首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A number of drugs that fall into the broad category of “ring-substituted amphetamines” have been found to be neurotoxic toward brain monoamine neurons in animals. Several of these drugs, including (3,4-methylenedioxymethamphetamine (MDMA, “Ecstasy”) and methamphetamine (“speed”) and fenfluramine (“Pondimin”) have been used or abused by humans. A growing body of evidence indicates that humans, like animals, are susceptible to substituted amphetamine-induced neurotoxic injury, and that consequences of this injury can be subtle. This article will review the effects of ring-substituted amphetamine analogs on brain monoamine neurons, using MDMA as the prototype. Studies documenting MDMA neurotoxic potential toward brain serotonin (5-HT) neurons in animals are summarized first. Human MDMA studies are then discussed, beginning with a consideration of methodological challenges in evaluating the status of 5-HT neurons in the living human brain. Recent findings indicating possible functional alterations in brain serotonergic systems in humans with a history of extensive MDMA exposure are then presented, including some new findings on sleep and personality in abstinent MDMA users.  相似文献   

2.
(+/-)3,4-Methylenedioxymethamphetamine (MDMA, 'Ecstasy') is a brain serotonergic neurotoxin in experimental animals, including nonhuman primates. It is also an increasingly popular recreational drug of abuse, and doses of MDMA that are used recreationally overlap with those that produce serotonin (5-HT) neurotoxicity in animals. Studies in human MDMA users probing for evidence of brain serotonergic neurotoxicity indicate that some MDMA users may incur MDMA-related 5-HT neural injury and, possibly, functional sequelae. In particular, MDMA users have selective decrements in cerebrospinal fluid 5-hydroxyindoleacetic acid and brain 5-HT transporters, similar to nonhuman primates with documented MDMA-induced neurotoxicity. Functional abnormalities seen in MDMA users that may be related to 5- HT injury include cognitive deficits, altered sleep architecture, altered neuroendocrine function, altered behavioral responses to 5-HT selective drugs, and increased impulsivity. Additional studies in animals, as well as longitudinal and epidemiological studies in MDMA users, are required to confirm and extend the present data, and to determine whether MDMA users are at increased risk for developing neuropsychiatric illness as they age.  相似文献   

3.
BACKGROUND: Although the popular drug 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") has been shown to damage brain serotonin (5-HT) neurons in animals, the fate and functional consequences of 5-HT neurons after MDMA injury are not known in humans. We investigated the long-term effects of MDMA use on cortical 5-HT neurons in humans and memory function, because brain 5-HT has been implicated in memory function. METHODS: Twenty-two recent MDMA users, 16 ex-MDMA users who had stopped using MDMA for more than 1 year, and 13 control subjects. The effects of MDMA use on cortical 5-HT neurons was studied by means of single-photon emission computed tomography with iodine 123-labeled 2beta-carbomethoxy-3beta-(4-iodophenyl) tropane ([(123)I]beta-CIT) by quantification of brain 5-HT transporter densities. Verbal memory performance was assessed with the Rey Auditory Verbal Learning Test. RESULTS: Mean cortical [(123)I]beta-CIT-labeled 5-HT transporter density was significantly lower in recent MDMA users than in controls (1.17 vs. 1.28 [-9%]) but not in ex-MDMA users (1.24 vs. 1.28 [-3%]). Recent and ex-MDMA users recalled significantly fewer words than did controls on the immediate recall (47.0 and 48.0 vs 60.0, respectively; P =.001) as well as the delayed recall (9.8 and 10.1 vs. 13.1, respectively; P =.003). Greater use of MDMA was associated with greater impairment in immediate verbal memory. However, memory performance was not associated with [(123)I]beta-CIT binding to cortical 5-HT transporters or duration of abstinence from MDMA. CONCLUSION: The present study suggests that, while the neurotoxic effects of MDMA on 5-HT neurons in the human cortex may be reversible, the effects of MDMA on memory function may be long-lasting.  相似文献   

4.
3,4-Methylenedioxymethamphetamine ("Ecstasy," MDMA) and fenfluramine, widely used by humans, are potent brain serotonin (5-HT) neurotoxins in animals. Thus, there is concern that humans previously exposed to these amphetamine derivatives may have incurred brain 5-HT neurotoxicity. However, assessing the status of brain 5-HT neurons in the living organism is challenging. To determine whether MDMA- and/or fenfluramine-induced 5-HT neurotoxicity can be detected during life using neuroendocrine methods, groups of monkeys previously treated with neurotoxic regimens of MDMA or fenfluramine, along with saline-treated controls, underwent neuroendocrine challenge with the direct 5-HT agonist and 5-HT-releasing drug, m-chlorophenylpiperazine (m-CPP). Animals treated 2 weeks previously with MDMA exhibited a nonsignificant reduction in the prolactin response to m-CPP. In contrast, monkeys treated 3 1/2 years previously with MDMA or 2 years previously with fenfluramine exhibited significantly increased prolactin responses to m-CPP. No significant differences in cortisol concentrations were noted between groups at any time point. These data indicate that neuroendocrine challenge with m-CPP is capable of detecting substituted amphetamine-induced 5-HT neurotoxicity in living primates, but that the recency of drug exposure is an important consideration. Changes in the neuroendocrine response to m-CPP over time in animals with substituted amphetamine-induced neurotoxicity may be related to aberrant 5-HT reinnervation of the basal forebrain that occurs over time in monkeys previously treated with neurotoxic doses of MDMA or fenfluramine.  相似文献   

5.
The psychotropic amphetamine derivatives 3,4-methylenedioxyamphetamine (MDA) and 3,4-methylenedioxymethamphetamine (MDMA) have been used for recreational and therapeutic purposes in man. In rats, these drugs cause large reductions in brain levels of serotonin (5-HT). This study employs immunocytochemistry to characterize the neurotoxic effects of these compounds upon monoaminergic neurons in the rat brain. Two weeks after systemic administration of MDA or MDMA (20 mg/kg, s.c., twice daily for 4 d), there is profound loss of serotonergic (5-HT) axons throughout the forebrain; catecholamine axons are completely spared. Regional differences in drug toxicity are exemplified by partial sparing of 5-HT axons in hippocampus, lateral hypothalamus, basal forebrain, and in some areas of neocortex. The terminals of 5-HT axons are selectively ablated, while axons of passage and raphe cell bodies are spared. Thickened preterminal fibers exhibit increased staining due to damming-up of neurotransmitter and other axonal constituents. Fine 5-HT axon terminals are extremely vulnerable to these drugs, whereas terminal-like axons with large varicosities survive, raising the possibility that some 5-HT axons may be resistant to the neurotoxic effects. At short survivals, visualization of greatly swollen, fragmented 5-HT axons provides anatomic evidence for degeneration of 5-HT projections. The results establish that MDA and MDMA produce structural damage to 5-HT axon terminals followed by lasting denervation of the forebrain. Both drugs have similar effects, but MDA produces a greater reduction of 5-HT axons than does MDMA at the same dosage. The selective degeneration of 5-HT axons indicates that these drugs may serve as experimental tools to analyze the organization and function of 5-HT projections. Caution should be exercised until further studies determine whether these compounds may be hazardous in man.  相似文献   

6.
Of the designer drugs, the amphetamine analogues are the most popular and extensively studied, ecstasy (3,4-methylenedioxymethamphetamine; MDMA) in particular. They are used recreationally with increasing popularity despite animal studies showing neurotoxic effects to serotonin (5-HT) and/or dopamine (DA) neurones. However, few detailed assessments of risks of these drugs exist in humans. Previously, there were no methods available for directly evaluating the neurotoxic effects of amphetamine analogues in the living human brain. However, development of in vivo neuroimaging tools have begun to provide insights into the effects of MDMA in human brain. In this review, contributions of brain imaging studies on the potential 5-HT and/or DA neurotoxic effects of amphetamine analogues will be highlighted in order to delineate the risks these drugs engender in humans, focusing on MDMA. An overview will be given of PET, SPECT and MR Spectroscopy studies employed in human users of these drugs. Most of these studies provide suggestive evidence that MDMA is neurotoxic to 5-HT neurones, and (meth)amphetamine to DA neurones in humans. These effects seem to be dose-related, leading to functional impairments such as memory loss, and are reversible in several brain regions. However most studies have had a retrospective design, in which evidence is indirect and differs in the degree to which any causative links can be implied between drug use and neurotoxicity. Therefore, at this moment, it cannot be ascertained that humans are susceptible to MDMA-induced 5-HT injury or (meth)amphetamine-induced DA injury. Finally, although little is known about other amphetamine analogues there are important questions as to the safety of these designer drugs as well, in view of the fact that they are chemically closely related to MDMA and some have been shown to be 5-HT neurotoxins in animals.  相似文献   

7.
3,4-Methylenedioxymethamphetamine (MDMA; "ecstasy") is a selective serotonin (5-HT) neurotoxin in laboratory animals. To assess its effects on 5-HT function in humans, serum prolactin (PRL) and mood responses to intravenous L-tryptophan were measured in nine recreational users of MDMA and compared with findings from nine matched healthy controls. L-Tryptophan induced a rise in the PRL concentration in controls, but not in MDMA users. Peak change and the area under the curve of the PRL response appeared to be blunted in MDMA users, but the difference from controls did not reach statistical significance. This study provides suggestive evidence of altered 5-HT function in MDMA users, but more definitive studies clearly are needed.  相似文献   

8.
These studies assessed the neurotoxic potential of N-methyl-1-(4-methoxyphenyl)-2-aminopropane (para-methoxymethamphetamine; PMMA), an amphetamine analog that has surfaced in the illicit drug market. Repeated subcutaneous injections of PMMA caused lasting, dose-related reductions in regional brain concentrations of serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA), and in the density of [3H]paroxetine-labelled 5-HT uptake sites. Comparison of the neurotoxic potential of PMMA to that of para-methoxyamphetamine (PMA) and 3,4-methyl-enedioxymethamphetamine (MDMA) showed that equivalent doses of PMMA and PMA (80 mg/kg) produced comparable depletions of 5-HT, but that these depletions were not as pronounced as those induced by a lower dose of MDMA (20 mg/kg). Striatal DA was not affected on a long-term basis by any of the ring-substituted amphetamines evaluated in this study. These data suggest that PMMA, like PMA and MDMA, produces long-term (possibly neurotoxic) effects on brain serotonin neurons, but that PMMA is less potent than MDMA as a 5-HT neurotoxin. Further, they raise concern over the illicit use of PMMA since humans could be more sensitive than rodents to the 5-HT neurotoxic effects of PMMA and related drugs.  相似文献   

9.
The widely abused "designer" drug MDMA (3,4-methylenedioxymethamphetamine) has been shown to cause marked and long-lasting changes in brain serotonergic systems. The present study uses quantitative in vitro autoradiography of 3H-paroxetine labeled 5-HT uptake sites to assess the time-dependent effects of MDMA on 5-HT neurons in specific neuroanatomic loci. Following treatment with MDMA (20 mg/kg, b.i.d. for 4 days), marked decreases in 5-HT uptake sites were observed in a number of brain regions known to receive projections of 5-HT neurons. These regions included cerebral cortex, caudate nucleus, hippocampus, nucleus accumbens, olfactory tubercle, superior and inferior colliculi, geniculate nuclei, and most thalamic nuclei. In contrast, other areas such as the septal nuclei and some thalamic nuclei which also receive 5-HT projections were not substantially affected by this drug. In most regions, decreases in 5-HT uptake sites occurred within 24 hours of the last dose of MDMA and persisted at the 2 week time point. Some regions such as dorsal striatum exhibited a time-dependent reduction with greater reductions occurring at 2 weeks rather than immediately following the MDMA treatment regimen. The density of 5-HT uptake sites in other regions such as endopiriform nucleus and substantia nigra at the 2 week versus 18 hour time point indicated some degree of region-specific recovery. Regions which demonstrated no significant reduction in 5-HT uptake sites included the dorsal and median raphe nuclei, ventral tegmental area, central grey, interpeduncular nucleus, locus coerulus, pontine reticular formation and cerebellum. Likewise, regions containing 5-HT axons of passage (e.g., indusium griseum and lateral hypothalamus) appeared to be insensitive to the neurotoxic effects of MDMA on 5-HT neurons. Furthermore, the neurotoxic effects of MDMA showed specificity in that the catecholamine neurons labeled by 3H-mazindol were unaffected by the treatment regimen. These data indicate that the preferential degeneration of serotonergic neurons by MDMA is mediated primarily at 5-HT terminal regions, whereas regions containing 5-HT perikarya and axons of passage remain relatively unaffected. In addition, the observed time-dependent reductions and recovery of 5-HT uptake sites which were detected within 2 weeks of the treatment regimen in certain brain regions suggest region-specific differences in recovery of 5-HT systems from MDMA-induced lesion.  相似文献   

10.
3,4-Methylenedioxymethamphetamine (MDMA), the main psychoactive component of the recreational drug ecstasy, is a potent serotonin (5-HT) releaser. In animals, MDMA induces 5-HT depletion and toxicity in 5-HT neurons. The aim of this study was to investigate both presynaptic (5-HT transporter, SERT) and postsynaptic (5-HT(2A) receptor) markers of 5-HT transmission in recently abstinent chronic MDMA users compared with matched healthy controls. We hypothesized that MDMA use is associated with lower SERT density and concomitant upregulation of 5-HT(2A) receptors. Positron emission tomography studies using the SERT ligand [11C]DASB and the 5-HT(2A) receptor ligand [11C]MDL 100907 were evaluated in 13 current and recently detoxified MDMA users and 13 matched healthy controls. MDMA users reported a mean duration of ecstasy use of 8 years, regular exposure, and at least 2 weeks of abstinence before the scans. SERT and 5-HT(2A) receptor availability (binding potential, BP(ND)) were analyzed with a two-tissue compartment model with arterial input function. Current recreational MDMA use was significantly associated with lower SERT BP(ND) and higher 5-HT(2A) receptor BP(ND) in cortical, but not subcortical regions. Decreased SERT BP(ND) was regionally associated with upregulated 5-HT(2A) receptor BP(ND). In light of the animal literature, the most parsimonious interpretation is that repeated exposure to MDMA in humans, even in moderate amounts, leads to damage in 5-HT neuron terminals innervating the cortex. Alterations in mood, cognition, and impulse control associated with these changes might contribute to sustain MDMA use. The reversibility of these changes upon abstinence remains to be firmly established.  相似文献   

11.
MDMA (3,4-methylenedioxymethamphetamine) is a psychostimulant popular as a recreational drug because of its effect on mood and social interactions. MDMA acts at dopamine (DA) transporter (DAT) and serotonin (5-HT) transporter (SERT) and is known to induce damage of dopamine and serotonin neurons. MDMA is often ingested with caffeine. Caffeine as a non-selective adenosine A1/A2A receptor antagonist affects dopaminergic and serotonergic transmissions. The aim of the present study was to determine the changes in DA and 5-HT release in the mouse striatum induced by MDMA and caffeine after their chronic administration. To find out whether caffeine aggravates MDMA neurotoxicity, the content of DA and 5-HT, density of brain DAT and SERT, and oxidative damage of nuclear DNA were determined. Furthermore, the effect of caffeine on MDMA-induced changes in striatal dynorphin and enkephalin and on behavior was assessed. The DA and 5-HT release was determined with in vivo microdialysis, and the monoamine contents were measured by HPLC with electrochemical detection. DNA damage was assayed with the alkaline comet assay. DAT and SERT densities were determined by immunohistochemistry, while prodynorphin (PDYN) and proenkephalin were determined by quantitative PCR reactions. The behavioral changes were measured by the open-field (OF) test and novel object recognition (NOR) test. Caffeine potentiated MDMA-induced DA release while inhibiting 5-HT release in the mouse striatum. Caffeine also exacerbated the oxidative damage of nuclear DNA induced by MDMA but diminished DAT decrease in the striatum and worsened a decrease in SERT density produced by MDMA in the frontal cortex. Neither the striatal PDYN expression, increased by MDMA, nor exploratory and locomotor activities of mice, decreased by MDMA, were affected by caffeine. The exploration of novel object in the NOR test was diminished by MDMA and caffeine. Our data provide evidence that long-term caffeine administration has a powerful influence on functions of dopaminergic and serotonergic neurons in the mouse brain and on neurotoxic effects evoked by MDMA.  相似文献   

12.
It has been demonstrated that repeated, subcutaneous administration of 3,4-methylenedioxymethamphetamine (MDMA) to rats, guinea pigs, and squirrel monkeys produces long-lasting depletions of serotonin (5-hydroxytryptamine; 5-HT) in several brain regions. Since evidence of degenerating 5-HT neurons has been observed in the rat brain following MDMA injections, it is likely that these depletions are due to neurotoxicity similar to that observed with other substituted amphetamines. The purpose of the present study was to determine if MDMA produces similar evidence of neurotoxicity in rhesus monkeys when administered by either the intragastric (i.g.) or subcutaneous (s.c.) route. Administration of MDMA (5.0 mg/kg/12 h x 4 days) by either i.g. or s.c. routes depleted 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) in various brain regions 2 weeks after the last injection. Further, a significant decrease in [3H]5-HT uptake sites in the hippocampus was observed in monkeys treated with MDMA by the i.g. route. Reductions in uptake sites did not achieve statistical significance when drug was administered s.c. The results suggest that repeated administration of MDMA produces long-lasting, potentially neurotoxic effects on central 5-HT neurons in primates and does so when given orally.  相似文献   

13.
The substituted amphetamine drugs, 3,4-methylenedioxymethamphetamine (MDMA or ‘Ecstasy’) and fenfluramine, are known to damage 5-HT neurons in the brain of animals. However, little is known about the drugs’ effects on circadian rhythmicity which is known to be influenced by serotonergic input to the suprachiasmatic nuclei. In the present study, we tested the ability of MDMA and fenfluramine treatment to alter the ability of the circadian clock to reset in response to an agonist of the 5-HT1A and 5-HT7 receptor subtypes soon after treatment with the drugs, and then again at 20 weeks. Coronal hypothalamic slices containing the suprachiasmatic nuclei (SCN) were prepared from rats and 3-min recordings of the firing rate of individual cells were performed throughout a 12-h period. The ability of the 5-HT agonist, 8-hydroxy-2-(dipropylamino)tetralin (8-OH-DPAT), to cause a phase advance in the firing pattern of SCN neurons was assessed in slices from control animals and those pretreated with MDMA or fenfluramine (10, 15 and 20 mg/kg administered on successive days) 6–10 days or 20 weeks previously. Phase advances to 8-OH-DPAT in the slice were attenuated by pretreatment with MDMA or fenfluramine at both drug-test intervals. Our study demonstrates that repeated exposure to MDMA or fenfluramine may interfere with the ability of serotonin to phase shift the circadian clock in the rat. It is possible that such an effect may be responsible for some of the clinical changes, such as sleep disorders and mood changes, sometimes reported by human users of the substituted amphetamines.  相似文献   

14.
The amphetamine analog 3,4-methylenedioxymethamphetamine (MDMA) is considered to be selectively neurotoxic to serotonergic nerve terminals. Although the long term effects of MDMA on serotonin (5-HT) terminals have been well studied, other potential neurochemical consequences associated with MDMA-induced 5-HT depletion have been less well investigated. In view of the cognitive impairments in human MDMA abusers and the role of acetylcholine (ACh) in learning and memory, it was of interest to determine the influence of a 5-HT depleting regimen of MDMA on subsequent stimulation of ACh release in the prefrontal cortex (PFC). Male rats received vehicle or MDMA (10 mg/kg, i.p. every 2 h for four injections) and underwent in vivo microdialysis 7 days later to assess the subsequent drug- (e.g., MDMA, 5-HT1A agonist) or stress- (e.g., tail pinch, presence of an intruder rat) induced stimulation of ACh release. The increase in the extracellular concentration of ACh in the PFC produced by MDMA (10 mg/kg, i.p.) was significantly less in rats previously exposed to the neurotoxic regimen of MDMA than that in control animals. In contrast, there was no difference in the magnitude of the stimulation of cortical ACh release elicited by the 5-HT1A agonist, 8-hydroxy-2-(di-n-propyl-amino)tetralin (8-OH-DPAT, 0.3mg/kg, s.c.), tail pinch (30 min) or the presence of an intruder rat (40 min) between control animals and animals previously exposed to a neurotoxic regimen of MDMA. These results suggest that although MDMA-induced 5-HT depletion diminishes subsequent MDMA-induced ACh release, there is little impact on cortical ACh release elicited by the stress of pain or the novelty of an environmental intruder.  相似文献   

15.
Previous studies have shown that there are morphologically dissimilar serotonergic (5-HT) axon types in rat cerebral cortex which are differentially sensitive to the neurotoxic effects of certain psychotropic drugs: methylenedioxyamphetamines (MDA and MDMA) and p-chloroamphetamine (PCA) cause degeneration of fine 5-HT axon terminals in cortex, while sparing beaded axons. Moreover, a recent anterograde transport study suggests that fine and beaded 5-HT axons arise from the dorsal raphe (DR) and median raphe (MR) nuclei, respectively. These data led us to propose that the DR projection to neocortex is selectively vulnerable to the neurotoxic effects of PCA, while the MR projection is resistant; this hypothesis was tested in the present study by comparing retrograde axonal transport of the fluorescent tracer Fluoro-Gold in PCA-treated and control rats. Using this method, only axons that survive PCA treatment can take up and transport the injected label back to the cell bodies of origin, thus allowing us to determine which raphe-cortical projections remain intact after PCA. The results show that PCA administration produces a loss of fine 5-HT axon terminals in neocortex and a concomitant reduction in the number of retrogradely labeled neurons in the DR (77% decrease), when compared to controls. In contrast, beaded 5-HT axon terminals are spared and the number of labeled neurons in the MR remains unchanged after PCA. These results demonstrate that DR and MR projections to cortex are differentially vulnerable to PCA: fine axon terminals arise from neurons in the DR and are highly sensitive to the neurotoxic effects, whereas beaded axons from the MR are resistant. We therefore propose that there are two anatomically and functionally separate 5-HT projections to cortex having different (1) nuclei of origin, (2) axon morphology, (3) regional distributions, and (4) pharmacological properties. Since the mood-altering substances MDA, MDMA, and PCA act specifically upon 5-HT axon terminals from the dorsal raphe nucleus, DR neurons may be preferentially involved in the control of affective state.  相似文献   

16.
H S Pan  R Y Wang 《Brain research》1991,543(1):56-60
The mechanism of action of systemically administered (+/-)-MDMA (3,4-methylenedioxymethamphetamine) on spontaneously active neurons in the medial prefrontal cortex (mPFc) of chloral hydrate anesthetized rats was examined using standard single unit extracellular recording techniques. Intravenously administered MDMA dose-dependently decreased the firing rates of the majority of mPFc neurons in control rats. In contrast, in rats that were pretreated with p-chlorophenylalanine (PCPA), which depletes the brain serotonin (5-hydroxytryptamine, 5-HT) content by inhibiting tryptophan hydroxylase, the rate-limiting enzyme in the synthesis of 5-HT, MDMA was largely ineffective in inhibiting the firing of mPFc cells. In PCPA-treated animals, the administration of 5-hydroxytryptophan (5-HTP), which presumably restored the brain 5-HT content, but not L-DOPA, reinstated MDMA's inhibitory action in PCPA-treated rats. In rats that were pretreated with alpha-methyl-p-tyrosine (AMPT), which depletes the brain dopamine (DA) content by inhibiting tyrosine hydroxylase, the rate-limiting enzyme in the synthesis of DA, MDMA inhibited the firing of all of the mPFc cells. MDMA's effect on mPFc neurons was reversed by 5-HT receptor antagonists such as granisetron and metergoline. These results strongly suggest that MDMA exerts its action on mPFc cells indirectly by releasing endogenous 5-HT.  相似文献   

17.
Long-term serotonin (5-HT) neuronal loss is currently a major cause of concern associated with recreational use of the substituted amphetamine 3,4 methylenedioxymethamphetamine (MDMA; "Ecstasy"). Such loss may be problematic considering that psychiatric disorders such as depression and anxiety and responses to first line treatments for these disorders are associated with 5-HT. In this study the effects of prior exposure to MDMA on behavioural and central neurochemical changes induced by the serotonin (5-HT) re-uptake inhibitor and antidepressant fluoxetine were examined in rats. Animals were administered MDMA (10 mg/kg. i.p.) four times daily for two consecutive days. One week later the animals were subjected to treatment with fluoxetine (10 mg/kg, i.p.). Fluoxetine treatment groups received either acute (saline injections for 20 days followed by 3 fluoxetine treatments over 24 h) or chronic (once daily fluoxetine for 21 days) drug administration. Prior exposure to MDMA resulted in an attenuation of fluoxetine-induced swimming behaviour in the modified forced swimming test (FST); a behavioural test of antidepressant action. In parallel MDMA treatment resulted in significant regional depletions of 5-HT and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) accompanied by a reduction in cortical [3H] paroxetine binding to nerve terminal 5-HT transporters. MDMA-induced 5-HT loss was enhanced in animals following chronic fluoxetine administration. Elimination of fluoxetine and its metabolite norfluoxetine from the brain abolished this interaction between MDMA and fluoxetine treatment. Fluoxetine administration reduced both 5-HIAA and the 5-HIAA:5-HT metabolism ratio, which was attenuated in animals pre-treated with MDMA. Overall the results show that MDMA induces long-term 5-HT loss in the rodent brain and consequently diminishes behaviour and reductions in 5-HT metabolism induced by the antidepressant fluoxetine. These results have potential clinical relevance, suggesting that 5-HT re-uptake inhibitors such as fluoxetine may be less effective at treating depression in chronic abusers of MDMA.  相似文献   

18.
OBJECTIVE: "Ecstasy," or 3,4-methylenedioxymethamphetamine (MDMA), causes long-term impairment to the serotonin (5-HT) system in rats, dogs, and nonhuman primates. 5-HT dysfunction has also been observed in human recreational users of the drug, but whether 5-HT dysfunction in humans is caused by MDMA has not been established, since dysfunction may have preceded MDMA exposure. This ambiguity about causation is particularly important in MDMA research, because 5-HT deficiency is a predictor of risky behavior. METHOD: The 5-HT function of 22 long-term MDMA users was compared to that of 20 drug-naive comparison subjects and 19 cannabis users. 5-HT function was assessed with the intensity dependence paradigm, a tool that measures 5-HT-related attenuation of neural response to auditory stimuli (measured with EEG). RESULTS: Long-term MDMA users exhibited 5-HT dysfunction, relative to both cannabis users and drug-naive comparison subjects. This dysfunction was related to total MDMA consumption (after removing the effect of frequency of use) but not to frequency of use (after removing the effect of total consumption). CONCLUSIONS: These data show that 5-HT dysfunction occurs in MDMA users, is related to users' MDMA consumption, and is independent of cannabis use. The results do not suggest that self-medication explains this relationship, because the deficit was related to total MDMA consumption but not frequency of consumption. The results are thus consistent with the thesis that MDMA consumption causes 5-HT impairment in humans.  相似文献   

19.
3,4-Methylenedioxymethamphetamine (MDMA, "ecstasy") and para-methoxyamphetamine (PMA) are commonly used recreational drugs. PMA, often mistaken for MDMA, is reported to be more toxic in human use than MDMA. Both of these drugs have been shown to facilitate the release and prevent the reuptake of 5-hydroxytryptamine (5-HT, serotonin). PMA is also a potent inhibitor of monoamine oxidase type A (MAO-A), an enzyme responsible for the catabolism of 5-HT, and this characteristic may contribute to its increased toxicity. In humans, co-administration of MDMA with the reversible MAO-A inhibitor moclobemide has led to increased apparent toxicity with ensuing fatalities. In the present study, using microdialysis, we examined the effects of co-administration of MDMA and PMA with moclobemide on extracellular concentrations of 5-HT and 5-hydroxy indol acetic acid (5-HIAA) in the striatum of the rat. 5-HT-mediated effects on body temperature and behavior were also recorded. Rats were pretreated with saline or 20 mg/kg (i.p.) moclobemide and 60 min later injected with 10 mg/kg MDMA, PMA, or saline. Dialysate samples were collected every 30 min for 5 h and analyzed by HPLC-ED. Both MDMA and PMA produced significant increases in extracellular 5-HT concentrations (590% and 360%, respectively, P < 0.05). Rats treated with PMA and MDMA displayed significantly increased 5-HT-related behaviors (P < 0.05). Furthermore, only MDMA was capable of producing additional significant increases in 5-HT concentrations (980%, P < 0.05) when co-administered with moclobemide. These data suggest that co-administration of MDMA with moclobemide increases extracellular 5-HT and 5-HT-mediated behaviors and may cause increased 5-HT related toxicity similar to that reported with PMA.  相似文献   

20.
The mechanism of action of systemitically administered(±)-MDMA (3, 4-methylenedioxymethamphetamine) on spontaneously active neurons in the medial prefrontal cortex (mPFc) of chloral hydrate anesthetized rats was examined using standard single unit extracellular recording techniques. Intravenously administered MDMA dose-dependently decreased the firing rates of the majority of mPFc neurons in control rats. In contrast, in rats that were pretreated withp-chlorophenylalanine (PCPA), which depletes the brain serotonin (5-hydroxytryptamine, 5-HT) content by inhibiting tryptophan hydroxylase, the rate-limiting enzyme in the synthesis of 5-HT, MDMA was largely ineffective in inhibiting the firing of mPFc cells. In PCPA-treated animals, the administration of 5-hydroxytryptophan (5-HTP), which presumably restored the brain 5-HT content, but notl-DOPA, reinstated MDMA's inhibitory action in PCPA-treated rats. In rats that were pretreated withα-methyl-p-tyrosine (AMPT), which depletes the brain dopamine (DA) content by inhibiting tyrosine hydroxylase, the rate-limiting enzyme in the synthesis of DA, MDMA inhibited the firing of all of the mPFc cells. MDMA's effect on mPFc neurons was reversed by 5-HT receptor antagonists such as granisetron and metergoline. These results strongly suggest that MDMA exerts its action on mPFc cells indirectly by releasing endogenous 5-HT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号