首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Macrophage-derived nitric oxide is a critical mediator in wound healing. Its regulation in vivo, however, remains unclear. We hypothesized that interferon (IFN)-gamma plays an important role in the regulation of nitric oxide in wounds. Groups of 12 male IFN-gamma -knockout mice and wild-type controls underwent dorsal skin incision and polyvinyl alcohol sponges were inserted subcutaneously. Mice were sacrificed 10 days later to determine wound breaking strength and reparative collagen deposition. Synthesis of nitric oxide (NO), tumor necrosis factor (TNF)-alpha, and IFN-gamma was measured in the wound. Wound-derived macrophages were tested for NO synthesis in the presence or absence of IFN-gamma, TNF-alpha, and anti-TNF-alpha antibody. In a separate experiment, IFN-gamma -knockout mice and wild-type controls were treated with molsidomine, a nitric oxide donor. It was found that wound collagen deposition and wound breaking strength were impaired in IFN-gamma-knockout mice (p < .05). Impaired healing was reflected in diminished synthesis of TNF-alpha and NO in wounds (p < .05). In vivo treatment with molsidomine reversed impaired healing in IFN-gamma-deficient mice. Ex vivo, addition of IFN-gamma stimulated the synthesis of TNF-alpha and NO in wound-derived macrophages. IFN-gamma -induced NO synthesis by wound-derived macrophages was abolished by anti-TNF-alpha-antibody-treatment, which could be fully reversed by exogenous TNF-alpha. Thus we conclude that IFN-gamma-deficiency impairs wound healing and diminishes NO synthesis in wound-derived macrophages. The stimulatory effect of IFN-gamma on macrophage NO production depends on endogenous TNF-alpha synthesis.  相似文献   

2.
In order to understand the role of T cells in postinjury fibroplasia, we have studied wound healing in congenitally athymic nude mice that lack a normally developed T cell system. Healing of incisional wounds, as assessed by wound breaking strength, was significantly stronger in nude mice compared with normal thymus-bearing animals. This was accompanied by a marked increase in the amount of reparative collagen synthesized at the wound site, as assessed by the hydroxyproline content of subcutaneously implanted sponges. Because nude mice have some extrathymic T cell maturation, we used an anti-Thy-1.2 (30H12) monoclonal antibody to selectively deplete T cells in vivo. Although such treatments impaired wound healing in normal mice, they had no effect on any wound healing parameter in nude mice. In a separate experiment, T cell reconstitution of nude mice, sufficient to significantly enhance in vivo delayed hypersensitivity responses, led to a decrease in both wound breaking strength and hydroxyproline deposition in subcutaneously implanted polyvinyl sponges. The data suggest that T cells play a dual role in wound healing: an early stimulatory role on macrophages, endothelial cells, and fibroblasts, and a late counterregulatory role, which may be responsible for the orderly completion of wound repair.  相似文献   

3.
Macrophage-derived nitric oxide is a critical mediator in wound healing. Its regulation in vivo, however, remains unclear. We hypothesized that interferon (IFN)-γ plays an important role in the regulation of nitric oxide in wounds. Groups of 12 male IFN-γ -knockout mice and wild-type controls underwent dorsal skin incision and polyvinyl alcohol sponges were inserted subcutaneously. Mice were sacrificed 10 days later to determine wound breaking strength and reparative collagen deposition. Synthesis of nitric oxide (NO), tumor necrosis factor (TNF)-α, and IFN-γ was measured in the wound. Wound-derived macrophages were tested for NO synthesis in the presence or absence of IFN-γ, TNF-α, and anti-TNF-α antibody. In a separate experiment, IFN-γ -knockout mice and wild-type controls were treated with molsidomine, a nitric oxide donor. It was found that wound collagen deposition and wound breaking strength were impaired in IFN-γ-knockout mice (p <. 05). Impaired healing was reflected in diminished synthesis of TNF-α and NO in wounds (p <. 05). In vivo treatment with molsidomine reversed impaired healing in IFN-γ-deficient mice. Ex vivo, addition of IFN-γ stimulated the synthesis of TNF-α and NO in wound-derived macrophages. IFN-γ -induced NO synthesis by wound-derived macrophages was abolished by anti-TNF-α-antibody-treatment, which could be fully reversed by exogenous TNF-α. Thus we conclude that IFN-γ-deficiency impairs wound healing and diminishes NO synthesis in wound-derived macrophages. The stimulatory effect of IFN-γ on macrophage NO production depends on endogenous TNF-α synthesis.  相似文献   

4.
Significance of T-lymphocytes in wound healing   总被引:9,自引:0,他引:9  
To determine the importance of T-lymphocytes in wound healing, we examined the effect of T-lymphocyte depletion on the healing of surgical wounds. Thirty Balb/c mice were injected intraperitoneally with 1 mg of rat anti-mouse (IgG2b) cytotoxic monoclonal antibody (30H12) against the Thy1.2 (all T) determinant. Twenty-four hours later animals showed a greater than 95% depletion of Thy1.2 cells in peripheral blood and spleen. Thirty control mice received nonspecific rat immunoglobulin (1 mg). Twenty-four hours after treatment mice underwent a 2.5 cm dorsal skin incision with subcutaneous placement of polyvinyl alcohol sponges. Injections were repeated at weekly intervals. Wound healing was assessed at 2, 3, and 4 weeks by the breaking strength of wound strips and by the hydroxyproline content of sponge granulomas (an index of wound reparative collagen deposition). Thy1.2 depletion at death was 95% to 57% in peripheral blood and 86% to 68% in the spleen. Both groups gained weight equally. We found that T cell depletion significantly impairs wound breaking strength and wound collagen deposition at all times studied. The data strongly suggest that T-lymphocytes modulate fibroblast activity during normal wound healing.  相似文献   

5.
BACKGROUND: Radiation impairs healing, although the underlying mechanisms are not clearly defined. Normal healing requires a fine balance of promoting and inhibiting factors. We hypothesize that there may be a down-regulation of promoting factors (nitric oxide) and, in turn, an up-regulation of healing inhibiting factors (TNF-alpha and IFN-gamma) in the wound after radiation. MATERIAL AND METHODS: Groups of 10 rats were irradiated using single dose 12 or 24 Gy electron radiation at the dorsal skin. Control rats were sham-irradiated. On Day 5 a skin incision in the irradiated area was performed and polyvinyl alcohol sponges were inserted subcutaneously. Rats were sacrificed 10 days later to determine the wound-breaking strength and reparative collagen deposition. Nitrite and nitrate (index of NO synthesis), TNF-alpha, and IFN-gamma were measured within the wound fluid. Expression of the inducible NO-synthase (iNOS) was investigated by immunohistochemistry. Wound-derived fibroblasts were tested in vitro for NO and collagen synthesis. RESULTS: Irradiation significantly reduced wound collagen deposition and wound-breaking strength (P < 0.05). Impaired healing was reflected in diminished wound NO synthesis and iNOS expression (P < 0.01). TNF-alpha and IFN-gamma were increased in irradiated wounds (P < 0.05). Ex vivo, NO synthesis and collagen deposition by fibroblasts from irradiated rats were decreased (P < 0.01). In vitro irradiation of fibroblasts from nonirradiated rats decreased both NO and collagen production (P < 0.01). CONCLUSION: Radiation-impaired healing is reflected in an imbalance of promoting and inhibiting factors, leading to increased levels of TNF-alpha and IFN-gamma and decreased NO expression in the wound.  相似文献   

6.
BACKGROUND: Several studies indicate impaired wound healing after trauma and shock. Wound immune cell dysfunction seems to be responsible for altered wound healing after trauma-hemorrhage (T-H). In this respect, administration of the amino acid L-arginine normalized wound immune cell function under those conditions. It remains unknown, however, whether L-arginine improves impaired wound healing after T-H. METHODS: To study this, male C3H/HeN mice were subjected to a midline laparotomy (i.e., soft tissue trauma induced), and polyvinyl sponges were implanted subcutaneously at the wound site before hemorrhage (35 +/- 5 mm Hg for 90 minutes) or were subjected to sham operation. During resuscitation, mice received 300 mg/kg body weight L-arginine or saline (vehicle). Seven days thereafter, hydroxyproline (OHP), a metabolite of collagen synthesis, was measured in the wound fluid using high-performance liquid chromatography. Collagen types I and III were determined in the wound by Western blot analysis. In addition, wound breaking strength was measured 10 days after T-H or sham operation. RESULTS: The results indicate that OHP was significantly decreased in T-H mice. L-arginine, however, restored depressed OHP in the wound fluid in the T-H animals. Similarly, L-arginine treatment prevented a significant depression of collagen I synthesis after T-H. Collagen III was not significantly affected by T-H or L-arginine. Most important, L-arginine increased maximal wound breaking strength after severe blood loss. Therefore, L-arginine improves wound healing after T-H by increasing collagen synthesis. CONCLUSION: Because L-arginine improves wound healing, the results suggest that L-arginine might represent a novel and useful adjunct to fluid resuscitation for decreasing wound complications after trauma and severe blood loss.  相似文献   

7.
Effect of bFGF on the inhibition of contraction caused by bacteria   总被引:9,自引:0,他引:9  
Bacterial contamination of open wounds significantly inhibits wound contraction required in the healing process. Basic fibroblast growth factor (bFGF) has been shown to overcome contraction inhibition in wound-healing models impaired by diabetes or steroids. This study was designed to determine the effect of bFGF on wound contraction inhibition in an area contaminated with bacterial overgrowth. The topically applied bFGF reversed inhibition to wound contraction that normally occurs with bacterial contamination. This reversal does not appear to be due to increased collagen synthesis since bFGF has been shown to decrease collagen synthesis and the treated wounds showed no increase in breaking strength. The use of bFGF significantly decreased the number of days required for wound healing (P less than 0.01) despite active bacterial invasion and may be of value in the treatment of human contaminated wounds.  相似文献   

8.
BACKGROUND: Fibronectin has been shown to assist in wound healing. Impaired wound healing in diabetes mellitus is characterized by a reduction in plasma fibronectin (pFn) at the wound site. This study investigated whether topical application of pFn could improve the impaired wound healing in diabetic rats. MATERIALS AND METHODS: Full-thickness skin wounds were created on the backs of streptozotocin (STZ)-induced diabetic rats. Immediately, human pFn was introduced into the wound bed, while wounds receiving human serum albumin or normal saline were used as controls. Wound closure was monitored using well-recognized wound-healing parameters: epithelialization, vascularization, collagen deposition, and migration of fibroblasts were examined histologically. Transforming growth factor (TGF)-beta1 was measured by immunochemistry. Hydroxyproline levels also were assessed in the wound skin. RESULTS: Wound closure was significantly accelerated by local application of pFn. Furthermore, pFn-treated wounds showed increased fibroblast vascularization, collagen regeneration, and epithelialization. The numbers of infiltrating fibroblasts expressing TGF-beta1 and hydroxyproline levels in pFn-treated wounds were significantly higher than those in the controls. CONCLUSIONS: pFn can improve the impaired healing of diabetic wounds and this effect might involve an increase in the activity of fibroblasts and increased release of TGF-beta1.  相似文献   

9.
Most D  Efron DT  Shi HP  Tantry US  Barbul A 《Surgery》2002,132(5):866-876
BACKGROUND: Excisional wound healing in inducible nitric oxide synthase knockout (iNOS-KO) mice has been previously shown to be impaired compared with their background strain controls. Incisional wounds were created in this experiment in both types of animals and paradoxically were found to heal with the same rapidity and breaking strength in both groups. METHODS: Dorsal 2.5 cm incisional wounds were created in iNOS-KO mice, as well as their parental strain controls (C57BL/6J). Standardized polyvinyl alcohol sponges were implanted in the wounds to allow for measurement of collagen deposition. Animals were harvested on postoperative days (PODs) 3, 5, 7, 10, 14, and 28, and their wounds subjected to tensiometric breaking strength analysis. Nonisotopic in situ hybridization quantitative analysis for iNOS, endothelial NOS (eNOS), basic fibroblast growth factor (bFGF), transforming growth factor-beta1 (TGF-beta1), vascular endothelial growth factor (VEGF), and interleukin-4 (IL-4) expression in the wounds was performed. Hydroxyproline levels were quantitated in the harvested polyvinyl alcohol sponges. Data were analyzed with the Students t test. RESULTS: No significant differences were found in breaking strengths or levels of hydroxyproline (and thus collagen) in iNOS-KO versus wild-type wounds at all tested time points. Flawed iNOS expression levels in iNOS-KO animals were similar to (functional) iNOS expression in wild-types. eNOS and bFGF expression nearly doubled on POD 7 in iNOS-KO incisions (P =.002, and.002), respectively and remained 200% to 300% elevated thereafter. TGF-beta1 expression was increased approximately 50% to 100% in iNOS-KO wounds on PODs 5 and 7 (P =.006 and.01, respectively). VEGF and IL-4 expression was elevated by 25% to 100% in wild-type compared with iNOS-KO animals at all time points (P <.01). CONCLUSIONS: The overexpression of TGF-beta1 and eNOS may represent mechanisms in iNOS-KO mice to compensate for their loss of functional iNOS, resulting in incisional wound healing equivalent to controls. Their impaired expression of VEGF and IL-4, on the other hand, may partially explain the delayed excisional wound healing noted in these animals.  相似文献   

10.
Interleukin-4 increases the synthesis of extracellular matrix proteins, including types I and III collagen and fibronectin, by both human and rat fibroblasts. Because fibroblasts are the final common effector cells of most phases of tissue repair, this study set out to investigate the effects of interleukin-4 on the healing of three different types of wounds. Acute excisional and chronic granulating wounds inoculated with Escherichia coli and incisional wounds in streptozotocin-induced diabetic Sprague-Dawley rats were used. Recombinant murine or human interleukin-4 was applied topically to the open wounds at doses of 0.1, 1.0, or 10.0 microg/cm(2)/wound for 5 or 10 days. Incisional wounds received the same doses once-at the time of wounding. The time taken to achieve wound closure or wound breaking strength measurements of wounds was recorded and compared with relevant untreated control groups. Wound contraction was impaired in the presence of bacteria, and this was reversed by all doses of recombinant murine interleukin-4. Recombinant murine interleukin-4 had no effect on the wound closure of noncontaminated wounds; it reduced wound breaking strength in acute excisional wounds, except in a contaminated setting when wounds were treated with 1.0 pg/cm(2)/wound. Recombinant interleukin-4 (1.0 microg) improved breaking strength of both diabetic and normal incisional wounds. The apparent pleiotropic effect of interleukin-4 on wound breaking strength under different wound conditions may be related not only to the activity of the fibroblast but also the ratio of cross-linked collagen/total collagen content of wounds. This study suggests that interleukin-4 may be a useful agent for accelerating closure of wounds, particularly where healing is impaired.  相似文献   

11.
Mac‐1 (CD11b/CD18) is a macrophage receptor that plays several critical roles in macrophage recruitment and activation. Because macrophages are essential for proper wound healing, the impact of Mac‐1 deficiency on wound healing is of significant interest. Prior studies have shown that Mac‐1?/? mice exhibit deficits in healing, including delayed wound closure in scalp and ear wounds. This study examined whether Mac‐1 deficiency influences wound healing in small excisional and incisional skin wounds. Three millimeter diameter full thickness excisional wounds and incisional wounds were prepared on the dorsal skin of Mac‐1 deficient (Mac‐1?/?) and wild type (WT) mice, and wound healing outcomes were examined. Mac‐1 deficient mice exhibited a normal rate of wound closure, generally normal levels of total collagen, and nearly normal synthesis and distribution of collagens I and III. In incisional wounds, wound breaking strength was similar for Mac‐1?/? and WT mice. Wounds of Mac‐1 deficient mice displayed normal total macrophage content, although macrophage phenotype markers were skewed as compared to WT. Interestingly, amounts of TGF‐β1 and its downstream signaling molecules, SMAD2 and SMAD3, were significantly decreased in the wounds of Mac‐1 deficient mice compared to WT. The results suggest that Mac‐1 deficiency has little impact on the healing of small excisional and incisional wounds. Moreover, the findings demonstrate that the effect of single genetic deficiencies on wound healing may markedly differ among wound models. These conclusions have implications for the interpretation of the many prior studies that utilize a single model system to examine wound healing outcomes in genetically deficient mice.  相似文献   

12.
The effect of sepsis on wound healing.   总被引:5,自引:0,他引:5  
BACKGROUND: Normal wound healing is a regulated sequence of events that successfully restore tissue integrity. Previous studies have suggested that wound healing is impaired in a septic host. The current study examines the effect of sepsis on the inflammatory and proliferative phases of wound healing at a remote site of secondary injury. METHODS: Polyvinyl alcohol sponges, either inoculated with a standard dose of Pseudomonas aeruginosa (experimental) or soaked in normal saline (control), were placed subcutaneously in the anterior abdominal region of male B6D2F1 mice. Immediately following sponge placement, full thickness excisional dermal wounds were created on the dorsum. Wound healing was examined at days 3, 5, and 7 postinjury. The infiltration of neutrophils and macrophages into wounds was quantified, and the reepithelialization rate and collagen content were measured. RESULTS: Peripheral neutrophil counts were significantly elevated in infected mice, yet neutrophil content of the remote wound of infected animals was significantly reduced (5% of control, P < 0.05). Wounds of infected mice also showed a 30% reduction in the macrophage content. Wounds of infected animals exhibited delayed reepithelialization (76 +/- 3 vs 97 +/- 3% at day 5, P < 0.05) and collagen synthesis (55.3 +/- 9.5 vs 105 +/- 13.0 microg/wound, P < 0.05). CONCLUSION: Systemic infection alters both the inflammatory and the proliferative processes at remote sites of injury. Multiple factors seem likely to contribute to the increased incidence of wound complications in septic patients.  相似文献   

13.
Hox D3 expression in normal and impaired wound healing   总被引:2,自引:0,他引:2  
BACKGROUND: We have previously shown that Hox D3 and Hox B3 can promote angiogenesis. As angiogenesis is essential for wound healing, we examined expression of these genes in the vasculature following wounding in normal and genetically diabetic adult mice with impaired healing. METHODS: In situ hybridization was performed on tissues taken 0, 1, 4, 7, and 14 days following administration of linear wounds in wild-type and genetically diabetic mice. Expression of Hox D3 and Hox B3, angiogenesis, and synthesis of type I collagen were assessed in the wound. RESULTS: Hox B3 was expressed in endothelial cells (ECs) of both medium and small vessels in unwounded tissue, whereas little Hox D3 was detected in resting ECs. Hox D3 expression was significantly upregulated by 1 day after wounding in ECs of vessels immediately adjacent to the wound site, and expression was maintained for at least 7 days. In the diabetic mice, expression of Hox B3 was similar to that of wild-type mice. In contrast, expression of Hox D3 in ECs was significantly lower and delayed during wound repair in diabetic mice. In cultured microvascular ECs, Hox D3 selectively induced high levels of collagen I mRNA expression. Hox D3-deficient wounds of diabetic animals also displayed a reduction in expression and deposition of type I collagen. CONCLUSIONS: These results suggest that reduced angiogenesis and type I collagen in diabetic mice with impaired wound healing may be related to deficient Hox D3 expression, and restoring Hox D3 expression may enhance angiogenesis and wound repair.  相似文献   

14.
The role of iNOS in wound healing   总被引:7,自引:0,他引:7  
Shi HP  Most D  Efron DT  Tantry U  Fischel MH  Barbul A 《Surgery》2001,130(2):225-229
BACKGROUND: We have previously shown that the blockade of nitric oxide (NO) synthesis impairs wound healing, in particular collagen synthesis. Conversely, impaired wound healing is accompanied by decreased wound NO synthesis. Fibroblast collagen synthesis, proliferation, and fibroblast-mediated matrix contraction are critical to wound healing. We examined the wound healing-related phenotypic changes that are induced by the loss of inducible nitric oxide synthase (iNOS) gene function in fibroblasts. METHODS: Dermal fibroblasts were obtained from 8- to 12-week-old iNOS--knock out (KO; C57BL/Ai-[KO] Nos2 N5) and wild type mice by an explant technique and used after 1 to 3 passages. Proliferation ([(3)H]-thymidine incorporation) and collagen synthesis ([(3)H]-proline incorporation into collagenase-sensitive protein) were studied after stimulation with 10% fetal bovine serum. Matrix remodeling was assessed by the measurement of the contraction of fibroblast-populated collagen lattices. RESULTS: iNOS-KO fibroblasts proliferated more slowly, synthesized less collagen, and contracted fibroblast-populated collagen lattices more slowly than wild-type fibroblast. Collagen synthesis was restored to normal in KO fibroblasts in response to NO donors (s-nitroso-N-acetylpenicillamine). CONCLUSIONS: iNOS deficiency causes significant impairment in wound healing-related properties of fibroblasts, which suggests that NO plays an important role in wound healing.  相似文献   

15.
The healing of irradiated wounds has always been a central consideration in medical practice because radiation disrupts normal response to injury, leading to a protracted recovery period. The quest for clinically effective wound healing agents is important in the medical management of irradiated wounds. Therefore, the present study was conceptualized to investigate the effect of curcumin (natural yellow, diferuloylmethane), a major yellow pigment and an active component of turmeric on wound healing in mice exposed to whole-body gamma-radiation. A full-thickness wound was created on the dorsum of mice whole-body irradiated to 2, 4, 6, or 8 Gy. The progression of wound contraction was monitored periodically by capturing video images of the wound. The collagen, hexosamine, DNA, nitric oxide, and histological profiles were evaluated at various postirradiation days in mice treated and not treated with curcumin before exposure to 0 or 6 Gy. The whole-body exposure resulted in a dose-dependent delay in wound contraction and prolongation of wound healing time. Irradiation caused a significant reduction in collagen, hexosamine, DNA, and nitric oxide synthesis. Pretreatment with curcumin significantly enhanced the rate of wound contraction, decreased mean wound healing time, increased synthesis of collagen, hexosamine, DNA, and nitric oxide and improved fibroblast and vascular densities. This study demonstrates that curcumin pretreatment has a conducive effect on the irradiated wound and could be a substantial therapeutic strategy in initiating and supporting the cascade of tissue repair processes in irradiated wounds.  相似文献   

16.
Fractionated irradiation (IR) before or after surgery of malignant tumours causes a high frequency of wound healing complications. Our aim was to investigate the effect of curcumin (CUM) on the healing of deep excision wound of mice exposed to fractionated IR by mimicking clinical conditions. A full-thickness dermal excision wound was created on the shaved dorsum of mice that were orally administered or not with 100 mg of CUM per kilogram body weight before partial body exposure to 10, 20 or 40 Gy given as 2 Gy/day for 5, 10 or 20 days. The wound contraction was determined periodically by capturing video images of the wound from day 1 until complete healing of wounds. Fractionated IR caused a dose-dependent delay in the wound contraction and prolonged wound healing time, whereas CUM administration before fractionated IR caused a significant elevation in the wound contraction and reduced mean wound healing time. Fractionated IR reduced the synthesis of collagen, deoxyribonucleic acid (DNA) and nitric oxide (NO) at different post-IR times and treatment of mice with CUM before IR elevated the synthesis of collagen, DNA and NO significantly. Histological examination showed a reduction in the collagen deposition, fibroblast and vascular densities after fractionated IR, whereas CUM pre-treatment inhibited this decline significantly. Our study shows that CUM pre-treatment accelerated healing of irradiated wound and could be a substantial therapeutic strategy in the management of irradiated wounds.  相似文献   

17.
BACKGROUND: One of the leading causes of impaired wound healing is diabetes mellitus. In diabetic patients, a minor skin wound often leads to serious complications. Many experiments had demonstrated that the expression of platelet-derived growth factor (PDGF) and its receptor was decreased in wounds of healing-impaired diabetic mice, indicating that a certain expression level of PDGF is essential for normal repair. MATERIALS AND METHODS: The diabetic rats was induced by a single i.p. injection of streptozotocin and a 1.8 cm diameter full-thickness wound was made on each side of the rat mid-back. Then the rats were randomly divided into five groups, with eight animals in each group as follows: blank control, vehicle control, 3.5 microg PDGF-BB/cm(2) treatment group, 7 microg PDGF-BB/cm(2) treatment group and 14 microg PDGF-BB/cm(2) treatment group for either 7 or 14 consecutive days after wounding. Re-epithelialization area was measured by computerized planimetry, percentage wound closure and percentage wound contraction was calculated, granulation tissue and collagen formation was assessed by Masson trichrome, cell proliferation (proliferating cell nuclear antigen staining) and angiogenesis (Factor VIII related antigen staining) was assessed by immunohistological methods. RESULTS: PDGF-BB treatment improved healing quality, enhanced angiogenesis, cell proliferation and epithelialization, and formed thicker and more highly organized collagen fiber deposition in full-thickness excisional wound of diabetic rats. The effects of topically applied PDGF-BB were dose-dependent. CONCLUSIONS: PDGF-BB is an important future clinical tool, particularly for stimulating soft tissue repair in patients with an impaired capacity for wound healing.  相似文献   

18.
Chronic wounds affect 12–15% of patients with diabetes and are associated with a drastic decrease in their quality of life. Here, we demonstrate that purified mature naive B220+/CD19+/IgM+/IgD+ B cells improve healing of acute and diabetic murine wounds after a single topical application. B cell treatment significantly accelerated acute wound closure by 2–3 days in wild‐type mice and 5–6 days in obese diabetic mice. The treatment led to full closure in 43% of chronic diabetic wounds, as compared to only 5% in saline‐treated controls. Applying equivalent numbers of T cells or disrupted B cells failed to reproduce these effects, indicating that live B cells mediated pro‐healing responses. Topically applied B cell treatment was associated with significantly reduced scar size, increased collagen deposition and maturation, enhanced angiogenesis, and increased nerve growth into and under the healing wound. β‐III tubulin+ nerve endings in scars of wounds treated acutely with B cells showed increased relative expression of growth‐associated protein 43. The improved healing associated with B cell treatment was supported by significantly increased fibroblast proliferation and decreased apoptosis in the wound bed and edges, altered kinetics of neutrophil infiltration, as well as an increase in TGF‐β and a significant reduction in MMP2 expression in wound granulation tissue. Our findings indicate that the timeline and efficacy of wound healing can be experimentally manipulated through the direct application of mature, naive B cells, which effectively modify the balance of mature immune cell populations within the wound microenvironment and accelerate the healing process.  相似文献   

19.
Mactinin, a 31 kDa fragment from the amino-terminal end of alpha-actinin, is chemotactic for monocytes and can promote monocyte/macrophage maturation. Macrophages are essential for wound healing, in which they play key roles in debridement, angiogenesis, fibroblast proliferation, and collagen metabolism. We have previously determined that urokinase is necessary to form mactinin from extracellular alpha-actinin, which may be present at sites of inflammation as a result of cell movement. Thus, urokinase knockout mice are unable to form mactinin and therefore are an ideal model to study mactinin's effects on wound healing. Saline- and mactinin-treated wounds were analyzed in a subcutaneous sponge wound model in both wild-type and urokinase knockout mice. The wounded urokinase knockout mice had markedly decreased leukocyte infiltration compared with wounded wild-type mice. In addition, production of the proinflammatory cytokine, interleukin-12, and of collagen was also decreased in knockouts. Treatment of knockout mice with mactinin resulted in leukocyte infiltration numbers, interleukin-12 levels, and hydroxyproline measurements similar to those in wild-type mice. The results suggest that impaired wound healing in urokinase-deficient mice can be restored by administration of mactinin.  相似文献   

20.
Melatonin usage is increasing gradually, but reports of its effects on wound healing are inconsistent. It has been shown that the hormone is synthesized in and secreted from the gastrointestinal system independently of the pineal gland. We have investigated, by means of a comparative study on the healing of incision and anastomotic wounds, whether melatonin has an effect on wound healing independent of the pineal gland. Rats were divided in five groups (n = 10), all of which were subjected to small intestine anastomosis. The first group (control) was otherwise untreated. Exogenous melatonin was given to the rats in second group. The calvaria was opened then closed in the third group (sham operated), whereas the fourth group was pinealectomized and the fifth group were pinealectomized and then treated with melatonin. After anastomosis bursting pressures and incision wound breaking strength were measured on the 7th postoperative day, tissue hydroxyproline levels were determined, and histopathological investigation was performed. It was found that while collagen deposition and epithelization increased concurrently in incision wounds after pinealectomy, only collagen deposition increased at the anastomosis line. Exogenous melatonin decreased collagen synthesis and epithelium proliferation and had negative effects on wound healing in both normal and pinealectomized rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号