrations. In the other subjects, mean plasma concentrations of risperidone increased during fluoxetine administration from 12 +/- 9 ng/mL at baseline to 56 +/- 31 at week 4 (p < 0.001), while the levels of 9-OH-risperidone were not significantly affected. After 4 weeks of combined treatment, the levels of the active moiety (sum of the concentrations of risperidone and 9-OH-risperidone) increased by 75% (range, 9-204%, p < 0.01) compared with baseline. The mean plasma risperidone/9-OH-risperidone ratio also increased significantly. During the second week of adjunctive therapy, two patients developed Parkinsonian symptoms, which were controlled with anticholinergic medication. These findings indicate that fluoxetine, a potent inhibitor of the cytochrome P450 enzyme CYP2D6 and a less potent inhibitor of CYP3A4, reduces the clearance of risperidone by inhibiting its 9-hydroxylation or alternative metabolic pathways. This interaction may lead to toxic plasma risperidone concentrations. In addition to careful clinical observation, monitoring plasma risperidone levels may be of value in patients given adjunctive therapy with fluoxetine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号