首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Cognitive control over conflicting information has been studied extensively using tasks such as the color-word Stroop, flanker, and spatial conflict task. Neuroimaging studies typically identify a fronto-parietal network engaged in conflict processing, but numerous additional regions are also reported. Ascribing putative functional roles to these regions is problematic because some may have less to do with conflict processing per se, but could be engaged in specific processes related to the chosen stimulus modality, stimulus feature, or type of conflict task. In addition, some studies contrast activation on incongruent and congruent trials, even though a neutral baseline is needed to separate the effect of inhibition from that of facilitation. In the first part of this article, we report a systematic review of 34 neuroimaging publications, which reveals that conflict-related activity is reliably reported in the anterior cingulate cortex and bilaterally in the lateral prefrontal cortex, the anterior insula, and the parietal lobe. In the second part, we further explore these candidate "conflict" regions through a novel functional magnetic resonance imaging experiment, in which the same group of subjects perform related visual and auditory Stroop tasks. By carefully controlling for the same task (Stroop), the same to-be-ignored stimulus dimension (word meaning), and by separating out inhibitory processes from those of facilitation, we attempt to minimize the potential differences between the two tasks. The results provide converging evidence that the regions identified by the systematic review are reliably engaged in conflict processing. Despite carefully matching the Stroop tasks, some regions of differential activity remained, particularly in the parietal cortex. We discuss some of the task-specific processes which might account for this finding.  相似文献   

2.
Cognitive control can be activated by stimulus–stimulus (S-S) and stimulus-response (S-R) conflicts. However, whether cognitive control is domain-general or domain-specific remains unclear. To deepen the understanding of the functional organization of cognitive control networks, we conducted activation likelihood estimation (ALE) from 111 neuroimaging studies to examine brain activation in conflict-related tasks. We observed that fronto-parietal and cingulo-opercular networks were commonly engaged by S-S and S-R conflicts, showing a domain-general pattern. In addition, S-S conflicts specifically activated distinct brain regions to a greater degree. These regions were implicated in the processing of the semantic-relevant attribute, including the inferior frontal cortex (IFC), superior parietal cortex (SPC), superior occipital cortex (SOC), and right anterior cingulate cortex (ACC). By contrast, S-R conflicts specifically activated the left thalamus, middle frontal cortex (MFC), and right SPC, which were associated with detecting response conflict and orienting spatial attention. These findings suggest that conflict detection and resolution involve a combination of domain-general and domain-specific cognitive control mechanisms.  相似文献   

3.
Effects of practice on a conflict task in elderly individuals are examined with a focus on its impact on executive function in working memory. During a short-term practice period, healthy elderly participants practiced switching attention using a Stroop task that involved a conflict between a task relevant stimulus and an irrelevant stimulus. To explore neural substrates underlying practice effects, two working memory tasks were used: a focus reading span test (F-RST) and a non-focus reading span test (NF-RST); the NF-RST test demanded greater switching attention due to a conflict between the relevant task stimulus and an irrelevant task stimulus, thus requiring an attention switch from the latter to the former. Following the Stroop task practice, fMRI data showed that participants who had engaged in practice had significant increases in activation in the anterior cingulate cortex (ACC), the left inferior parietal lobule (IPL), the left dorsolateral prefrontal cortex (DLPFC) and the precuneus regions during the NF-RST. By contrast, a control group, which did not practice, showed no significant increases in these regions. Results suggest that practice on conflict tasks in elderly individuals activated regions related to conflict perceiving and attention switching regions as well as attention-maintenance regions thereby improving performance on tasks requiring a high degree of attention control of working memory.  相似文献   

4.
We used fMRI to study the brain processes involved in the executive control of behavior. The Sustained Attention to Response Task (SART), which allows unpredictable and predictable NOGO events to be contrasted, was imaged using a mixed (block and event-related) fMRI design to examine tonic and phasic processes involved in response inhibition, error detection, conflict monitoring and sustained attention. A network of regions, including right ventral prefrontal cortex (PFC), left dorsolateral PFC (DLPFC) and right inferior parietal cortex, was activated for successful unpredictable inhibitions, while rostral anterior cingulate was implicated in error processing and the pre-SMA in conflict monitoring. Furthermore, the pattern of correlations between left dorsolateral PFC, implicated in task-set maintenance, and the pre-SMA were indicative of a tight coupling between prefrontally mediated control and conflict levels monitored more posteriorly. The results reveal that the executive control of behavior can be separated into distinct functions performed by discrete cortical regions.  相似文献   

5.
Two sensorimotor tasks that share neither sensory nor motor modality can interfere with one another when they are performed simultaneously. A possible cause for this interference is the recruitment of common brain regions by these two tasks, thereby creating a bottleneck of information processing. This hypothesis predicts that such “bottleneck” regions would be activated by each task even when they are performed separately. To test this prediction, we sought to identify, with fMRI, brain regions commonly activated by sensorimotor tasks that share neither sensory input nor motor output. One group of subjects was scanned while they performed in separate runs an auditory‐vocal (AVo) task and a visuo‐manual (ViM) task, while a second group of subjects performed the reversed sensorimotor mapping tasks (AM and ViVo). The results revealed strong activation preferences in specific sensory and motor cortical areas for each sensory and motor modality. By contrast, the posterior portion of the lateral prefrontal cortex (pLPFC), anterior insula, and, less consistently, the anterior cingulate, presupplementary and supplementary motor areas, and subcortical areas were commonly activated across all four sensorimotor tasks. These results were observed in both blocked and event‐related fMRI designs, in both 3D‐group averaged and 2D‐individual subject analyses, and were replicated within individuals across scanning sessions. These findings not only suggest that these brain regions serve a common amodal function in sensorimotor tasks, they also point to these regions—particularly, the pLPFC and anterior insula—as candidate neural substrates underlying a central hub of information processing in the human brain. Hum Brain Mapp, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
BOLD fMRI signal increases with age in selected brain regions in children   总被引:1,自引:0,他引:1  
To determine whether the BOLD signal used in fMRI is age dependent in childhood, 332 healthy children (age 4.9-18.9 years) performed tasks in a periodic block design during 3 T fMRI: (1) a verb generation task interleaved with a finger tapping task; (2) a word-picture matching task interleaved with an image discrimination task. Significant correlations between percent signal change in BOLD effect and age occurred in left Broca's, middle frontal, Wernicke's, and inferior parietal regions, and anterior cingulate during the verb generation task; in precentral, postcentral, middle frontal, supplementary motor, and precuneus regions during the finger tapping task; and in bilateral lingula gyri during the word-picture matching task. Thus, BOLD effect increases with age in children during sensorimotor and language tasks.  相似文献   

7.
Coordinated attention to information from multiple senses is fundamental to our ability to respond to salient environmental events, yet little is known about brain network mechanisms that guide integration of information from multiple senses. Here we investigate dynamic causal mechanisms underlying multisensory auditory–visual attention, focusing on a network of right‐hemisphere frontal–cingulate–parietal regions implicated in a wide range of tasks involving attention and cognitive control. Participants performed three ‘oddball’ attention tasks involving auditory, visual and multisensory auditory–visual stimuli during fMRI scanning. We found that the right anterior insula (rAI) demonstrated the most significant causal influences on all other frontal–cingulate–parietal regions, serving as a major causal control hub during multisensory attention. Crucially, we then tested two competing models of the role of the rAI in multisensory attention: an ‘integrated’ signaling model in which the rAI generates a common multisensory control signal associated with simultaneous attention to auditory and visual oddball stimuli versus a ‘segregated’ signaling model in which the rAI generates two segregated and independent signals in each sensory modality. We found strong support for the integrated, rather than the segregated, signaling model. Furthermore, the strength of the integrated control signal from the rAI was most pronounced on the dorsal anterior cingulate and posterior parietal cortices, two key nodes of saliency and central executive networks respectively. These results were preserved with the addition of a superior temporal sulcus region involved in multisensory processing. Our study provides new insights into the dynamic causal mechanisms by which the AI facilitates multisensory attention.  相似文献   

8.
Humans possess a remarkable capacity to understand the suffering of others. Cognitive neuroscience theories of empathy suggest that this capacity is supported by ‘shared representations’ of self and other. Consistent with this notion, a number of studies have found that perceiving others in pain and experiencing pain oneself recruit overlapping neural systems. Perception of pain in each of these conditions, however, may also cause unique patterns of activation, that may reveal more about the processing steps involved in each type of pain. To address this issue, we examined neural activity while participants experienced heat pain and watched videos of other individuals experiencing injuries. Results demonstrated (i) that both tasks activated anterior cingulate cortex and anterior insula, consistent with prior work; (ii) whereas self-pain activated anterior and mid insula regions implicated in interoception and nociception, other pain activated frontal, premotor, parietal and amygdala regions implicated in emotional learning and processing social cues; and (iii) that levels of trait anxiety correlated with activity in rostral lateral prefrontal cortex during perception of other pain but not during self-pain. Taken together, these data support the hypothesis that perception of pain in self and other, while sharing some neural commonalities, differ in their recruitment of systems specifically associated with decoding and learning about internal or external cues.  相似文献   

9.
In functional neuroimaging studies of episodic retrieval (ER), activations in prefrontal, parietal, anterior cingulate, and thalamic regions are typically attributed to episodic retrieval processes. However, these activations are also frequent during visual attention (VA) tasks, suggesting that their role in ER may reflect attentional rather than mnemonic processes. To investigate this possibility, we directly compared brain activity during ER and VA tasks using event-related fMRI. The ER task was a word recognition test with a retrieval mode component, and the VA task was a target detection task with a sustained attention component. The study yielded three main findings. First, a common fronto-parietal-cingulate-thalamic network was found for ER and VA, suggesting that the involvement of these regions during ER reflects general attentional processes. This idea is compatible with some of the interpretations proposed in the ER literature (e.g. postretrieval monitoring), which may be rephrased in terms of attentional processes. Second, several subregions were differentially involved in ER versus VA. For example, the frontopolar cortex and the precuneus were more activated for ER than for VA, possibly reflecting retrieval mode and processing of internally generated stimuli, respectively. Finally, the study yielded an unexpected finding: some medial temporal lobe regions were similarly activated for ER and VA. This finding suggests that the medial temporal lobes may be involved in indexing representations within the focus of consciousness, regardless of whether they are mnemonic or perceptual. Overall, the present results suggest that many of the activations attributed to specific cognitive processes, such as episodic memory, may actually reflect more general cognitive operations.  相似文献   

10.
The Stroop and Simon tasks typify a class of interference effects in which the introduction of task-irrelevant stimulus characteristics robustly slows reaction times. Behavioral studies have not succeeded in determining whether the neural basis for the resolution of these interference effects during successful task performance is similar or different across tasks. Event-related functional magnetic resonance imaging (fMRI) studies were obtained in 10 healthy young adults during performance of the Stroop and Simon tasks. Activation during the Stroop task replicated findings from two earlier fMRI studies. These activations were remarkably similar to those observed during the Simon task, and included anterior cingulate, supplementary motor, visual association, inferior temporal, inferior parietal, inferior frontal, and dorsolateral prefrontal cortices, as well as the caudate nuclei. The time courses of activation were also similar across tasks. Resolution of interference effects in the Simon and Stroop tasks engage similar brain regions, and with a similar time course. Therefore, despite the widely differing stimulus characteristics employed by these tasks, the neural systems that subserve successful task performance are likely to be similar as well.  相似文献   

11.
Verbal fluency deficits in schizophrenia are difficult to interpret because the tasks are multi-factorial and groups differ in total words generated. We manipulated retrieval and switching demands by requiring alternation between over-learned sequences in which retrieval is relatively automatic (OS) and semantic categories requiring increased retrieval effort (SC). Controlled processing was also manipulated by including switching and non-switching conditions, and formal thought disorder (FTD) was assessed with the communication disorders index (CDI). The OS/SC semantic fluency paradigm was administered during fMRI to 13 patients with schizophrenia and 14 matched controls. Images were acquired on a 3 Tesla Siemens scanner using compressed image acquisition to allow for cued overt word production. Subjects alternated between OS, SC, OS-switch, SC-switch, and baseline blocks. Images were pre-processed in SPM-2, and a two-stage random effects analysis tested within and between group contrasts. There were no group performance differences. fMRI analysis did not reveal any group differences during the OS non-switching condition. Both groups produced expected activation in bilateral prefrontal and inferior parietal regions. However, during the SC condition patients had greater activation than controls in left prefrontal, right anterior cingulate, right superior temporal, bilateral thalamus, and left parietal regions. There was also evidence of patient over-activation in prefrontal, superior temporal, superior parietal, and visual association areas when a switching component was added. FTD was negatively correlated with BOLD response in the right anterior cingulate, cuneus and superior frontal gyrus during increased retrieval demand, and positively correlated with fMRI activation in the left lingual gyrus, right fusiform gyrus and left superior parietal lobule during increased switching demand. These results indicate that patients are able to successfully perform effortful semantic fluency tasks during non-speeded conditions. When retrieval is relatively automatic there does not appear to be an effect of schizophrenia on fMRI response. However, when retrieval and controlled processing demands increase, patients have greater activation than controls despite unimpaired task performance. This inefficient BOLD response may explain why patients are slower and less accurate on standard self-paced fluency tasks.  相似文献   

12.
The neural mechanisms underlying different forms of preparatory control were examined using event-related fMRI. Preparatory brain activation was monitored in relation to different types of advance information: (1) random task cues indicating which of two possible tasks to perform upon subsequent target presentation; (2) task-ambiguous target stimuli; or (3) targets for which the correct response could be pre-determined. Three types of activation pattern were observed in different brain regions. First, more posterior regions of lateral prefrontal cortex (LPFC) and parietal cortex were activated by both advance task cues and advance targets, but with increased and more sustained activation for the latter. Second, more anterior regions of LPFC and parietal cortex were selectively activated by advance targets. Importantly, in these regions preparatory activation was not further modulated by the availability of advance response information. In contrast, preparatory activation in a third set of brain regions, including medial frontal cortex, reflected the utilization of advance response information, but by only a subset of participants. These results suggest three types of preparatory control: attentional (stimulus-oriented), intentional (action-oriented), and a possibly strategic component that might determine inter-individual differences in response readiness. Notably, the absence of regions selectively or even preferentially activated during cue-based preparation argues against certain conceptualizations of task-selective attention under cued task-switching conditions.  相似文献   

13.
In a prior study, we showed that trying to detect a taste in a tasteless solution results in enhanced activity in the gustatory and attention networks. The aim of the current study was to use connectivity analyses to test if and how these networks interact during directed attention to taste. We predicted that the attention network modulates taste cortex, reflecting top-down enhancement of incoming sensory signals that are relevant to goal-directed behavior. fMRI was used to measure brain responses in 14 subjects as they performed two different tasks: (1) trying to detect a taste in a solution or (2) passively perceiving the same solution. We used psychophysiological interaction analysis to identify regions demonstrating increased connectivity during a taste attention task compared to passive tasting. We observed greater connectivity between the anterior cingulate cortex and the frontal eye fields, posterior parietal cortex, and parietal operculum and between the anterior cingulate cortex and the right anterior insula and frontal operculum. These results suggested that selective attention to taste is mediated by a hierarchical circuit in which signals are first sent from the frontal eye fields, posterior parietal cortex, and parietal operculum to the anterior cingulate cortex, which in turn modulates responses in the anterior insula and frontal operculum. We then tested this prediction using dynamic causal modeling. This analysis confirmed a model of indirect modulation of the gustatory cortex, with the strongest influence coming from the frontal eye fields via the anterior cingulate cortex. In summary, the results indicate that the attention network modulates the gustatory cortex during attention to taste and that the anterior cingulate cortex acts as an intermediary processing hub between the attention network and the gustatory cortex.  相似文献   

14.
OBJECTIVE: People with schizophrenia have exhibited reduced functional activity in the anterior cingulate cortex during the performance of many types of cognitive tasks and during the commission of errors. According to conflict theory, the anterior cingulate cortex is involved in the monitoring of response conflict, acting as a signal for a need for greater cognitive control. This study examined whether impaired conflict monitoring in people with schizophrenia could underlie reduced anterior cingulate activity during both correct task performance and error-related activity. METHOD: Functional activity in the anterior cingulate of 13 schizophrenia patients and 13 healthy comparison subjects was investigated by using event-related fMRI and a Stroop task that allowed simultaneous examination of activity during both conflict (incongruent trials) and error (commission of error trials). RESULTS: In the presence of comparable reaction time measures for conflict as well as comparable error rates, the schizophrenia subjects showed both decreased conflict- and error-related activity in the same region of the anterior cingulate cortex. Moreover, those with schizophrenia did not exhibit significant post-conflict or post-error behavioral adjustments. CONCLUSIONS: Concurrently reduced conflict- and error-related activity in the anterior cingulate cortex along with reduced trial-to-trial adjustments in performance has not previously been reported in schizophrenia. The current results suggest that impaired conflict monitoring by the anterior cingulate cortex might play an important role in contributing to cognitive control deficits in patients with schizophrenia.  相似文献   

15.
The aim of this event-related functional magnetic resonance imaging (fMRI) study was to investigate and compare executive functions with different motor outputs in somatosensory Go/Nogo tasks: (1) Button press and (2) Count. Go and Nogo stimuli were presented with an even probability. We observed a common network for Movement and Count Go trials in several regions of the brain including the dorsolateral (DLPFC) and ventrolateral prefrontal cortices (VLPFC), supplementary motor area (SMA), posterior parietal cortex (PPC), inferior parietal lobule (IPL), Insula, and superior temporal gyrus (STG). Direct comparison revealed that primary sensorimotor area (SMI), premotor area (PM), and anterior cingulate cortex (ACC) were more activated during Movement than Count Go trials. In contrast, the VLPFC was more activated during Count than Movement Go trials. Our results suggest that there were two neural networks for the supramodal executive function, common and uncommon, depending on the required response mode.  相似文献   

16.
Brain responses to pain, assessed through positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) are reviewed. Functional activation of brain regions are thought to be reflected by increases in the regional cerebral blood flow (rCBF) in PET studies, and in the blood oxygen level dependent (BOLD) signal in fMRI. rCBF increases to noxious stimuli are almost constantly observed in second somatic (SII) and insular regions, and in the anterior cingulate cortex (ACC), and with slightly less consistency in the contralateral thalamus and the primary somatic area (SI). Activation of the lateral thalamus, SI, SII and insula are thought to be related to the sensory-discriminative aspects of pain processing. SI is activated in roughly half of the studies, and the probability of obtaining SI activation appears related to the total amount of body surface stimulated (spatial summation) and probably also by temporal summation and attention to the stimulus. In a number of studies, the thalamic response was bilateral, probably reflecting generalised arousal in reaction to pain. ACC does not seem to be involved in coding stimulus intensity or location but appears to participate in both the affective and attentional concomitants of pain sensation, as well as in response selection. ACC subdivisions activated by painful stimuli partially overlap those activated in orienting and target detection tasks, but are distinct from those activated in tests involving sustained attention (Stroop, etc.). In addition to ACC, increased blood flow in the posterior parietal and prefrontal cortices is thought to reflect attentional and memory networks activated by noxious stimulation. Less noted but frequent activation concerns motor-related areas such as the striatum, cerebellum and supplementary motor area, as well as regions involved in pain control such as the periaqueductal grey. In patients, chronic spontaneous pain is associated with decreased resting rCBF in contralateral thalamus, which may be reverted by analgesic procedures. Abnormal pain evoked by innocuous stimuli (allodynia) has been associated with amplification of the thalamic, insular and SII responses, concomitant to a paradoxical CBF decrease in ACC. It is argued that imaging studies of allodynia should be encouraged in order to understand central reorganisations leading to abnormal cortical pain processing. A number of brain areas activated by acute pain, particularly the thalamus and anterior cingulate, also show increases in rCBF during analgesic procedures. Taken together, these data suggest that hemodynamic responses to pain reflect simultaneously the sensory, cognitive and affective dimensions of pain, and that the same structure may both respond to pain and participate in pain control. The precise biochemical nature of these mechanisms remains to be investigated.  相似文献   

17.
Cognitive control processes enable us to adjust our behavior to changing environmental demands. Although neuropsychological studies suggest that the critical cortical region for cognitive control is the prefrontal cortex, neuro-imaging studies have emphasized the interplay of prefrontal and parietal cortices. This raises the fundamental question about the different contributions of prefrontal and parietal areas in cognitive control. It was assumed that the prefrontal cortex biases processing in posterior brain regions. This assumption leads to the hypothesis that neural activity in the prefrontal cortex should precede parietal activity in cognitive control. The present study tested this assumption by combining results from functional magnetic resonance imaging (fMRI) providing high spatial resolution and event-related potentials (ERPs) to gain high temporal resolution. We collected ERP data using a modified task-switching paradigm. In this paradigm, a situation where the same task was indicated by two different cues was compared with a situation where two cues indicated different tasks. Only the latter condition required updating of the task set. Task-set updating was associated with a midline negative ERP deflection peaking around 470 msec. We placed dipoles in regions activated in a previous fMRI study that used the same paradigm (left inferior frontal junction, right inferior frontal gyrus, right parietal cortex) and fitted their directions and magnitudes to the ERP effect. The frontal dipoles contributed to the ERP effect earlier than the parietal dipole, providing support for the view that the prefrontal cortex is involved in updating of general task representations and biases relevant stimulus-response associations in the parietal cortex.  相似文献   

18.
The parietal cortex in monkeys and humans has been shown to play an important role in the transformation of sensory information to motor commands. However, it is still unclear whether in humans, these areas are divided functionally into subregions based on different combinations of sensory and motor modalities. To identify subregions in the parietal cortex involved in the sensorimotor information transformation between different modalities, functional MRI was used to examine brain areas activated during tasks requiring different sensorimotor transformations--i.e., various combinations of eye (saccade) or finger movements triggered by visual or somatosensory cues. We then compared the activations between cross-modal conditions (eye movements triggered by somatosensory cues and finger movements triggered by visual cues) and intramodal (eye movements triggered by visual cues and finger movements triggered by somatosensory cues) conditions. Although the parietal cortex was involved in all tasks regardless of sensorimotor combinations, the only region activated to a greater degree in the cross-modal conditions compared to the intramodal conditions was the anterior portion of the intraparietal sulcus (a-IPS). The results suggest that the a-IPS plays an important role in the sensorimotor transformation of cross-modal spatial information.  相似文献   

19.
Neuroimaging studies in humans have consistently found robust activation of frontal, parietal, and temporal regions during working memory tasks. Whether these activations represent functional networks segregated by perceptual domain is still at issue. Two functional magnetic resonance imaging experiments were conducted, both of which used multiple-cycle, alternating task designs. Experiment 1 compared spatial and object working memory tasks to identify cortical regions differentially activated by these perceptual domains. Experiment 2 compared working memory and perceptual control tasks within each of the spatial and object domains to determine whether the regions identified in experiment 1 were driven primarily by the perceptual or mnemonic demands of the tasks, and to identify common brain regions activated by working memory in both perceptual domains. Domain-specific activation occurred in the inferior parietal cortex for spatial tasks, and in the inferior occipitotemporal cortex for object tasks, particularly in the left hemisphere. However, neither area was strongly influenced by task demands, being nearly equally activated by the working memory and perceptual control tasks. In contrast, activation of the dorsolateral prefrontal cortex and the intraparietal sulcus (IPS) was strongly task-related. Spatial working memory primarily activated the right middle frontal gyrus (MFG) and the IPS. Object working memory activated the MFG bilaterally, the left inferior frontal gyrus, and the IPS, particularly in the left hemisphere. Finally, activation of midline posterior regions, including the cingulate gyrus, occurred at the offset of the working memory tasks, particularly the shape task. These results support a prominent role of the prefrontal and parietal cortices in working memory, and indicate that spatial and object working memory tasks recruit differential hemispheric networks. The results also affirm the distinction between spatial and object perceptual processing in dorsal and ventral visual pathways. Hum. Brain Mapping 6:14–32, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
Rusted J  Ruest T  Gray MA 《Neuropsychologia》2011,49(9):2362-2368
We previously demonstrated that stimulating neuronal nicotinic acetylcholine receptors modulates prospective memory (PM), the ability to remember and implement a prior intention. Here we used fMRI to explore the neuronal correlates of acute nicotinic (1 mg) modulation during PM, employing a double blind, valence-matched placebo-controlled design, and a solely event-related analysis. Eight healthy adults completed on two occasions (1 week washout) a simple attentional task containing infrequent PM trials. PM activated bilateral parietal, prefrontal (BA10) and anterior cingulate, and deactivated genual cingulate and medial prefrontal regions. Further, acute nicotine administration decreased activity within a largely overlapping right parietal region. This data validates a purely event-related approach to exploring PM, and suggests procholinergic modulation of PM by parietal rather than BA10/frontal regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号