首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
This study tests the hypothesis that total vented bypass can attenuate the regional ischemic effect during a defined time interval before controlled blood cardioplegic reperfusion. Thirty-three dogs underwent 2 or 4 hours of occlusion of the left anterior descending coronary artery and then received a regional blood cardioplegic reperfusate on total vented bypass. Cardiopulmonary bypass and reperfusion were started after 2 hours of ischemia in eight dogs, and after 4 hours of ischemia in 25 others. Among the 25 dogs, seven had total vented bypass started after the first 2 hours of the 4 hours of regional ischemia. Segmental shortening (ultrasonic crystals), tissue water content (wet/dry weight), and histochemical damage (triphenyltetrazolium chloride stain) were assessed 2 hours after reperfusion. Dogs reperfused after 2 hours of ischemia recovered 73% +/- 8% of control systolic shortening and sustained only 11% triphenyltetrazolium chloride nonstaining. Dogs undergoing 4 hours of regional ischemia, but with total vented bypass 2 hours before reperfusion had improved recovery of systolic shortening (49% versus 31%, p less than 0.05), limited epicardial edema (79.6% versus 81.1% water content, p less than 0.05), and reduced histochemical damage (24% versus 39% triphenyltetrazolium chloride nonstaining, p less than 0.05). These findings imply that institution of total vented bypass during ischemia attenuates the infarct process, increases regional recovery of contractility, limits edema and restricts histochemical damage, and may be a useful adjunct to myocardial salvage when controlled reperfusion can be provided.  相似文献   

2.
This study tests the usefulness of delivering a controlled reperfusate through an internal mammary graft after acute ischemia by applying a percutaneous technique of mammary artery cannulation and compares reperfusion at fixed pressure versus fixed flow. Methods: Twenty-one dogs underwent 2 hours of ligation of the left anterior descending coronary artery followed by regional controlled revascularization on total vented bypass. A reperfusion catheter was introduced percutaneously from the brachial artery into the internal mammary artery. Five dogs received normal blood reperfusion at 50 mm Hg pressure, and eight dogs received a regional blood cardioplegic reperfusate at 50 mm Hg before reperfusion with normal blood. Eight additional dogs received regional cardioplegia at 30 ml/min for 20 minutes. Coronary vascular resistance, segmental shortening (ultrasonic crystals), tissue water content, and histochemical damage (triphenyltetrazolium chloride stain) were assessed. Results: Reperfusion with normal blood increased coronary vascular resistance progressively to 62% above initial values (p less than 0.05) and failed to restore regional contractility (9% +/- 6% systolic shortening, p less than 0.05). In contrast, coronary resistance remained low throughout blood cardioplegic reperfusion at fixed pressure and the reperfused muscle recovered immediate contractility (73% systolic shortening, p less than 0.05). Controlled reperfusion at a fixed flow rate resulted in pressure that ranged from 30 to 80 mm Hg, slightly less recovery of systolic shortening (57%), and less return of contractile reserve (81% versus 114%, p less than 0.05). Regional blood cardioplegic reperfusion limited edema formation (79.5 versus 82% water content, p less than 0.05) and histochemical damage (11% versus 50% area of necrosis/area at risk, p less than 0.05). Conclusion: An internal mammary artery graft can be used effectively in the setting of acute ischemia if a controlled blood cardioplegic reperfusate is delivered through it to ensure limitation of histochemical damage, low reflow phenomenon, and restoration of immediate segmental contractility. Controlled-pressure reperfusion seems superior to fixed-flow reperfusion. A technique is described that may allow preoperative insertion of the reperfusion catheter in the internal mammary artery in the catheterization laboratory.  相似文献   

3.
This study tests whether initial asanguineous washout of potentially toxic substances that accumulate during ischemia improves recovery produced by blood cardioplegic reperfusion and evaluates the role of plasma versus whole blood cardioplegia. METHODS: Twenty-four dogs underwent 2 hours of occlusion of the left anterior descending coronary artery and 20 minutes of blood cardioplegic reperfusion on total vented bypass. In 13 dogs, a 5-minute infusion of either a crystalloid (n = 7) or plasma (n = 6) cardioplegic solution (containing the same pH, calcium potassium, and osmolarity as blood cardioplegia) was given immediately before reoxygenation with blood cardioplegia. Regional oxygen uptake and coronary vascular resistance were measured during controlled reperfusion, and segmental shortening (ultrasonic crystals), tissue water content, and histochemical damage (triphenyltetrazolium chloride stain) were assessed 1 hour after bypass was discontinued. RESULTS: Asanguineous cardioplegic washout before reoxygenation with blood cardioplegic solution resulted in a progressive (+42%) increase in coronary vascular resistances (from 123 to 176 units, p less than 0.05) and low oxygen utilization during 20 minutes of blood cardioplegic reperfusion (29 ml/100 gm, p less than 0.05); coronary vascular resistance remained low throughout blood cardioplegic reperfusion without washout (from 109 to 98 units), and oxygen utilization was 54 ml/100 gm (p less than 0.05). Neither plasma nor crystalloid washout restored substantial regional systolic shortening (3% systolic shortening versus 73% systolic shortening with blood cardioplegia), and asanguineous washout caused more myocardial edema (81.1% +/- 80.9% versus 79.5% water content, p less than 0.05) and produced extensive transmural triphenyltetrazolium chloride damage (48% +/- 41% versus 8% nonstaining in area at risk, p less than 0.05) than initial blood cardioplegic reperfusion. CONCLUSION: Asanguineous cardioplegic washout before blood cardioplegic reperfusion limits oxygen utilization during subsequent controlled reperfusion, restricts early recovery of systolic shortening, allows more myocardial edema, and produces extensive histochemical damage, which may be avoided by initial reoxygenation with blood cardioplegia. The red blood cells appear more important than the plasma components of blood cardioplegia.  相似文献   

4.
Reperfusion of warm blood cardioplegic solution is useful in minimizing reperfusion damage after ischemia. This study tests the hypothesis that overzealous administration of blood cardioplegic solution at reperfusion counteracts these benefits and can lead to a prevalence of depressed ventricular performance and mortality similar to that seen after normal blood reperfusion. Thirty-one dogs underwent 45 minutes of 37 degrees C global ischemia on vented bypass. Six received normal blood reperfusion and 25 were reperfused with a warm aspartate/glutamate-enriched blood cardioplegic solution; of these, eight received high-dose (3600 +/- 600 ml) and 17 received limited-dose (1180 +/- 120 ml) blood cardioplegic reperfusion over 10 to 20 minutes. High-dose blood cardioplegic perfusion (5100 +/- 200 ml) without prior ischemia was tested in an additional five dogs. High-dose blood cardioplegia without preceding ischemia did not alter ventricular function (peak stroke work index 96% of control). After ischemia, normal blood reperfusion (no cardioplegia) resulted in marked left ventricular dysfunction (peak stroke work index 36% of control, p less than 0.05 versus control) and a 33% mortality rate (2/6 died). High-dose cardioplegic reperfusion yielded marginal recovery of stroke work index (40% of control, p less than 0.05 versus control) and a 25% mortality rate (2/8 died). In contrast, limited-dose reperfusion of blood cardioplegic solution allowed 100% survival (17/17) and restored stroke work index to 90% of control (1.3 versus 1.45 gm.m/kg). We conclude that reperfusion damage can be avoided by initial reoxygenation with limited doses of substrate-enriched blood cardioplegic solution. Conversely, high-dose reperfusion of blood cardioplegic solution offsets this benefit, reduces recovery substantially, and may be lethal.  相似文献   

5.
This study tests the hypothesis that contractile dysfunction that often develops after acute coronary occlusion despite emergency revascularization can be avoided by careful control of the composition of the initial reperfusate and the conditions of the reperfusion. Between January 1987 and May 1989, 31 consecutive patients with acute coronary occlusion (90% resulting from percutaneous transluminal coronary angioplasty failures) were reperfused during emergency myocardial revascularization according to one of two different protocols. In 23 patients the reperfusate was normal blood given at systemic pressure ("uncontrolled reperfusion"); in eight patients the ischemic segment was reperfused during the first 20 minutes with a regional blood cardioplegic solution (substrate-enriched, hyperosmotic, hypocalcemic, alkalotic, diltiazem-containing) at 37 degrees C at a pressure of 50 mm Hg. Thereafter total bypass was prolonged for an additional 30 minutes before extracorporeal circulation was discontinued ("controlled reperfusion"). Assessment of regional contractility (echocardiography, radionuclide ventriculography), electrocardiographic evidence of myocardial infarction, release of creatine kinase and isoenzyme of creatine kinase, and hospital mortality was performed. Regional contractility was quantified with a scoring system from 0 (normokinesis) to 4 (dyskinesis). Data are expressed as mean +/- standard error of the mean. Both groups were well matched for age, sex, and the distribution of the occluded artery. In the controlled-reperfusion group there was a greater prevalence of previous infarctions (63% versus 43%), additional significant stenosis (1.3 +/- 0.2 versus 0.8 +/- 0.2), and cardiogenic shock (38% versus 17%) compared with the uncontrolled-reperfusion group. Furthermore, the interval between coronary occlusion and reperfusion was significantly longer in the controlled-reperfusion group (4.0 +/- 0.5 versus 2.3 +/- 0.3 hr; p less than 0.05). Regional contractility returned to normal in all patients treated by controlled reperfusion (wall motion score = 0.8 +/- 0.3, normokinesis = 0, slight hypokinesis = 1). In contrast, regional contractility remained severely depressed after uncontrolled reperfusion with normal blood (score 2.5 +/- 0.2; p less than 0.05), with only four of 23 patients with a score less than 2 (2 = severe hypokinesis). Postoperatively enzymes and electrocardiographic changes were similar in both groups. One patient died of mitral insufficiency in the controlled-reperfusion group, despite complete recovery of wall motion in the angioplasty-related artery. Conversely, the four of 23 deaths after uncontrolled reperfusion occurred in patients who sustained infarct in the area of the coronary occlusion (mortality 13% versus 17%). In conclusion, these preliminary clinical results indicate that immediate recovery of segmental contractility can be achieved after acute coronary occlusion if the initial reperfusion is controlled.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
HYPOTHESIS: Initial reoxygenation with blood cardioplegic solution produces better regional recovery than with Fluosol DA cardioplegic solution (Green Cross Corporation, Osaka, Japan) because blood cardioplegia ensures delivery of important blood components (i.e., plasma and red blood cells) that limit reperfusion damage. METHODS: Twenty-five dogs underwent 2 hours of ligation of the left anterior descending coronary artery followed by controlled reperfusion at 50 mm Hg through an internal mammary graft on total vented bypass. Five dogs received normal blood reperfusion, 10 dogs received a 20-minute reperfusion with Fluosol DA 20% cardioplegic solution, and 10 others received a blood cardioplegic reperfusate of identical composition (i.e., pH, calcium, potassium, glucose, osmolarity). Regional oxygen consumption was measured during reperfusion, and segmental shortening (ultrasonic crystals), tissue water content, and histochemical damage (triphenyltetrazolium chloride stain) were assessed 2 hours later. RESULTS: Reperfusion with normal blood failed to restore contractile function (3% systolic shortening), caused severe edema (81% water content), and caused marked histochemical damage (48% triphenyltetrazolium chloride nonstaining). Hearts reperfused with Fluosol DA cardioplegic solution did not take up as much oxygen as hearts receiving blood cardioplegic reperfusion (37 versus 54 ml/100 gm, p less than 0.05). Blood cardioplegia was superior to Fluosol DA cardioplegia in recovery of segmental contractility (69% versus 34% systolic shortening, p less than 0.05), produced less edema (79.5% versus 80.9% water content, p less than 0.05), and produced less histochemical damage with triphenyltetrazolium chloride (11% versus 40% area of nonstaining/area at risk, p less than 0.05). CONCLUSIONS: Initial reperfusion with a blood cardioplegic solution ensures better oxygen utilization, superior recovery of regional contractility, and less tissue damage than Fluosol DA cardioplegic reperfusion. These data emphasize the importance of including blood components (plasma or red blood cells) in the oxygenated cardioplegic reperfusate to limit reperfusion injury.  相似文献   

7.
OBJECTIVES: This study evaluates the role of leukocyte depletion during initial reoxygenation with normal blood and blood cardioplegic reperfusates in limiting reperfusion damage. METHODS: Twenty-eight dogs underwent 2 hours of ligation of the left anterior descending coronary artery. The initial reperfusate (37 degrees C) was delivered on total vented bypass to the left anterior descending artery by a calibrated pump via an internal mammary artery graft at 50 mm Hg for 20 minutes. Eight dogs received normal (normokalemic, nonenriched) blood reperfusion (leukocyte count 8000/mm3) and six were reperfused with leukocyte-depleted normal blood (leukocyte count less than 100/mm3). Of 14 dogs reperfused with substrate-enriched (hyperkalemic) blood cardioplegic solution, six received a cardioplegic solution with a leukocyte count less than 100/mm3. RESULTS: Leukocyte depletion of normal blood reduced reperfusion-induced arrhythmias from 63% to 17% (p less than 0.05). Coronary vascular resistance at initial reperfusion was low and remained low during substrate-enriched blood cardioplegic reperfusion with both normal and reduced leukocyte counts. In contrast, coronary vascular resistance rose 63% with normal blood reperfusion, and this increase was avoided by leukocyte depletion (2.6 versus 4.0 mm Hg x ml/min, p less than 0.05). Coronary vascular resistance after 20 minutes was, however, higher than that with blood cardioplegia with normal or decreased leukocyte counts. Negligible functional recovery followed reperfusion with normal blood and leukocyte-depleted blood (12% and 6% of control systolic shortening). In contrast, substantial segmental recovery followed blood cardioplegic reperfusion (73% systolic shortening, p less than 0.05) but was not improved by leukopheresis (81% systolic shortening). Leukocyte depletion of normal blood reperfusate reduced histochemical damage from 53% to 38% (p less than 0.05), but the least histochemical damage followed blood cardioplegic reperfusion with a normal or reduced leukocyte count (8% or 11%, p less than 0.05). CONCLUSIONS: These findings suggest an important role for leukocytes in reperfusion damage, but reperfusate leukocyte filtration alone is inferior to blood cardioplegic reperfusion. Leukocyte depletion of blood cardioplegic solutions seems unnecessary after only 2 hours of ischemia.  相似文献   

8.
This study was designed to test the hypothesis that asanguineous reperfusion with a standard crystalloid cardioplegic solution results in improved myocardial salvage after a period of global ischemia. Four groups of 6 dogs each were placed on cardiopulmonary bypass. Control group A (work only) performed two hours of controlled work by contracting against a saline-filled left intraventricular balloon. Control group B (ischemia only) underwent 45 minutes of global normothermic ischemia before simple blood reperfusion while supported on bypass. Groups C and D were subjected to ischemia and reperfusion as in group B, followed by controlled work stress as in group A. Group D, however, received 500 mL of St. Thomas' Hospital solution immediately before blood reperfusion. Morphological analysis showed no significant injury in groups A and B, whereas group C had 11.4% +/- 2.4% necrosis of heart mass versus 2.5% +/- 1.1% in group D (p less than 0.001). Biochemical data from left ventricular biopsies showed no significant differences between groups B, C, and D. Functional analyses showed deterioration of diastolic compliance in group C (p less than 0.05), although a significant difference in systolic functional indexes could not be detected. Myocardial protection and salvage was improved by initial reperfusion with an asanguineous cardioplegic solution versus reperfusion with blood alone.  相似文献   

9.
BACKGROUND: Inhibition of the Na+/H+ exchanger before ischemia protects against ischemia-reperfusion injury, but use as pretreatment before blood cardioplegic protection or as a supplement to controlled blood cardioplegic reperfusion was not previously tested in jeopardized hearts. METHODS: Control studies tested the safety of glutamate-aspartate-enriched blood cardioplegic solution in 4 Yorkshire-Duroc pigs undergoing 30 minutes of aortic clamping without prior unprotected ischemia. Twenty-four pigs underwent 30 minutes of unprotected normothermic global ischemia to create a jeopardized heart. Six of these hearts received normal blood reperfusion, and the other 18 jeopardized hearts underwent 30 more minutes of aortic clamping with cardioplegic protection. In 12 of these, the Na+/H+ exchanger inhibitor cariporide was used as intravenous pretreatment (n = 6) or added to the cardioplegic reperfusate (n = 6). RESULTS: Complete functional, biochemical, and endothelial recovery occurred after 30 minutes of blood cardioplegic arrest without preceding unprotected ischemia. Thirty minutes of normothermic ischemia and normal blood reperfusion produced 33% mortality and severe left ventricular dysfunction in survivors (preload recruitable stroke work, 23% +/- 6% of baseline levels), with raised creatine kinase MB, conjugated dienes, endothelin-1, myeloperoxidase activity, and extensive myocardial edema. Blood cardioplegia was functionally protective, despite adding 30 more minutes of ischemia; there was no mortality, and left ventricular function improved (preload recruitable stroke work, 58% +/- 21%, p < 0.05 versus normal blood reperfusion), but adverse biochemical and endothelial variables did not change. In contrast, Na+/H+ exchanger inhibition as either pretreatment or added during cardioplegic reperfusion improved myocardial recovery (preload recruitable stroke work, 88% +/- 9% and 80% +/- 7%, respectively, p < 0.05 versus without cariporide) and comparably restored injury variables. CONCLUSIONS: Na+/H+ exchanger blockage as either pretreatment or during blood cardioplegic reperfusion comparably delays functional, biochemical, and endothelial injury in jeopardized hearts.  相似文献   

10.
We investigated the effects of diltiazem cardioplegia on myocardial function and infarct size in the region of the left anterior descending artery after acute occlusion and reperfusion during cardiopulmonary bypass. Sheep (30 kg) were subjected to 1 hour of regional myocardial ischemia by occlusion of the left anterior descending artery and assigned to a control (n = 8) or experimental group (n = 5). Control animals were placed on cardiopulmonary bypass and the heart arrested with potassium cardioplegia. The left anterior descending artery was released and two additional doses of 100 ml of cardioplegic solution were infused during the total cross-clamp time of 30 minutes. The animals were then weaned from bypass after 1 hour and beating, working reperfusion maintained for an additional 4 hours. The experimental group followed the same protocol except that the cardioplegic solution contained diltiazem (1.4 mg/L). Segmental myocardial function was determined by pairs of ultrasonic crystals in the area at risk, control segment, and minor axis. Global contractility was determined from maximum derivative of left ventricular pressure and cardiac output. The area at risk was determined by injecting monastral blue dye into the left atrium with the left anterior descending artery briefly reoccluded, and the area of necrosis was determined by measuring with a planimeter non-triphenyltetrazolium chloride stained areas in the sectioned left ventricle. After 5 hours of reperfusion, not only did the diltiazem group demonstrate better global contractility as defined by the derivative of left ventricular pressure (1853 +/- 292 versus 979 +/- 191, p = 0.05) but, in addition, the systolic shortening in the ischemic area improved significantly when compared with the control group (9.4 +/- 4 versus 2.13 +/- 0.77, p = 0.05). The group receiving diltiazem cardioplegia had an area of necrosis to area at risk ratio of 31.4% +/- 3%, which was significantly better than this ratio in the control group of 60.75% +/- 7% (p = 0.01). Diltiazem cardioplegia results in improved global and segmental contractility and limits the infarct size after occlusion of the left anterior descending artery and surgical reperfusion.  相似文献   

11.
Open-chest sheep underwent 90 minutes' occlusion of the diagonal branch of the left anterior descending coronary artery, followed by vented cardiopulmonary bypass. After 30 minutes of cardioplegic arrest, simulating distal anastomoses, the occlusion on the coronary artery branch was released. Controlled reperfusion (40 to 50 mm Hg, 135 to 150 ml/min) for the first 20 minutes was delivered at the aortic root with either unmodified whole blood (control, n = 7) or blood passed through leukocyte filters (filters, n = 7). Serial measurements were made during 3 additional hours reperfusion off cardiopulmonary bypass. During ischemia, the major determinants of infarct size, which include area at risk, collateral myocardial blood flow, and rate-pressure product were not significantly different between groups. Overall, during reperfusion, mean left ventricular stroke work index in the filter group was greater than in the control group (28.7 +/- 5.8 versus 12.6 +/- 6.4 x 10(3) erg/gm, p less than 0.05), as was mean rate of rise of left ventricular pressure (1900 +/- 260 versus 1348 +/- 279 mm Hg/sec, p less than 0.05). Myocardial blood flow to the area at risk at 3 1/2 hours of reperfusion in the filter group was also significantly better than in the control group (0.57 +/- 0.15 versus 0.27 +/- 0.05 ml/min/gm, p less than 0.05), as was necrotic area as a percentage of area at risk (40% +/- 6% versus 70% +/- 5%, p less than 0.05). These results demonstrate amelioration of myocardial stunning and the no-reflow phenomenon, as well as decreased infarct size. We conclude that controlled reperfusion with leukocyte-depleted blood is superior to whole-blood reperfusion for the surgical treatment of acute regional ischemia.  相似文献   

12.
To test if acadesine (5-aminoimidazole-4-carboxamide riboside), a purine precursor, has cardioprotective effects, 16 dogs were placed on total cardiopulmonary bypass and subjected to global myocardial ischemia. Hemodynamic recovery was compared between a control (n = 8) group receiving standard cardioplegia and an acadesine (n = 8) group pretreated with intravenous acadesine (2.5 mg.kg-1.min-1 for 5 minutes, then 0.5 mg.kg-1.min-1) before ischemia, during ischemia, and until 10 minutes after removal of the aortic cross-clamp. Additionally, in the acadesine group the cardioplegia also contained 20 mumol/L acadesine. While the dogs were on cardiopulmonary bypass, global warm myocardial ischemia was induced by aortic cross-clamping for 5 minutes under normothermic conditions to simulate an angioplasty accident. Five minutes after aortic cross-clamping, hypothermic cardioplegia (30 mL/kg) was administered. The left anterior descending coronary artery was occluded before the first infusion of cardioplegia to simulate poor cardioplegia delivery that can occur during an emergency coronary artery bypass procedure after an angioplasty accident. The left anterior descending artery occlusion was released, and additional cardioplegia (15 mL/kg) infusions were made every 30 minutes thereafter during 120 minutes of cardioplegic ischemia. Thirty minutes after reperfusion, all animals in both groups were weaned from bypass and recovery data were obtained to compare with baseline preischemic values. There were no significant differences in heart rate, left atrial pressure, or systemic vascular resistance between groups after weaning from bypass. Peak developed pressure recovered to 79% +/- 19% (mean +/- standard deviation) of baseline in the acadesine group compared with 56% +/- 22% in the control group (p less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The ability to reverse acute coronary occlusion with fibrinolytic agents and percutaneous transluminal angioplasty has increased interest in the revascularization of ischemic myocardium. This study defines changes in global ventricular function, mass, and compliance during acute coronary occlusion and following reperfusion with blood in the beating and arrested heart. In 17 dogs on cardiopulmonary bypass, the proximal left anterior descending coronary artery was occluded for 45 minutes. In 12 dogs, flow was reestablished by releasing the coronary snare in the beating heart. In the other 5 dogs, the snare was released during a continuous 10-minute infusion of blood potassium cardioplegia in the arrested heart. Coronary occlusion resulted in significant decreases in stroke work index and left ventricular (LV) mass, but compliance was unchanged. Reperfusion in the beating heart increased LV mass compared with the values measured before ischemia (104 +/- 5 versus 95 +/- 5 gm; p less than 0.05) and decreased LV compliance (39 +/- 4 versus 53 +/- 4 ml at LV end-diastolic pressure of 8 mm Hg; p less than 0.05). In contrast, with blood cardioplegia-based reperfusion in the arrested heart, LV mass and LV compliance remained unchanged from control values. We conclude that revascularization of acutely ischemic myocardium in the beating heart further impairs LV function by increasing LV mass and decreasing compliance. This damage can be avoided by reperfusion with blood cardioplegia in the arrested heart.  相似文献   

14.
This study was conducted to assess the protective effects of antegrade infusion of cardioplegic solution with simultaneously controlled coronary sinus occlusion on regionally ischemic myocardium after acute coronary occlusion and reperfusion. Twelve sheep were subjected to 1 hour of occlusion of the distal left anterior descending coronary artery. Sheep in group I (n = 6) were subjected only to infusion of potassium crystalloid cardioplegic solution into the aortic root, whereas in group II (n = 6) a stitch was snared around the proximal coronary sinus for its subsequent occlusion during antegrade infusions of cardioplegic solution. All animals were placed on cardiopulmonary bypass. Five hundred milliliters of cardioplegic solution at 4 degrees to 8 degrees C was administered in three divided doses during the total cross-clamp period of 30 minutes. The occlusion of the left anterior descending artery was then released, and the animals were weaned from bypass and studied for an additional 4 hours. Coronary sinus pressure, myocardial temperature, regional function assessed by pairs of ultrasonic crystals, global function assessed by rate of rise of left ventricular pressure and cardiac output, and the area at risk and area of necrosis were determined. The heart was excised at the end of the experiment and stained. Animals treated by the technique of antegrade infusion combined with coronary sinus occlusion had more homogeneous myocardial cooling during cardioplegic infusions and better recovery of the first derivative of left ventricular pressure and regional segment shortening at 90 and 270 minutes of reperfusion than those treated with antegrade infusion alone (p less than 0.01 and p less than 0.05, respectively). The group treated by antegrade infusion of cardioplegic solution combined with coronary sinus occlusion had an area of necrosis/area at risk ratio of 40.5% +/- 1.2%; the antegrade infusion group, 58.3% +/- 4.1% (p less than 0.01). These data suggest that antegrade infusion combined with coronary sinus occlusion may be an improved method of global and regional myocardial protection in the presence of an occluded coronary artery.  相似文献   

15.
This study tests the hypothesis that retrograde/antegrade cardioplegic delivery can overcome the limitations of poor cardioplegic distribution resulting from either technique alone and, potentially, may expand the safety of using internal mammary artery grafts in cardiac muscle in jeopardy of inadequate cardioplegic protection. Jeopardized myocardium was produced in 20 dogs by ligating the left anterior descending coronary artery for 15 minutes before starting cardiopulmonary bypass and by 1 hour of aortic clamping with multidose 6 degrees C cold blood cardioplegia. Five dogs received antegrade cardioplegia via the aortic root. Ten dogs received retrograde cardioplegia via the coronary sinus. Five additional dogs received retrograde/antegrade cardioplegia via both routes. The ligature on the left anterior descending coronary artery was removed after aortic unclamping, and regional myocardial temperature (thermistor probe), segmental shortening (ultrasonic crystals), and global left ventricular and right ventricular myocardial function were evaluated. Antegrade cardioplegia produced excellent right ventricular cooling (14 degrees C) and allowed complete right ventricular functional recovery. However, it failed to cool muscle supplied by the left anterior descending coronary artery (only 31 degrees versus 12 degrees C, p less than 0.05), postischemic global left ventricular function recovered only 38% (p less than 0.05), and segmental shortening in the region supplied by the left anterior descending coronary artery recovered only 22% (p less than 0.05). Retrograde cardioplegia produced homogeneous cooling (17 degrees C) and allowed near normal recovery of global and regional left ventricular function (99% and 86%), but right ventricular cooling was variable (19 degrees to 30 degrees C) and right ventricular function recovered inconstantly (range 64% to 100%, average 82%). The best myocardial protection occurred after retrograde/antegrade cardioplegia; myocardial cooling was homogeneous, left ventricular and right ventricular global function recovered completely (95% and 90%), and regional contractility in muscle supplied by the left anterior descending coronary artery returned to 84% of control. We conclude that retrograde/antegrade cardioplegia provides better myocardial protection than either technique alone, ensures good cardioplegic distribution to the left and right ventricles, and allows regional delivery of cardioplegic flow to segments supplied by occluded arteries.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
This study tests the hypothesis that multidose, hypocalcemic aspartate/glutamate-enriched blood cardioplegia provides safe and effective protection during prolonged aortic clamping of immature hearts. Of 17 puppies (6 to 8 weeks of age, 3 to 5 kg) placed on vented cardiopulmonary bypass, five were subjected to 60 minutes of 37 degrees C global ischemia without cardioplegic protection and seven underwent 120 minutes of aortic clamping with 4 degrees C multidose aspartate/glutamate-enriched blood cardioplegia ([Ca++] = 0.2 mmol/L), preceded and followed by 37 degrees C blood cardioplegic induction and reperfusion. Five puppies underwent blood cardioplegic perfusion for 10 minutes without intervening ischemia to assess the effect of the cardioplegic solution and the delivery techniques. Left ventricular performance was assessed 30 minutes after bypass was discontinued (Starling function curves). Hearts were studied for high-energy phosphates and tissue amino acids. One hour of normothermic ischemia resulted in profound functional depression, with peak stroke work index only 43% of control (0.7 +/- 0.1 versus 1.7 +/- 0.2 gm x m/kg, p less than 0.05). There was 70% depletion of adenosine triphosphate (7.6 +/- 1 versus control 20.3 +/- 1 mumol/gm dry weight, p less than 0.05) and 75% glutamate loss (6.6 +/- 1 versus control 26.4 +/- 3 mumol/gm, p less than 0.05). In contrast, after 2 hours of aortic clamping with multidose blood cardioplegia preceded and followed by 37 degrees C blood cardioplegia, there was complete recovery of left ventricular function (peak stroke work index 1.6 +/- 0.2 gm x m/kg) and maintenance of adenosine triphosphates, glutamate, and aspartate levels at or above control levels adenosine triphosphate 18 +/- 2 mumol/gm, aspartate 21 +/- 1 versus control 2 mumol/gm, and glutamate 25.4 +/- 2 mumol/gm). Puppy hearts receiving blood cardioplegic perfusion without ischemia had complete recovery of control stroke work index. We conclude that methods of myocardial protection used in adults, with amino acid-enriched, reduced-calcium blood cardioplegia, can be applied safely to the neonatal heart and allow for complete functional and metabolic recovery after prolonged aortic clamping.  相似文献   

17.
Retrograde administration of cardioplegic solution via the right atrium with continuous cooling of the right ventricular cavity (right atrial perfusion cooling) was assessed for its protective effect in 12 dogs with occlusion of the right coronary artery subjected to global ischemia for 60 minutes. After an initial administration of 4 degrees C crystalloid cardioplegic solution by antegrade aortic perfusion, myocardial protection was established either by right atrial perfusion cooling (group I; n = 6) or by antegrade aortic perfusion alone (group II; n = 6). The right ventricular temperature was approximately 15 degrees C in group I and 20 degrees C in group II. After ischemia for 60 minutes, the adenosine triphosphate content of the right ventricular free wall was significantly higher in group I than in group II (24.4 +/- 1.45 versus 13.8 +/- 2.34 mumol/gm dry weight, p less than 0.05). The percent recovery of right ventricular contractility, which was evaluated by end-systolic pressure-volume relationships, was significantly better in group I at each reperfusion period (30 minutes: 130.0% +/- 9.6% versus 86.1% +/- 11.8%, p less than 0.05; 60 minutes: 159.6% +/- 12.9% versus 96.5% +/- 20.1%, p less than 0.05). Postischemic right ventricular stiffness (reciprocal value of compliance) increased in group II compared with group I, although the difference was not statistically significant. There were no major differences in percent recovery of the left ventricular end-systolic pressure-volume relationships between the two groups. The evidence suggests that the right atrial perfusion cooling method produces excellent right ventricular protection.  相似文献   

18.
OBJECTIVE: Controlled reperfusion and secondary cardioplegia are used to minimize reperfusion injury. The mechanisms for their benefit are incompletely defined and may include attenuation of myocyte sodium uptake. METHODS: Pigs had 1 hour of cardioplegic arrest followed by reperfusion with blood (control) or warm cardioplegic solution followed by blood (test). Reperfusion injury in the control and test groups was quantified by measuring changes of intramyocyte ion content with atomic absorption spectrometry and by analyzing electrophysiologic recovery from recordings of reperfusion arrhythmias. RESULTS: Control animals had an increase in intramyocyte sodium content at 5 minutes after initiating reperfusion (+20.2 micromol/g dry weight, P <.04), whereas the test group had an insignificant decrease (-14.0 micromol/g dry weight, P =.33). The first rhythm after initiating reperfusion was more often ventricular fibrillation in the control group (100% vs 50%, P <.02), and the control group required more defibrillations to establish a nonfibrillating rhythm (4.5 +/- 1.2 vs 1.1 +/- 0.3, P <.03). CONCLUSIONS: Controlled reperfusion eliminated the increase in intramyocyte sodium that was observed in the control group at 5 minutes after cardioplegic arrest. This improvement in myocyte ion homeostasis during postcardioplegia reperfusion was associated with fewer reperfusion arrhythmias. These data support the hypothesis that attenuation of myocyte sodium gain during postischemic reperfusion is a mechanism by which controlled reperfusion and secondary cardioplegia are beneficial.  相似文献   

19.
BACKGROUND: Surgical coronary revascularization with cardiopulmonary bypass and cardioplegia has been associated with reperfusion injury. The serine protease inhibitor aprotinin has been suggested to reduce reperfusion injury, yet a clinically relevant study examining regional ischemia under conditions of cardiopulmonary bypass and cardioplegia has not been performed. METHODS: Pigs were subjected to 30 minutes of regional myocardial ischemia by distal left anterior descending coronary artery occlusion, followed by 60 minutes of cardiopulmonary bypass with 45 minutes of cardioplegic arrest and 90 minutes of post-cardiopulmonary bypass reperfusion. The treatment group (n = 6) was administered aprotinin systemically (40,000 kallikrein-inhibiting units [KIU]/kg intravenous loading dose, 40,000 KIU/kg pump prime, and 10,000 KIU x kg(-1) x h(-1) intravenous continuous infusion). Control animals (n = 6) received crystalloid solution. Global and regional myocardial functions were analyzed by the left ventricular+dP/dt and the percentage segment shortening, respectively. Left ventricular infarct size was measured by tetrazolium staining. Tissue myeloperoxidase activity was measured. Myocardial sections were immunohistochemically stained for nitrotyrosine. Coronary microvessel function was studied by videomicroscopy. RESULTS: Myocardial infarct size was decreased with aprotinin treatment (27.0% +/- 3.5% vs 45.3% +/- 3.0%, aprotinin vs control; P <.05). Myocardium from the ischemic territory showed diminished nitrotyrosine staining in aprotinin-treated animals versus controls, and this was significant by grade (1.3 +/- 0.2 vs 3.2 +/- 0.2, aprotinin vs control; P <.01). In the aprotinin group, coronary microvessel relaxation improved most in response to the endothelium-dependent agonist adenosine diphosphate (44.7% +/- 3.2% vs 19.7% +/- 1.7%, aprotinin vs control; P <.01). No significant improvements in myocardial function were observed with aprotinin treatment. CONCLUSIONS: Aprotinin reduces reperfusion injury after regional ischemia and cardioplegic arrest. Protease inhibition may represent a molecular strategy to prevent postoperative myocardial injury after surgical revascularization with cardiopulmonary bypass.  相似文献   

20.
This study examined whether treatment with the oxygen free radical scavengers, superoxide dismutase and catalase, could improve functional recovery in hearts subjected to regional ischemia and global cardioplegic arrest. Regional left ventricular (LV) function was assessed in open chest pigs with sonomicrometry and micromanometry to calculate an index of regional work from the LV pressure-segment length relationship. After measuring baseline preischemic function, the left anterior descending artery was occluded, creating a region-at-risk in 20% of the LV mass. Cardiopulmonary bypass was begun 15 minutes after initiation of regional ischemia and was followed immediately by cardioplegic arrest for 45 minutes, after which time the coronary artery occluder was removed to simulate coronary revascularization. Starting just before removal of the aortic cross-clamp and continuing for the first 30 minutes of reflow, animals received an aortic root infusion of either superoxide dismutase (3600 U/kg) and catalase (20,000 U/kg) or a control saline solution infusion. In each group, seven animals were successfully weaned from cardiopulmonary bypass without inotropic support. After 2 hour of reperfusion, the recovery of baseline function in the region-at-risk was 44% +/- 7% in the treated animals and 4% +/- 13% in the untreated animals (p less than 0.05). In this experimental model, oxygen free radical scavengers were effective in preserving functional recovery in regionally ischemic myocardium reperfused under conditions simulating surgical revascularization in the setting of acute myocardial ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号