首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Propensity scores have been used widely as a bias reduction method to estimate the treatment effect in nonrandomized studies. Since many covariates are generally included in the model for estimating the propensity scores, the proportion of subjects with at least one missing covariate could be large. While many methods have been proposed for propensity score‐based estimation in the presence of missing covariates, little has been published comparing the performance of these methods. In this article we propose a novel method called multiple imputation missingness pattern (MIMP) and compare it with the naive estimator (ignoring propensity score) and three commonly used methods of handling missing covariates in propensity score‐based estimation (separate estimation of propensity scores within each pattern of missing data, multiple imputation and discarding missing data) under different mechanisms of missing data and degree of correlation among covariates. Simulation shows that all adjusted estimators are much less biased than the naive estimator. Under certain conditions MIMP provides benefits (smaller bias and mean‐squared error) compared with existing alternatives. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Many diseases such as cancer and heart diseases are heterogeneous and it is of great interest to study the disease risk specific to the subtypes in relation to genetic and environmental risk factors. However, due to logistic and cost reasons, the subtype information for the disease is missing for some subjects. In this article, we investigate methods for multinomial logistic regression with missing outcome data, including a bootstrap hot deck multiple imputation (BHMI), simple inverse probability weighted (SIPW), augmented inverse probability weighted (AIPW), and expected estimating equation (EEE) estimators. These methods are important approaches for missing data regression. The BHMI modifies the standard hot deck multiple imputation method such that it can provide valid confidence interval estimation. Under the situation when the covariates are discrete, the SIPW, AIPW, and EEE estimators are numerically identical. When the covariates are continuous, nonparametric smoothers can be applied to estimate the selection probabilities and the estimating scores. These methods perform similarly. Extensive simulations show that all of these methods yield unbiased estimators while the complete-case (CC) analysis can be biased if the missingness depends on the observed data. Our simulations also demonstrate that these methods can gain substantial efficiency compared with the CC analysis. The methods are applied to a colorectal cancer study in which cancer subtype data are missing among some study individuals.  相似文献   

3.
The treatment of missing data in comparative effectiveness studies with right-censored outcomes and time-varying covariates is challenging because of the multilevel structure of the data. In particular, the performance of an accessible method like multiple imputation (MI) under an imputation model that ignores the multilevel structure is unknown and has not been compared to complete-case (CC) and single imputation methods that are most commonly applied in this context. Through an extensive simulation study, we compared statistical properties among CC analysis, last value carried forward, mean imputation, the use of missing indicators, and MI-based approaches with and without auxiliary variables under an extended Cox model when the interest lies in characterizing relationships between non-missing time-varying exposures and right-censored outcomes. MI demonstrated favorable properties under a moderate missing-at-random condition (absolute bias <0.1) and outperformed CC and single imputation methods, even when the MI method did not account for correlated observations in the imputation model. The performance of MI decreased with increasing complexity such as when the missing data mechanism involved the exposure of interest, but was still preferred over other methods considered and performed well in the presence of strong auxiliary variables. We recommend considering MI that ignores the multilevel structure in the imputation model when data are missing in a time-varying confounder, incorporating variables associated with missingness in the MI models as well as conducting sensitivity analyses across plausible assumptions.  相似文献   

4.
ABSTRACT: BACKGROUND: Multiple imputation is becoming increasingly popular for handling missing data. However, it is often implemented without adequate consideration of whether it offers any advantage over complete case analysis for the research question of interest, or whether potential gains may be offset by bias from a poorly fitting imputation model, particularly as the amount of missing data increases. METHODS: Simulated datasets (n = 1000) drawn from a synthetic population were used to explore information recovery from multiple imputation in estimating the coefficient of a binary exposure variable when various proportions of data (10-90%) were set missing at random in a highly-skewed continuous covariate or in the binary exposure. Imputation was performed using multivariate normal imputation (MVNI), with a simple or zero-skewness log transformation to manage non-normality. Bias, precision, mean-squared error and coverage for a set of regression parameter estimates were compared between multiple imputation and complete case analyses. RESULTS: For missingness in the continuous covariate, multiple imputation produced less bias and greater precision for the effect of the binary exposure variable, compared with complete case analysis, with larger gains in precision with more missing data. However, even with only moderate missingness, large bias and substantial under-coverage were apparent in estimating the continuous covariate's effect when skewness was not adequately addressed. For missingness in the binary covariate, all estimates had negligible bias but gains in precision from multiple imputation were minimal, particularly for the coefficient of the binary exposure. CONCLUSIONS: Although multiple imputation can be useful if covariates required for confounding adjustment are missing, benefits are likely to be minimal when data are missing in the exposure variable of interest. Furthermore, when there are large amounts of missingness, multiple imputation can become unreliable and introduce bias not present in a complete case analysis if the imputation model is not appropriate. Epidemiologists dealing with missing data should keep in mind the potential limitations as well as the potential benefits of multiple imputation. Further work is needed to provide clearer guidelines on effective application of this method.  相似文献   

5.
Overcoming bias due to confounding and missing data is challenging when analyzing observational data. Propensity scores are commonly used to account for the first problem and multiple imputation for the latter. Unfortunately, it is not known how best to proceed when both techniques are required. We investigate whether two different approaches to combining propensity scores and multiple imputation (Across and Within) lead to differences in the accuracy or precision of exposure effect estimates. Both approaches start by imputing missing values multiple times. Propensity scores are then estimated for each resulting dataset. Using the Across approach, the mean propensity score across imputations for each subject is used in a single subsequent analysis. Alternatively, the Within approach uses propensity scores individually to obtain exposure effect estimates in each imputation, which are combined to produce an overall estimate. These approaches were compared in a series of Monte Carlo simulations and applied to data from the British Society for Rheumatology Biologics Register. Results indicated that the Within approach produced unbiased estimates with appropriate confidence intervals, whereas the Across approach produced biased results and unrealistic confidence intervals. Researchers are encouraged to implement the Within approach when conducting propensity score analyses with incomplete data.  相似文献   

6.
Multiple imputation is commonly used to impute missing covariate in Cox semiparametric regression setting. It is to fill each missing data with more plausible values, via a Gibbs sampling procedure, specifying an imputation model for each missing variable. This imputation method is implemented in several softwares that offer imputation models steered by the shape of the variable to be imputed, but all these imputation models make an assumption of linearity on covariates effect. However, this assumption is not often verified in practice as the covariates can have a nonlinear effect. Such a linear assumption can lead to a misleading conclusion because imputation model should be constructed to reflect the true distributional relationship between the missing values and the observed values. To estimate nonlinear effects of continuous time invariant covariates in imputation model, we propose a method based on B‐splines function. To assess the performance of this method, we conducted a simulation study, where we compared the multiple imputation method using Bayesian splines imputation model with multiple imputation using Bayesian linear imputation model in survival analysis setting. We evaluated the proposed method on the motivated data set collected in HIV‐infected patients enrolled in an observational cohort study in Senegal, which contains several incomplete variables. We found that our method performs well to estimate hazard ratio compared with the linear imputation methods, when data are missing completely at random, or missing at random. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Nonignorable missing data poses key challenges for estimating treatment effects because the substantive model may not be identifiable without imposing further assumptions. For example, the Heckman selection model has been widely used for handling nonignorable missing data but requires the study to make correct assumptions, both about the joint distribution of the missingness and outcome and that there is a valid exclusion restriction. Recent studies have revisited how alternative selection model approaches, for example estimated by multiple imputation (MI) and maximum likelihood, relate to Heckman-type approaches in addressing the first hurdle. However, the extent to which these different selection models rely on the exclusion restriction assumption with nonignorable missing data is unclear. Motivated by an interventional study (REFLUX) with nonignorable missing outcome data in half of the sample, this article critically examines the role of the exclusion restriction in Heckman, MI, and full-likelihood selection models when addressing nonignorability. We explore the implications of the different methodological choices concerning the exclusion restriction for relative bias and root-mean-squared error in estimating treatment effects. We find that the relative performance of the methods differs in practically important ways according to the relevance and strength of the exclusion restriction. The full-likelihood approach is less sensitive to alternative assumptions about the exclusion restriction than Heckman-type models and appears an appropriate method for handling nonignorable missing data. We illustrate the implications of method choice for inference in the REFLUX study, which evaluates the effect of laparoscopic surgery on long-term quality of life for patients with gastro-oseophageal reflux disease.  相似文献   

8.
Random coefficient-dependent (RCD) missingness is a non-ignorable mechanism through which missing data can arise in longitudinal designs. RCD, for which we cannot test, is a problematic form of missingness that occurs if subject-specific random effects correlate with propensity for missingness or dropout. Particularly when covariate missingness is a problem, investigators typically handle missing longitudinal data by using single-level multiple imputation procedures implemented with long-format data, which ignores within-person dependency entirely, or implemented with wide-format (i.e., multivariate) data, which ignores some aspects of within-person dependency. When either of these standard approaches to handling missing longitudinal data is used, RCD missingness leads to parameter bias and incorrect inference. We explain why multilevel multiple imputation (MMI) should alleviate bias induced by a RCD missing data mechanism under conditions that contribute to stronger determinacy of random coefficients. We evaluate our hypothesis with a simulation study. Three design factors are considered: intraclass correlation (ICC; ranging from .25 to .75), number of waves (ranging from 4 to 8), and percent of missing data (ranging from 20 to 50%). We find that MMI greatly outperforms the single-level wide-format (multivariate) method for imputation under a RCD mechanism. For the MMI analyses, bias was most alleviated when the ICC is high, there were more waves of data, and when there was less missing data. Practical recommendations for handling longitudinal missing data are suggested.  相似文献   

9.
Several approaches exist for handling missing covariates in the Cox proportional hazards model. The multiple imputation (MI) is relatively easy to implement with various software available and results in consistent estimates if the imputation model is correct. On the other hand, the fully augmented weighted estimators (FAWEs) recover a substantial proportion of the efficiency and have the doubly robust property. In this paper, we compare the FAWEs and the MI through a comprehensive simulation study. For the MI, we consider the multiple imputation by chained equation and focus on two imputation methods: Bayesian linear regression imputation and predictive mean matching. Simulation results show that the imputation methods can be rather sensitive to model misspecification and may have large bias when the censoring time depends on the missing covariates. In contrast, the FAWEs allow the censoring time to depend on the missing covariates and are remarkably robust as long as getting either the conditional expectations or the selection probability correct due to the doubly robust property. The comparison suggests that the FAWEs show the potential for being a competitive and attractive tool for tackling the analysis of survival data with missing covariates. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
While propensity score weighting has been shown to reduce bias in treatment effect estimation when selection bias is present, it has also been shown that such weighting can perform poorly if the estimated propensity score weights are highly variable. Various approaches have been proposed which can reduce the variability of the weights and the risk of poor performance, particularly those based on machine learning methods. In this study, we closely examine approaches to fine-tune one machine learning technique [generalized boosted models (GBM)] to select propensity scores that seek to optimize the variance-bias trade-off that is inherent in most propensity score analyses. Specifically, we propose and evaluate three approaches for selecting the optimal number of trees for the GBM in the twang package in R. Normally, the twang package in R iteratively selects the optimal number of trees as that which maximizes balance between the treatment groups being considered. Because the selected number of trees may lead to highly variable propensity score weights, we examine alternative ways to tune the number of trees used in the estimation of propensity score weights such that we sacrifice some balance on the pre-treatment covariates in exchange for less variable weights. We use simulation studies to illustrate these methods and to describe the potential advantages and disadvantages of each method. We apply these methods to two case studies: one examining the effect of dog ownership on the owner’s general health using data from a large, population-based survey in California, and a second investigating the relationship between abstinence and a long-term economic outcome among a sample of high-risk youth.  相似文献   

11.
目的 通过构建存在不同混杂结构的广义倾向性评分(generalized propensity score,GPS)模型和结局模型,探索比较三种GPS估计法:广义倾向性评分-最小二乘法(generalized propensity score-ordinary least squares,GPS-OLS),广义倾向性评分...  相似文献   

12.
In many observational studies, analysts estimate causal effects using propensity scores, e.g. by matching, sub-classifying, or inverse probability weighting based on the scores. Estimation of propensity scores is complicated when some values of the covariates are missing. Analysts can use multiple imputation to create completed data sets from which propensity scores can be estimated. We propose a general location mixture model for imputations that assumes that the control units are a latent mixture of (i) units whose covariates are drawn from the same distributions as the treated units' covariates and (ii) units whose covariates are drawn from different distributions. This formulation reduces the influence of control units outside the treated units' region of the covariate space on the estimation of parameters in the imputation model, which can result in more plausible imputations. In turn, this can result in more reliable estimates of propensity scores and better balance in the true covariate distributions when matching or sub-classifying. We illustrate the benefits of the latent class modeling approach with simulations and with an observational study of the effect of breast feeding on children's cognitive abilities.  相似文献   

13.
When missing data occur in one or more covariates in a regression model, multiple imputation (MI) is widely advocated as an improvement over complete‐case analysis (CC). We use theoretical arguments and simulation studies to compare these methods with MI implemented under a missing at random assumption. When data are missing completely at random, both methods have negligible bias, and MI is more efficient than CC across a wide range of scenarios. For other missing data mechanisms, bias arises in one or both methods. In our simulation setting, CC is biased towards the null when data are missing at random. However, when missingness is independent of the outcome given the covariates, CC has negligible bias and MI is biased away from the null. With more general missing data mechanisms, bias tends to be smaller for MI than for CC. Since MI is not always better than CC for missing covariate problems, the choice of method should take into account what is known about the missing data mechanism in a particular substantive application. Importantly, the choice of method should not be based on comparison of standard errors. We propose new ways to understand empirical differences between MI and CC, which may provide insights into the appropriateness of the assumptions underlying each method, and we propose a new index for assessing the likely gain in precision from MI: the fraction of incomplete cases among the observed values of a covariate (FICO). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
In studies of older adults, researchers often recruit proxy respondents, such as relatives or caregivers, when study participants cannot provide self‐reports (e.g., because of illness). Proxies are usually only sought to report on behalf of participants with missing self‐reports; thus, either a participant self‐report or proxy report, but not both, is available for each participant. Furthermore, the missing‐data mechanism for participant self‐reports is not identifiable and may be nonignorable. When exposures are binary and participant self‐reports are conceptualized as the gold standard, substituting error‐prone proxy reports for missing participant self‐reports may produce biased estimates of outcome means. Researchers can handle this data structure by treating the problem as one of misclassification within the stratum of participants with missing self‐reports. Most methods for addressing exposure misclassification require validation data, replicate data, or an assumption of nondifferential misclassification; other methods may result in an exposure misclassification model that is incompatible with the analysis model. We propose a model that makes none of the aforementioned requirements and still preserves model compatibility. Two user‐specified tuning parameters encode the exposure misclassification model. Two proposed approaches estimate outcome means standardized for (potentially) high‐dimensional covariates using multiple imputation followed by propensity score methods. The first method is parametric and uses maximum likelihood to estimate the exposure misclassification model (i.e., the imputation model) and the propensity score model (i.e., the analysis model); the second method is nonparametric and uses boosted classification and regression trees to estimate both models. We apply both methods to a study of elderly hip fracture patients. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Several methods for the estimation and comparison of rates of change in longitudinal studies with staggered entry and informative drop-outs have been recently proposed. For multivariate normal linear models, REML estimation is used. There are various approaches to maximizing the corresponding log-likelihood; in this paper we use a restricted iterative generalized least squares method (RIGLS) combined with a nested EM algorithm. An important statistical problem in such approaches is the estimation of the standard errors adjusted for the missing data (observed data information matrix). Louis has provided a general technique for computing the observed data information in terms of completed data quantities within the EM framework. The multiple imputation (MI) method for obtaining variances can be regarded as an alternative to this. The aim of this paper is to develop, apply and compare the Louis and a modified MI method in the setting of longitudinal studies where the source of missing data is either death or disease progression (informative) or end of the study (assumed non-informative). Longitudinal data are simultaneously modelled with the missingness process. The methods are illustrated by modelling CD4 count data from an HIV-1 clinical trial and evaluated through simulation studies. Both methods, Louis and MI, are used with Monte Carlo simulations of the missing data using the appropriate conditional distributions, the former with 100 simulations, the latter with 5 and 10. It is seen that naive SEs based on the completed data likelihood can be seriously biased. This bias was largely corrected by Louis and modified MI methods, which gave broadly similar estimates. Given the relative simplicity of the modified MI method, it may be preferable.  相似文献   

16.
PurposeThe aim of this research was to examine, in an exploratory manner, whether cross-sectional multiple imputation generates valid parameter estimates for a latent growth curve model in a longitudinal data set with nonmonotone missingness.MethodsA simulated longitudinal data set of N = 5000 was generated and consisted of a continuous dependent variable, assessed at three measurement occasions and a categorical time-invariant independent variable. Missing data had a nonmonotone pattern and the proportion of missingness increased from the initial to the final measurement occasion (5%–20%). Three methods were considered to deal with missing data: listwise deletion, full-information maximum likelihood, and multiple imputation. A latent growth curve model was specified and analysis of variance was used to compare parameter estimates between the full data set and missing data approaches.ResultsMultiple imputation resulted in significantly lower slope variance compared with the full data set. There were no differences in any parameter estimates between the multiple imputation and full-information maximum likelihood approaches.ConclusionsThis study suggested that in longitudinal studies with nonmonotone missingness, cross-sectional imputation at each time point may be viable and produces estimates comparable with those obtained with full-information maximum likelihood. Future research pursuing the validity of this method is warranted.  相似文献   

17.
Multiple imputation (MI) is becoming increasingly popular for handling missing data. Standard approaches for MI assume normality for continuous variables (conditionally on the other variables in the imputation model). However, it is unclear how to impute non‐normally distributed continuous variables. Using simulation and a case study, we compared various transformations applied prior to imputation, including a novel non‐parametric transformation, to imputation on the raw scale and using predictive mean matching (PMM) when imputing non‐normal data. We generated data from a range of non‐normal distributions, and set 50% to missing completely at random or missing at random. We then imputed missing values on the raw scale, following a zero‐skewness log, Box–Cox or non‐parametric transformation and using PMM with both type 1 and 2 matching. We compared inferences regarding the marginal mean of the incomplete variable and the association with a fully observed outcome. We also compared results from these approaches in the analysis of depression and anxiety symptoms in parents of very preterm compared with term‐born infants. The results provide novel empirical evidence that the decision regarding how to impute a non‐normal variable should be based on the nature of the relationship between the variables of interest. If the relationship is linear in the untransformed scale, transformation can introduce bias irrespective of the transformation used. However, if the relationship is non‐linear, it may be important to transform the variable to accurately capture this relationship. A useful alternative is to impute the variable using PMM with type 1 matching. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
We propose a propensity score-based multiple imputation (MI) method to tackle incomplete missing data resulting from drop-outs and/or intermittent skipped visits in longitudinal clinical trials with binary responses. The estimation and inferential properties of the proposed method are contrasted via simulation with those of the commonly used complete-case (CC) and generalized estimating equations (GEE) methods. Three key results are noted. First, if data are missing completely at random, MI can be notably more efficient than the CC and GEE methods. Second, with small samples, GEE often fails due to 'convergence problems', but MI is free of that problem. Finally, if the data are missing at random, while the CC and GEE methods yield results with moderate to large bias, MI generally yields results with negligible bias. A numerical example with real data is provided for illustration.  相似文献   

19.
Long Q  Zhang X  Hsu CH 《Statistics in medicine》2011,30(26):3149-3161
The receiver operating characteristics (ROC) curve is a widely used tool for evaluating discriminative and diagnostic power of a biomarker. When the biomarker value is missing for some observations, the ROC analysis based solely on complete cases loses efficiency because of the reduced sample size, and more importantly, it is subject to potential bias. In this paper, we investigate nonparametric multiple imputation methods for ROC analysis when some biomarker values are missing at random and there are auxiliary variables that are fully observed and predictive of biomarker values and/or missingness of biomarker values. Although a direct application of standard nonparametric imputation is robust to model misspecification, its finite sample performance suffers from curse of dimensionality as the number of auxiliary variables increases. To address this problem, we propose new nonparametric imputation methods, which achieve dimension reduction through the use of one or two working models, namely, models for prediction and propensity scores. The proposed imputation methods provide a platform for a full range of ROC analysis and hence are more flexible than existing methods that primarily focus on estimating the area under the ROC curve. We conduct simulation studies to evaluate the finite sample performance of the proposed methods and find that the proposed methods are robust to various types of model misidentification and outperform the standard nonparametric approach even when the number of auxiliary variables is moderate. We further illustrate the proposed methods by using an observational study of maternal depression during pregnancy.  相似文献   

20.
Methods for estimating average treatment effects, under the assumption of no unmeasured confounders, include regression models; propensity score adjustments using stratification, weighting, or matching; and doubly robust estimators (a combination of both). Researchers continue to debate about the best estimator for outcomes such as health care cost data, as they are usually characterized by an asymmetric distribution and heterogeneous treatment effects,. Challenges in finding the right specifications for regression models are well documented in the literature. Propensity score estimators are proposed as alternatives to overcoming these challenges. Using simulations, we find that in moderate size samples (n= 5000), balancing on propensity scores that are estimated from saturated specifications can balance the covariate means across treatment arms but fails to balance higher-order moments and covariances amongst covariates. Therefore, unlike regression model, even if a formal model for outcomes is not required, propensity score estimators can be inefficient at best and biased at worst for health care cost data. Our simulation study, designed to take a 'proof by contradiction' approach, proves that no one estimator can be considered the best under all data generating processes for outcomes such as costs. The inverse-propensity weighted estimator is most likely to be unbiased under alternate data generating processes but is prone to bias under misspecification of the propensity score model and is inefficient compared to an unbiased regression estimator. Our results show that there are no 'magic bullets' when it comes to estimating treatment effects in health care costs. Care should be taken before naively applying any one estimator to estimate average treatment effects in these data. We illustrate the performance of alternative methods in a cost dataset on breast cancer treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号