首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sex chromosomes in species of the genus Microtus present some characteristic features that make them a very interesting group to study sex chromosome composition and evolution. M. cabrerae and M. agrestis have enlarged sex chromosomes (known as ‘giant sex chromosomes’) due to the presence of large heterochromatic blocks. By chromosome microdissection, we have generated probes from the X chromosome of both species and hybridized on chromosomes from six Microtus and one Arvicola species. Our results demonstrated that euchromatic regions of X chromosomes in Microtus are highly conserved, as occurs in other mammalian groups. The sex chromosomes heterochromatic blocks are probably originated by fast amplification of different sequences, each with an independent origin and evolution in each species. For this reason, the sex heterochromatin in Microtus species is highly heterogeneous within species (with different composition for the Y and X heterochromatic regions in M. cabrerae) and between species (as the composition of M. agrestis and M. cabrerae sex heterochromatin is different). In addition, the X chromosome painting results on autosomes of several species suggest that, during karyotypic evolution of the genus Microtus, some rearrangements have probably occurred between sex chromosomes and autosomes.  相似文献   

2.
We present here data on chromosome banding analysis (R- and C-bands) ofAcomys sp. (Rodentia, Muridae) from Oursi, Burkina Faso, characterized by 2n=FN=68 and comparison of its banding patterns with those ofAcomys dimidiatus from Saudi Arabia (2n=38, FN=70), studied previously. The study revealed complete homology between acrocentric chromosomes ofAcomys sp. and chromosome arms of 16 pairs of metacentric and two pairs of acrocentric chromosomes ofA. dimidiatus. In addition to monobrachial homology, one tandem translocation accompanied by a centromeric shift was identified in the karyotype of the latter species. The data obtained show that karyotypes of all the species of theAcomys cahirinus-dimidiatus group studied previously may be derived from that ofAcomys sp. from Oursi by means of numerous non-homologous Rb translocations and 1–2 tandem translocations, and thus its karyotype may be considered as ancestral for thecahirinus-dimidiatus group.accepted for publication by M. Schmid  相似文献   

3.
Many canine tumour types represent useful models for tumours also found in humans. Studies of chromosomal abnormalities in canine tumours have been impeded by the complexity of the canine karyotype (2n = 78), which has made accurate identification of rearranged chromosomes difficult and laborious. To overcome this difficulty we have developed a seven-colour paint system for canine chromosomes, with six sets of chromosome paints covering all chromosomes except Y. Several pairs of canine autosomes co-locate in the flow karyotype. To distinguish these autosomes from each other, paint sets were supplemented with chromosomes of red fox and Japanese raccoon dog. Paints were used in fluorescence in-situ hybridization to analyse karyotypes in fourteen canine soft tissue sarcomas. Rearranged karyotypes were observed in seven tumours, but there was evidence for loss of rearrangement during tissue culture. Five tumours had rearrangements involving four chromosomes or fewer; one, a chondrosarcoma, had lost seven chromosomes whilst the last, a spindle cell sarcoma, had rearrangements involving eighteen chromosome pairs. The paint sets described here facilitate the complete cytogenetic analysis of balanced translocations and other inter-chromosomal rearrangements in canine tumours. We believe that this is the first canine tumour series to be subjected to this level of analysis.  相似文献   

4.
We investigated chromosome evolution in Nemesia using fluorescent in-situ hybridization (FISH) to identify the locations of 5S and 45S (18–26S) ribosomal genes. Although there was conservation between Nemesia species in chromosome number, size and centromere position, there was large variation in both number and position of ribosomal genes in different Nemesia species (21 different arrangements of 45S and 5S rRNA genes were observed in the 29 Nemesia taxa studied). Nemesia species contained between one and three pairs of 5S arrays and between two and four pairs of 45S arrays. These were either sub-terminally or interstitially located and 45S and 5S arrays were often located on the same chromosome pair. Comparison of the positions of rDNA arrays with meiotic chromosome behaviour in interspecific hybrids of Nemesia suggests that some of the changes in the positions of rDNA have not affected the surrounding chromosome regions, indicating that rDNA has changed position by transposition. Chromosome evolution is frequently thought to occur via structural rearrangements such as inversions and translocations. We suggest that, in Nemesia, transposition of rDNA genes may be equally if not more important in chromosome evolution.  相似文献   

5.
C-banded karyotypes, DNA content and the male meiiotic process ofTriatoma platensis andTriatoma delpontei are compared with those ofTriatoma infestans, the main vector of Chagas disease in South America. These three species present the same diploid chromosome number 2n=22 (20 autosomes+XX/XY). They also have several cytogenetic traits that differ from all other triatomines: large autosomes, C-heterochromatic blocks and meiotic heteropycnotic chromocenters formed by autosomes and sex chromosomes. In spite of these similarities, each species presents different chromosomal behavior during male meiosis, distinct DNA content and a specific amount and localization of the C-heterochromatin. The differences in DNA content are mainly due to the variation in C-heterochromatin amount, which may be interpreted as loss and/or gain of C-regions. This interpretation is supported by the presence of meiotic and mitotic chromocenters that facilitate the transference of C-positive material. The cytogenetic data presented in this work suggest thatT. infestans andT. platensis are more closely related to each other than toT. delpontei. It can also be inferred that the differences in distribution and amount of heterochromatin do not play a direct role in speciation in this group.  相似文献   

6.
Triticum timopheevii ssp.timopheevii andT. timopheevii ssp.araraticum were analysed by sequential N-banding and genomicin situ hybridization. Three chromosomes, 6At, 1G and 4G, were involved in At-G intergenomic translocations in all six lines analysed. These chromosomes may be derived from a cyclic translocation that is species-specific toT. timopheevii. In contrast,Triticum turgidum has a species-specific cyclic translocation involving chromosomes 4A, 5A and 7B. The discovery of different species-specific chromosome translocations supports the diphyletic hypothesis of the evolution of tetraploid wheats. The results from genomic blocking analysis also revealed that the chromosomes ofAegilops speltoides are closer to the G genome than the B genome chromosomes. The possible role of speciesspecific translocations in the evolution of wheat is discussed.  相似文献   

7.
Three novel families of repetitive DNA sequences were molecularly cloned from the Korean field mouse (Apodemus peninsulae) and characterized by chromosome in-situ hybridization and filter hybridization. They were all localized to the centromeric regions of all autosomes and categorized into major satellite DNA, type I minor, and type II minor repetitive sequences. The type II minor repetitive sequence also hybridized interspersedly in the non-centromeric regions. The major satellite DNA sequence, which consisted of 30 bp elements, was organized in tandem arrays and constituted the majority of centromeric heterochromatin. Three families of repetitive sequences hybridized with B chromosomes in different patterns, suggesting that the B chromosomes of A. peninsulae were derived from A chromosomes and that the three repetitive sequences were amplified independently on each B chromosome. The minor repetitive sequences are present in the genomes of the other seven Apodemus species. In contrast, the major satellite DNA sequences that had a low sequence homology are present only in a few species. These results suggest that the major satellite DNA was amplified with base substitution in A. peninsulae after the divergence of the genus Apodemus from the common ancestor and that the B chromosomes of A. peninsulae might have a species-specific origin.  相似文献   

8.
We conducted comparative FISH analyses to investigate the chromosomal rearrangements that have occurred during the evolution of the rodent genus Apodemus, which inhabits broadleaf forests in the temperate zone of the Palaearctic region. Chromosome-specific painting probes of the laboratory mouse were hybridized to chromosomes of seven Apodemus species, A. agrarius, A. argenteus, A. gurkha, A. peninsulae, A. semotus, A. speciosus and A. sylvaticus, and homologous chromosomal regions were determined in the species for the study of karyotypic evolution. Differences in the hybridization patterns were found in nine pairs of autosomes among the seven species. The chromosomal location of the 5S rRNA genes on the telomeric region of chromosome 20 was highly conserved in all the species. In contrast, there was much wider variation in the location of the 18S-28S rRNA genes, although they were predominantly located on chromosomes 7, 8 and 12. Phylogenetic relationships of the seven Apodemus species were inferred from the chromosome rearrangements and the chromosomal distribution patterns of the 18S-28S rRNA genes. The karyotypic relationships correlated well with the molecular phylogeny, and A. semotus had the most highly conserved karyotype among the seven species.  相似文献   

9.
Fluorescence in-situ hybridization was used to construct a comparative chromosome map between the laboratory mouse, Mus musculus and the African four-striped mouse, Rhabdomys pumilio. A high degree of homology between the species was detected using both FISH and G-banding. Ten mouse chromosomes (2–4, 7, 14–16, 18, 19 and the X) were retained as chromosomal arms or intact chromosome blocks. Six mouse chromosome painting probes that correspond to mouse autosomes 5, 6, 8, 11, 12 and 13, produced double signals; the remaining four painting probes (1, 9, 10 and 17) hybridized to three or more R. pumilio chromosomes respectively. In total, the 20 mouse chromosome paints revealed 40 segments of conserved synteny in the R. pumilio genome. Most of the mouse chromosomes that produced single signals in R. pumilio have previously been shown to be conserved in the Black and Norwegian rats and the Chinese hamster. Eight contiguous segment associations appear to be R. pumilio specific, two were shared by R. pumilio and the Black and Norwegian rats, but to the exclusion of the Chinese hamster. Our data suggest that mouse chromosomes 1, 10, and 17 have undergone extensive rearrangements during genome evolution in the murids and may be useful markers for enhancing our understanding of the mode and tempo of chromosome evolution in rodents.  相似文献   

10.
The acrocentric macro B chromosomes of Rhammatocerus brasiliensis (Acrididae, Gomphocerinae) and Xyleus discoideus angulatus (Romaleidae, Romaleinae) are highly similar to the X chromosome in each species in terms of morphology, size, and pycnosis. However, the results of FISH experiments using 45S and 5S rDNA probes suggest that in both species the B chromosomes are most likely of autosomal origin. In R. brasiliensis, the B chromosome presented 5S rDNA but not 45S rDNA, in resemblance to the L2, L3, M5 and S11 autosomes, but the X chromosome lacks both rDNA families. In X. d. angulatus, 45S rDNAs is absent from the B chromosome, whereas the X chromosome contains one of the two 45S rDNA clusters in the genome. The occurrence of B chromosomes in all nine R. brasiliensis populations analyzed indicates that they are widely distributed in Northeastern Brazil, and the small amount of interpopulation variation found for B chromosome prevalence suggests the existence of high gene flow, presumably due to the abundance of this grasshopper species on several types of vegetation and its relatively high flight capability.  相似文献   

11.
In most mammals, the Y chromosome is composed of a large amount of constitutive heterochromatin. In some Microtus species, this feature is also extended to the X chromosome, resulting in enlarged (giant) sex chromosomes. Several repeated DNA sequences have been described in the gonosomal heterochromatin of these species, indicating that it has heterogeneous and species-specific composition and distribution. We have cloned an AT-rich, 851-bp long, repeated DNA sequence specific for M. cabrerae Y chromosome heterochromatin. The analysis of other species of the genus Microtus indicated that this sequence is also located on the Y chromosome (male-specific) in three species (M. agrestis, M. oeconomus and M. nivalis), present on both Y and X chromosomes and on some autosomes in M. arvalis and absent in the genome of M. guentheri. Our data also suggest that the mechanism of heterochromatin amplification operating on the sex chromosomes could have been different in each species since the repeated sequences of the gonosomal heterochromatic blocks in M. cabrerae and M. agrestis are different. The absence of this sequence in the mouse genome indicates that its evolutionary origin could be recent. Future analysis of the species distribution, localization and sequence of this repeat DNA family in arvicolid rodent species could help to establish the unsolved phylogenetic relationships in this rodent group.  相似文献   

12.
In this study, we investigated the mitotic and meiotic chromosomes of 11 Buthidae scorpion species, belonging to three genera (Ananteris, Rhopalurus and Tityus), to obtain detailed knowledge regarding the mechanisms underlying the intraspecific and/or interspecific diversity of chromosome number and the origin of the complex chromosome associations observed during meiosis. The chromosomes of all species did not exhibit a localised centromere region and presented synaptic and achiasmatic behaviour during meiosis I. Spermatogonial and/or oogonial metaphase cells of these buthids showed diploid numbers range from 2n?=?6 to 2n?=?28. In most species, multivalent chromosome associations were observed in pachytene and postpachytene nuclei. Moreover, intraspecific variability associated with the presence or absence of chromosome chains and the number of chromosomes in the complex meiotic configurations was observed in some species of these three genera. Silver-impregnated cells revealed that the number and location of nucleolar organiser regions (NORs) remained unchanged despite extensive chromosome variation; notably, two NORs located on the terminal or subterminal chromosome regions were commonly observed for all species. C-banded and fluorochrome-stained cells showed that species with conspicuous blocks of heterochromatin exhibited the lowest rate of chromosomal rearrangement. Based on the investigation of mitotic and meiotic cells, we determined that the intraspecific variability occurred as a consequence of fission/fusion-type chromosomal rearrangements in Ananteris and Tityus species and reciprocal translocation in Rhopalurus species. Furthermore, we verified that individuals presenting the same diploid number differ in structural chromosome organisation, giving rise to intraspecific differences of chromosome association in meiotic cells (bivalent-like elements or chromosome chains).  相似文献   

13.
Traditionally comparative cytogenetic studies are based mainly on banding patterns. Nevertheless, when dealing with species with highly rearranged genomes, as in Akodon species, or with other highly divergent species, cytogenetic comparisons of banding patterns prove inadequate. Hence, comparative chromosome painting has become the method of choice for genome comparisons at the cytogenetic level since it allows complete chromosome probes of a species to be hybridized in situ onto chromosomes of other species, detecting homologous genomic regions between them. In the present study, we have explored the highly rearranged complements of the Akodon species using reciprocal chromosome painting through species-specific chromosome probes obtained by chromosome sorting. The results revealed complete homology among the complements of Akodon sp. n. (ASP), 2n = 10; Akodon cursor (ACU), 2n = 15; Akodon montensis (AMO), 2n = 24; and Akodon paranaensis (APA), 2n = 44, and extensive chromosome rearrangements have been detected within the species with high precision. Robertsonian and tandem rearrangements, pericentric inversions and/or centromere repositioning, paracentric inversion, translocations, insertions, and breakpoints, where chromosomal rearrangements, seen to be favorable, were observed. Chromosome painting using the APA set of 21 autosomes plus X and Y revealed eight syntenic segments that are shared with A. montensis, A. cursor, and ASP, and one syntenic segment shared by A. montensis and A. cursor plus five exclusive chromosome associations for A. cursor and six for ASP chromosome X, except for the heterochromatin region of ASP X, and even chromosome Y shared complete homology among the species. These data indicate that all those closely related species have experienced a recent extensive process of autosomal rearrangement in which, except for ASP, there is still complete conservation of sex chromosomes homologies.  相似文献   

14.
The subject of this investigation is the genetic basis of light independence (lin) in the courtship and mating behavior ofDrosophila subobscura. Lin flies, in contrast to wild flies of this species, do not depend on light for reproduction. Most elements of the typical courtship behavior ofD. subobscura are omitted. Crosses of lin flies with wild-type flies were performed. By the use of chromosomes marked with different alleles of enzyme loci, the genetic effect of each of the four autosomes was determined. A positive selection success for light independence of mating behavior always proved to be correlated with frequency changes for the alleles of thePhi locus on chromosome E and the gene arrangements of the same chromosome. From this it can be concluded that a main genetic factor for light independence (lin factor) of courtship ofD. subobscura is located on chromosome E.  相似文献   

15.
Cross-species chromosome painting was used to determine homologous chromosomal regions between two species of mole-rat, the naked mole-rat, Heterocephalus glaber (2n = 60), and the giant mole-rat, Cryptomys mechowi (2n = 40), using flow-sorted painting probes representative of all but two of the H. glaber chromosomal complement. In total 43 homologous regions were identified in the C. mechowi genome. Eight H. glaber chromosomes are retained in toto in C. mechowi, and 13 produce two or more signals in this species. The most striking difference in the karyotypes of the two taxa concerns their sex chromosomes. The H. glaber painting probes identified a complex series of translocations that involved the fractionation of four autosomes and the subsequent translocation of segments to the sex chromosomes and to autosomal partners in the C. mechowi genome. An intercalary heterochromatic block (IHB) was detected in sex chromosomes of C. mechowi at the boundary with the translocated autosomal segment. We discuss the likely sequence of evolutionary events that has led to the contemporary composition of the C. mechowi sex chromosomes, and consider these in the light of prevailing views on the genesis of sex chromosomes in mammals.  相似文献   

16.
The Chinese pangolin (Manis pentadactyla), a representative species of the order Pholidota, has been enlisted in the mammalian whole-genome sequencing project mainly because of its phylogenetic importance. Previous studies showed that the diploid number of M. pentadactyla could vary from 2n = 36 to 42. To further characterize the genome organization of M. pentadactyla and to elucidate chromosomal mechanism underlying the karyotype diversity of Pholidota, we flow-sorted the chromosomes of 2n = 40 M. pentadactyla, and generated a set of chromosome-specific probes by DOP-PCR amplification of flow-sorted chromosomes. A comparative chromosome map between M. pentadactyla and the Malayan pangolin (Manis javanica, 2n = 38), as well as between human and M. pentadactyla, was established by chromosome painting for the first time. Our results demonstrate that seven Robertsonian rearrangements, together with considerable variations in the quantity of heterochromatin and in the number of nucleolar organizer regions (NORs) differentiate the karyotypes of 2n = 38 M. javanica and 2n = 40 M. pentadactyla. Moreover, we confirm that the M. javanica Y chromosome bears one NOR. Comparison of human homologous segment associations found in the genomes of M. javanica and M. pentadactyla revealed seven shared associations (HSA 1q/11, 2p/5, 2q/10q, 4p+q/20, 5/13, 6/19p and 8q/10p) that could constitute the potential Pholidota-specific signature rearrangements.  相似文献   

17.
The molecular cytogenetic organization of 17S ribosomal RNA genes (17S rDNA), a part of the 45S rDNA repeat, was investigated on the chromosomes of the liverwort Marchantia polymorpha using fluorescence in-situ hybridization (FISH). The numbers of 17S rDNA loci visualized in female and male chromosomes were ten and nine, respectively. This heterogeneous localization was due to the presence of an additional 17S rDNA locus on the X chromosome and its absence on the Y chromosome. The signal on the X chromosome covered almost the entire region of its long arm. The other nine signals were observed on the same loci of respective autosomes in both sexes. Southern hybridization analysis revealed an additional band including 17S rDNA exclusively on EcoRI digested female genomic DNA supporting the existence of an additional 17S rDNA locus on the X chromosome.  相似文献   

18.
Using cross-species chromosome painting, we have carried out a comprehensive comparison of the karyotypes of two Ellobius species with unusual sex determination systems: the Transcaucasian mole vole, Ellobius lutescens (2n = 17, X in both sexes), and the northern mole vole, Ellobius talpinus (2n = 54, XX in both sexes). Both Ellobius species have highly rearranged karyotypes. The chromosomal paints from the field vole (Microtus agrestis) detected, in total, 34 and 32 homologous autosomal regions in E. lutescens and E. talpinus karyotypes, respectively. No difference in hybridization pattern of the X paint (as well as Y paint) probes on male and female chromosomes was discovered. The set of golden hamster (Mesocricetus auratus) chromosomal painting probes revealed 44 and 43 homologous autosomal regions in E. lutescens and E. talpinus karyotypes, respectively. A comparative chromosome map was established based on the results of cross-species chromosome painting and a hypothetical ancestral Ellobius karyotype was reconstructed. A considerable number of rearrangements were detected; 31 and 7 fusion/fission rearrangements differentiated the karyotypes of E. lutescens and E. talpinus from the ancestral Ellobius karyotype. It seems that inversions have played a minor role in the genome evolution of these Ellobius species.  相似文献   

19.
Species belonging to the Cetoniinae subfamily studied so far possess 20 chromosomes, including a small X and a punctiform Y: 20,Xyp in the males. In a series of species from the Goliathini tribe under study we found a very unusual karyotype, with 12 autosomes and large sex chromosomes (14,neoXY) in Jumnos ruckieri from Thailand. Applying various techniques including pachytene bivalent spreading, we showed that 40% (mitotic and meiotic prophases) to 60% (metaphases) of the karyotype length was composed of heterochromatin. Both sex chromosomes were NOR carriers. At pachynema they underwent a complete synapsis of their distal regions, indicating their autosomal origin. At contrast, their very uneven central regions remained separated, but associated with nucleolus material. This association persisted until diakinesis, forming a pseudo-chiasma between the neoX and the neoY, which were always in end-to-end association. Compared to free autosomes the autosomal parts of the neo-sex chromosomes had a significant lack of interstitial chiasmata, indicating a possible lack of recombination at their proximal regions. As in the cases of X-autosome translocations in mammals, autosomal and gonosomal parts of the neo-sex chromosomes were insulated by heterochromatin, which may be a necessary condition to avoid deleterious position effects, whatever the mechanisms of gene dosage compensation.  相似文献   

20.
In polytene chromosome squashes from the fruit flyDrosophila melanogaster, the single, dosage-compensated X chromosome in males can be distinguished from the autosomes by the presence of an isoform of histone H4 acetylated at lysine 16, H4.Ac16. We have used H4.Ac16 as a marker to examine the evolving relationship between dosage compensation and sex chromosome composition in species ofDrosophila with one (D. melanogaster), two (D. pseudoobscura) or three (D. miranda) identifiable X chromosome arms. In each case, we find that H4.Ac16 is distributed as discrete, closely spaced bands along the entire length of each X chromosome, the only exception being the X2 chromosome ofD. miranda in which a terminal region constituting about 10% of the chromosome by length is not labelled with anti-H4.Ac16 antibodies. We conclude that, with this exception, dosage compensation extends along the X chromosomes of all three species. AsD. pseudoobscura andD. miranda diverged only about 2 Mya, the spread of dosage-compensated loci along X2 has been rapid, suggesting that regional changes rather than piecemeal, gene-by-gene, changes may have been involved.accepted for publication by H. C. Macgregor  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号