首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the expression of myosin heavy-chain isoforms in intrafusal muscle fibers of spindles formed in gastrocnemius muscles reinnervated in the presence of exogenous nerve growth factor after nerve crush in neonatal rats. Only 50% of the experimental spindles contained intrafusal fibers that expressed a slow-tonic myosin normally expressed by at least one fiber in every rat spindle. In addition, spindles containing only bag1 and/or chain fibers, but no bag2 fibers, were observed in reinnervated muscles whereas all normal spindles contain a bag2 fiber. These data suggest that afferents retain the capacity to induce the expression of a spindle-specific myosin in a period other than during normal development of intrafusal fibers. However, a scarcity of precursor cells available to become intrafusal fibers when contacted by afferents might have resulted in the alteration of intrafusal bundle composition in some spindles of reinnervated muscles.  相似文献   

2.
Crushing the nerve to the medial gastrocnemius (MG) muscle at birth and administering nerve growth factor to rats afterwards results in a reinnervated muscle with supernumerary muscle spindles, some of which must have formed de novo. Structure and innervation of spindles in the reinnervated MG muscles were studied in serial 1 micron transverse sections. Two types of spindle-like encapsulations were observed. The prevalent type consisted of one to three small diameter intrafusal fibers with features of nuclear chain fibers or infrequently a nuclear bag fiber. The second type of encapsulation consisted of the small-diameter fibers located in a compartment which abutted a compartment containing a large diameter extrafusal fiber. All intrafusal fibers in spindles of the experimental muscles were innervated by afferents, but most of them (85%) were devoid of efferent innervation. Thus, immature fusimotor neurons may be more susceptible than spindle afferents to cell death after axotomy at birth.  相似文献   

3.
Postnatal maturation of spindles in deafferented rat soleus muscles   总被引:1,自引:0,他引:1  
Summary Whether the motor innervation can direct the morphological and histochemical differentiation of developing muscle spindles in the absence of sensory innervation was investigated by deafferentation of the soleus muscle in immature rats. Dorsal root ganglia containing the cell bodies of afferents from the soleus muscle were removed surgically at a stage of postnatal development when spindles already contain the full complement of intrafusal fibers innervated by both afferents and efferents, but when the fibers are histochemically and structurally immature. Experimental soleus muscles were excised one year after deafferentation and sectioned frozen at a thickness of 8 m. Sections were stained for enzymes indicative of types of muscle fibers and sites of neuromuscular junctions, and were examined by light microscopy. Spindles of muscles that matured in the absence of sensory innervation were abnormal. They lacked the periaxial fluid space and contained fewer intrafusal fibers than did normal spindles. The morphological and histochemical profiles of the encapsulated fibers present in the deafferented spindles more closely resembled extrafusal rather than intrafusal muscle fibers. These observations suggest that deafferentation of the immature spindles induces disintegration of some intrafusal fibers and alters maturation of others. Moreover, motor axons terminated less frequently along muscle fibers in deafferented spindles than on intrafusal fibers of normal spindles. Thus, maintenance of a full complement of intrafusal fibers in the developing spindle, emergence of histochemical profiles typical of normal intrafusal fibers, and development of adult pattern of fusimotor innervation require intact sensory innervation.  相似文献   

4.
The soleus muscles of fetal rats were examined by electron microscopy to determine whether the early differentiation of muscle spindles is dependent upon sensory innervation, motor innervation, or both. Simple unencapsulated afferent-muscle contacts were observed on the primary myotubes at 17 and 18 days of gestation. Spindles, encapsulations of muscle fibers innervated by afferents, could be recognized early on day 18 of gestation. The full complement of spindles in the soleus muscle was present at day 19, in the region of the neuromuscular hilum. More afferents innervated spindles at days 18 and 19 of gestation than at subsequent developmental stages, or in adult rats; hence, competition for available myotubes may exist among afferents early in development. Some of the myotubes that gave rise to the first intrafusal (bag2) fiber had been innervated by skeletomotor (α) axons prior to their incorporation into spindles. However, encapsulated intrafusal fibers received no motor innervation until fusimotor (γ) axons innervated spindles 3 days after the arrival of afferents and formation of spindles, at day 20. The second (bag1) intrafusal fiber was already formed when γ axons arrived. Thus, the assembly of bag1 and bag2 intrafusal fibers occurs in the presence of sensory but not γ motor innervation. However, transient innervation of future bag2 fibers by α axons suggests that both sensory and α motor neurons may influence the initial stages of bag2 fiber assembly. The confinement of nascent spindles to a localized region of the developing muscle and the limited number of spindles in developing muscles in spite of an abundance of afferents raise the possibility that afferents interact with a special population of undifferentiated myotubes to form intrafusal fibers.  相似文献   

5.
The vascular supply and tendons of the extensor digitorum longus (EDL) muscles of two adult rats were unilaterally severed and the muscles were allowed to regenerate for 40 days. Serial frozen sections of muscle grafts were cut and stained for enzymes that delineated fiber type, sensory endings and motor endings. MF30 and ALD58, two antibodies which react only to intrafusal fibers in normal rat muscle, were reacted against sections of nerve-intact muscle grafts. Data were compared to that from muscles of normal rats. Encapsulated fibers devoid of sensory innervation and some extrafusal fibers in muscle grafts had a weak to moderate reaction to MF30, but no reaction to ALD58. Regenerated, encapsulated fibers with sensory innervation bound both MF30 and ALD58. These data indicate that afferents which reinnervate regenerated spindles retain the capacity to induce expression of spindle-specific myosin isoforms in rats.  相似文献   

6.
1. Physiological and histochemical properties of the cat ankle extensor muscles, the lateral and medial gastrocnemius, and the soleus were studied after cross-reinnervation by flexor motoneurons. 2. Tibial and common peroneal nerves were cut and cross-united in the popliteal fossa of 2- to 6-mo-old cats. Eighteen to 24 mo later, single motor units were isolated by dissection and stimulation of ventral root filaments and classified into four types: fast-twitch, fatigable (FF), fast-twitch with intermediate fatigue resistance (FI), fast-twitch, fatigue-resistant (FR), and slow, fatigue-resistant (S). Muscle fibers were classified as fast glycolytic (FG), fast, oxidative glycolytic (FOG), and slow oxidative (SO) on the basis of histochemical staining. 3. Although motor-unit force was normally well correlated with the size of the innervating motor axon in the cross-reinnervated muscles, the force of different unit types overlapped considerably. The reinnervated motor units also showed a higher than normal degree of fatigability. 4. The range of muscle unit forces in cross-reinnervated triceps surae muscles was the same as in the normally innervated triceps surae muscles. This range is 2-3 times greater than the flexor muscles, which the common peroneal nerve normally supplies. The range of contraction speed of units in the cross-reinnervated extensor muscles was comparable to that in the flexor muscles, consistent with a motoneuron-specific determination of muscle speed (28). 5. SO and FOG muscle fibers were found in all reinnervated triceps surae muscles, but FG fibers were only found in reinnervated medial gastrocnemius (MG) and lateral gastrocnemius (LG) muscles, consistent with previous findings of the resistance of soleus muscles to complete conversion (10, 16, 20, 21). Type grouping of muscle fibers was characteristic of the reinnervated muscles. 6. Reinnervated SO muscle fibers were larger than the corresponding fibers in normally innervated muscles as were the estimated number of muscle fibers innervated by slow motor axons. Nonetheless, the force generated by the S motor units remained relatively smaller than FR and FF units. The relative contributions of the number, cross-sectional area and specific tension to the force generation of reinnervated motor units are discussed.  相似文献   

7.
8.
1. To determine the capacity of motoneurons to increase their motor unit (MU) size by collateral sprouting and to assess this capacity in relation to the size of the motor nerve, we partially denervated soleus, lateral gastrocnemius (LG), and medial gastrocnemius (MG) muscles in adult and neonatal cats. Isometric force and extracellular nerve potentials were recorded from > or = 7% of the remaining MUs, 2.5-18 mo later. S1 or L7 roots were sectioned unilaterally and the number of remaining MUs was quantified by use of charge and force measurements. 2. The mean unit force increased inversely with MU number in partially denervated muscles, but the increase was less than predicted for extensive denervations (> or = 90%). The same enlargement of MU size occurred whether muscles were partially denervated in neonatal or adult animals. 3. The force distribution of MUs in partially denervated muscles was similar to normal but was shifted to larger force values in direct proportion to the extent of partial denervation (PD). All MUs increased in size by the same factor to preserve the normal force distribution. 4. Normal size relationships among force, contractile speed, and axon potential amplitude were observed for MUs in partially denervated muscles. Because changes in muscle fiber size could not account for the increase in unit force, these data show that increase in MU size, with respect to unit force and innervation ratio (muscle fibers per motoneuron), is proportional to the size of the motor nerve. 5. Enlargement of MU size in partially denervated muscles did not have a retrograde effect on nerve fiber caliber because axon potential amplitude and conduction velocity were not changed after PD. 6. Under conditions of extensive PD (> 85%), regenerated nerves from the cut spinal root reinnervated the gastrocnemius muscles. It is likely that nerves supplied muscle fibers that were not innervated by sprouts from nerves in the uncut root as well as displacing sprouts from terminals in extensively enlarged MUs. 7. We conclude that all motoneurons within a motor pool compensate for partial nerve injuries by collateral sprouting and that enlargement of MU size is a function of motor nerve size, consistent with Henneman's size principle.  相似文献   

9.
Immature muscle spindles were either deafferented or deefferented by selectively severing the sensory or motor nerve supply to the soleus muscle in neonatal rats. Experimental spindles were examined two months after the surgery using monoclonal antibodies specific for myosin heavy chains of slow-tonic and fast-twitch chicken muscles. The deefferented spindles exhibited a pattern of antibody binding that closely resembled that of normal adult intrafusal fibers, whereas deafferented intrafusal fibers were unreactive with the two antibodies. These observations suggest that sensory innervation is responsible for the expression of myosins in developing intrafusal muscle fibers of rat.  相似文献   

10.
The response of developing muscle spindles to denervation was studied by sectioning the nerve to the medial gastrocnemius muscle of rats at birth. The denervated spindles were examined daily throughout the first postnatal week for changes in ultrastructure and expression of several isoforms of myosin heavy chain (MHC). Each of the three different types of intrafusal muscle fiber exhibited a different response to denervation. Within 5 days after the nerve section nuclear bag2 fibers degenerated completely; nuclear bag1 fibers persisted, but ceased to express the spindle-specific slow-tonic MHC isoform and thereby could not be differentiated from extrafusal fibers; nuclear chain fibers did not form. The capsules of spindles disassembled, hence spindles or their remnants could no longer be identified 1 week after denervation. Neonatal deefferentation has little effect on these features of developing spindles, so removal of afferent innervation is presumably the factor that induces the loss of spindles in denervated muscles. Degeneration of the bag2 fiber, but not bag1 or extrafusal fibers, reflects a greater dependence of the bag2 fiber than the bag1 fiber on afferent innervation for maintenance of its structural integrity. This difference in response of the two types of immature bag fiber to denervation might reflect an origin of the bag2 fibers from a lineage of myogenic cells distinct from that giving rise to bag1 or extrafusal fibers, or a difference in the length of contact with afferents between the two types of bag fiber prior to nerve section.  相似文献   

11.
A reexamination of the question of specificity of reinnervation of fast and slow muscle was undertaken using the original "self" nerve supply to the fast lateral gastrocnemius (LG) and slow soleus muscles in the rat hindlimb. This paradigm takes advantage of the unusual situation of a common nerve branch, which supplies both a fast and slow muscle, and of the opportunity to keep the reinnervating nerve in its normal position. In addition it provides a test of the effects of cross-reinnervation among muscles of the same functional group. The properties of soleus and LG muscles and of individual muscle units were characterized in normal rats and in rats 4-14 mo after cutting the lateral gastrocnemius-soleus (LGS) nerve and suture of the proximal stump to the dorsal surface of the LG muscle. Individual muscle units were functionally isolated by stimulation of single motor axons to LG or soleus muscle contained in teased filaments in the L4 and L5 ventral roots. Motor units were classified as fast contracting fatiguable (FF), fast contracting fatigue resistant (FR), and slow (S) on the basis of criteria described in the cat by Burke et al. and applied to rat muscle units by Gillespie et al. Muscle fibers were classified as fast glycolytic (FG), fast oxidative glycolytic (FOG), and slow oxidative (SO) on the basis of histochemical staining for myosin ATPase, nicotinamide-adenine dinucleotide diaphorase (NADH-D), and alpha-glycerophosphate (alpha-GPD). Reinnervated muscles developed less force and weighed less in accordance with having fewer than normal motor units and having lost denervated muscle fibers. Normal LG contained a small proportion of S-type motor units (9%), whereas the majority (80%) of control soleus units were S type. After reinnervation, each muscle contained similar proportions of fast and slow motor units with S-type units constituting 30% of units in both muscles. When compared with the normal motor-unit sample, there was no significant change in average twitch and tetanic force in reinnervated muscles for each type of motor unit. However, the range within each type was greater, and there was considerable overlap between types. Twitch contraction time was inversely correlated with force in normal and reinnervated muscles as shown previously in self- and cross-reinnervated LGS in the cat. Changes in proportions of motor units in reinnervated LG were accompanied by corresponding changes in histochemical muscle types. This contrasted with reinnervated soleus in which the proportion of muscle fiber types was not significantly changed from normal despite significant change in motor-unit proportions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Motor and sensory innervation of muscle spindles in the neonatal rat   总被引:1,自引:0,他引:1  
Summary Neural and muscular elements of three muscle spindles from the soleus muscles of 4-day-old rats were reconstructed by electron microscopy of skip-serial transverse ultrathin sections. Each spindle contained four encapsulated intrafusal fibers, including a minimum of one bag1, one bag2 and one chain fiber. The fibers were innervated by unmyelinated motor and sensory axons. The primary and secondary afferents approached the spindles as single axons and terminated on the central region of the intrafusal fibers. Single profiles of terminal axons occupied the sites of sensory neuromuscular junctions, similar to adult sensory endings. No morphological features suggested retraction of afferents from 4-day postnatal spindles. Motor axons approached spindles tightly packed in bundles of 5–20 axons and terminated in the juxtaequatorial and polar regions of both bag and chain fibers. Multiple profiles of terminal axons were visible for each intrafusal motor ending. More motor axons innervated 4-day postnatal spindles and a greater number of axon terminals were visible in immature intrafusal motor endings than in adult spindles. The data suggest that postnatal maturation of motor innervation to intrafusal fibers involves the elimination of supernumerary motor nerve inputs. Synapse elimination in the development of the fusimotor system might represent a mechanism whereby individual axons adjust the number of spindles they innervate.  相似文献   

13.
The sciatic nerve was crushed in the right hindlimb in newborn (3-8 h old) rats. Two to four months later, electromyographic activity was recorded from both the control and reinnervated ankle extensor muscles soleus or lateral gastrocnemius and from the ankle flexor muscle tibialis anterior. Tonic postural activity was present in the extensor muscles on both sides during quiet stance. The control flexor muscles were usually silent in this situation, but the reinnervated flexors exhibited abnormal sustained activity. During locomotion, the control extensors were activated during the stance phase and their mean burst made up 61.5% of the step cycle. The control tibialis anterior muscle fired only during the swing phase, with the burst lasting 18.1% of the step cycle. In the reinnervated extensor muscles, the mean burst duration was decreased (46% of the cycle) but the basic locomotor pattern was not impaired. The reinnervated tibialis muscle, however, was activated abnormally, with one appropriate flexor burst during the swing phase and an "extensor-like" burst during the stance phase of the step. Reflex responses to stretch were weak or absent on the operated side. Histological examination showed that the reinnervated soleus and tibialis muscles were almost devoid of muscle spindles. The motor unit mean firing rates in the reinnervated soleus (22 imp/s) and lateral gastrocnemius (45 imp/s) matched those of the control muscles (25 and 42 imp/s, respectively). In contrast to the phasic, high-frequency firing (52-80 imp/s) in the control tibialis, the reinnervated tibialis motor units fired at significantly lower rates (22-56 imp/s).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Summary The influence of innervation on muscle spindle morphogenesis has been investigated in rat hind-limb muscles by sectioning the sciatic nerve, with suture of the stumps, at various postnatal stages. After nerve section at 4 or 7 days of age a proportion of spindles survived during the denervation phase and developed, during the subsequent reinnervation phase, into atypical structures. The reinnervated spindles were recognized by the presence of a limiting capsule but lacked the characteristic distinction of equatorial and polar regions. The intrafusal fibres were fewer than normal and were indistinguishable in size and fine structure from extrafusal fibres; they had a single motor endplate and lacked sensory nerve terminals. In reinnervated muscles of animals operated at 13 and 22 days of age there was a progressive tendency towards a restoration of normal spindle structure and innervation. These findings indicate that muscle spindle morphogenesis is profoundly altered by nerve lesion at early developmental stages, apparently as a result of inadequate sensory reinnervation. This study also shows that the differentiation of intrafusal fibres is dictated by their specific pattern of innervation and is not intrinsically predetermined.  相似文献   

15.
1. The nerves to cat peroneus longus and tenuissimus muscles were either cut or crushed close to the muscle and the afferent and efferent nerve supply to the muscle spindles was studied electrophysiologically between 2 and 32 weeks later. 2. Recovery was more rapid and complete after crush than section for both afferent and efferent fibres. After recovery from either procedure normal primary and secondary afferents and static and dynamic gamma efferent fibres were found. 3. Some abnormally occurring neurones were found. One group consisted of beta fibres which had a static action on muscle spindles. Static beta fibres are very rarely found in normal muscles. 4. The results indicate that some guidance mechanism exists which after crush injuries of nerves may restore muscle receptor function almost to normal. Even after nerve section some muscle spindles may become correctly reinnervated.  相似文献   

16.
Summary The immunocytochemical expression of two myosin isoforms in intrafusal muscle fibers was examined in soleus muscles of neonatal (zero to six days postpartum) and adult rats. Monoclonal antibodies specific for myosin heavy chains of the slow-tonic anterior latissimus dorsi (ALD58) and fast-twitch pectoralis (MF30) muscles of the chicken were used. In adults ALD58 bound to the intracapsular regions of bag1 and bag2 fibers and MF30 bound to the intracapsular regions of bag2 and chain fibers. The extracapsular regions of intrafusal fibers and all extrafusal fibers did not react to ALD58 or MF30. Bag1 and bag2 fibers of neonatal rats expressed immature myosin patterns but chain fibers did not. The adult pattern of immunoreactivity of intrafusal fibers developed by the fourth postnatal day, when the patterns of motor but not sensory innervation in the spindle are still immature. Data suggest that the expression and maintenance of the specific anti-myosin immunoreactivity of intrafusal fibers during postnatal development of rat spindles is dependent upon sensory but not motor innervation. Moreover, afferents might regulate the gene expression responsible for synthesis of myosins isoforms specific to intrafusal fibers only in those myonuclei located within the capsule, but not in the myonuclei in extracapsular regions of intrafusal fibers.  相似文献   

17.
Summary During the early postnatal period, the differentiation and maturation of muscle spindles in the rat is still dependent on their sensory innervation. When a nerve is crushed during this period, most spindles in the denervated muscles degenerate and after reinnervation only occasional spindles of atypical structure are to be found in these muscles. We determined the basic functional properties of these atypical spindles in adult rats and attempted to correlate them with their structural characteristics. The discharge rates of 13 afferent units from the soleus or lateral gastrocnemius muscles were evaluated in response to stretch. These units were capable of a slowly adapting response to 2–4 mm stretches. Their mean discharge frequencies at any point of the ramp-and-hold stretch were, however, on an average 50% lower than normal values. The conduction velocities of afferents from the atypical spindles were in the range of 10–40 m/s. Histological examinations revealed that 90% of the atypical muscle spindles found in the soleus or lateral gastrocnemius muscles had only 1 or 2 intrafusal fibres without any nuclear accumulations as compared to four intrafusal fibres in normal muscle spindles in the rat. The proportional decrease of the discharge rate in both the dynamic and static part of the response of these atypical spindles could be due to the decreased synaptic area between the sensory terminals and the intrafusal fibres and/or to altered structural properties of the intrafusal fibres.  相似文献   

18.
The rapid atrophy of skeletal muscle after denervation severely compromises efforts to restore muscle function. We have transplanted embryonic day 14-15 (E14-E15) ventral spinal cord cells into adult Fischer rat tibial nerve stump to provide neurons for reinnervation. Our aim was to evaluate medial gastrocnemius reinnervation physiologically because this transplant strategy will only be effective if the reinnervated muscle contracts, generates sufficient force to induce joint movement, and is fatigue resistant enough to shorten repeatedly. Twelve weeks posttransplantation, brief duration electrical stimuli applied to the transplants induced medial gastrocnemius contractions that were strong enough to produce ankle movement in 4 of 12 rats (33%). The force of these four "low-threshold" reinnervated muscles and control muscles declined only gradually during five hours of intermittent, supramaximal stimulation and without depression of EMG potential area, which is strong evidence of functional neuromuscular junctions and fatigue resistant muscles. Sectioning of the medial gastrocnemius nerves confirmed that these contractions were innervation dependent. Weakness in low-threshold reinnervated muscles (8% control force) related to incomplete reinnervation, reductions in muscle fiber size, specific tension, and/or the presence of nonfunctional neuromuscular junctions. Muscle reinnervation achieved using this novel transplantation strategy may salvage completely denervated muscle and may provide the potential to evoke limb movement when injury or disease precludes or delays peripheral axon regeneration.  相似文献   

19.
The potential capacity of aged motoneurons for the reconstruction of motor-units after nerve crush injury was studied in the medial gastrocnemius (MG) muscle of male Fischer rats. The MG nerve in middle-aged (8 months old) and aged (24 months) rats was aseptically crushed under pentobarbital anesthesia. After a 3-month recovery period, the animal was reanesthetized and physiological properties of individual motor-units were recorded. The three different types (fast twitch, fatigable: FF; fast twitch, fatigue resistant: FR and slow twitch: S) of normal motor-unit organization were restored in both middle-aged and aged reinnervated muscles as measured by their relative distributions, mean twitch contraction times and mean tetanic tensions. Some reinnervated units in both aged and middle-aged rats produced a large tetanic tension which exceeded the range for intact units. These findings indicate that aged motoneurons maintain their ability for axonal regenerating and muscle fiber innervation to reestablish normal function of motor-units.  相似文献   

20.
The neuroanatomical organization of the dynamic (bag1) and static (bag2 and chain) intrafusal systems was compared by light and electron microscopy of serial sections among 71 poles of muscle spindle in soleus (SOL), extensor digitorum longus (EDL), and lumbrical (LUM) muscles in the rat. Eighty-four percent of 195 fusi-motor (γ) axons to the spindles innervated either the dynamic bag1 fiber or the static bag2 and/or chain fibers. Sixteen percent of the γ axons coin-nervated the dynamic and static intrafusal fibers. Some of these nonselective axons were branches of efferents that also gave rise to axons selective to either the dynamic or static types of intrafusal fibers in one or more spindles. Thus activation of individual stem γ efferents might not have a purely dynamic or purely static effect on the integrated afferent outflow from spindles of a hind-limb muscle in the rat. In addition, primary afferents in all muscles had terminations that cross-innervated the dynamic bag1 and static bag2 and/or chain intrafusal fibers in individual spindles, an arrangement that may enhance the mixed dynamic/static behavior of afferents when different intrafusal fibers are activated concurrently. Spindles of the slow SOL and fast EDL muscles had similar features, whereas differences were observed in the organization of the proximal (SOL and EDL) and distal (LUM) muscles. Spindles in LUM muscles had fewer static intrafusal fibers, a higher ratio of dynamic to static γ axons, and a higher incidence of skeletofusimotor (β) innervation to intrafusal fibers than spindles in the SOL or EDL muscles. Thus, the relative contribution of dynamic and static systems to muscle afferent outflow may differ among spindles located in different segments of the rat hindlimb. However, the dynamic and static intrafusal systems of spindle were less sharply demarcated in each of the three hindlimb rat muscles than in the cat tenuissimus muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号