首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Effects of fasting on the growth hormone (GH)--growth hormone receptor (GHR)-insulin-like growth factor-I (IGF-I) axis were characterized in seawater-acclimated tilapia (Oreochromis mossambicus). Fasting for 4 weeks resulted in significant reductions in body weight and specific growth rate. Plasma GH and pituitary GH mRNA levels were significantly elevated in fasted fish, whereas significant reductions were observed in plasma IGF-I and hepatic IGF-I mRNA levels. There was a significant negative correlation between plasma levels of GH and IGF-I in the fasted fish. No effect of fasting was observed on hepatic GHR mRNA levels. Plasma glucose levels were reduced significantly in fasted fish. The fact that fasting elicited increases in GH and decreases in IGF-I production without affecting GHR expression indicates a possible development of GH resistance.  相似文献   

2.
To examine the various mechanisms involved in compensatory growth in Oncorhynchus mykiss, an experimental protocol involving 1, 2 or 4 weeks of fasting followed by a single ad libitum re-feeding period of 4 weeks was designed for alevins. Morphological parameters including body weight, specific growth rates (SGR), and coefficient factor decreased significantly during fasting. Re-feeding accelerated growth and restored final body weight in groups previously fasted. Plasma insulin and glucose decreased in fasting, while normal levels were restored in all re-fed groups. The expression profile of insulin-like growth factors (IGFs) in liver and of the main muscle growth regulators in white muscle was examined using real-time quantitative RT-PCR. Fasting decreased the expression of IGF-I mRNA in both tissues, while re-feeding restored expression to control values. In contrast, IGF-II expression was not affected by any treatment in either tissue. Insulin- and IGF-I-binding assays in partial semi-purifications (of soluble proteins) in white skeletal muscle showed that insulin binding was not affected by either fasting or re-feeding, whereas fasting up-regulated IGF-I binding. The expression of IGFRIb mRNA in white skeletal muscle also increased with fasting, while IGFRIa increased with re-feeding, indicating that the two receptor isoforms are differentially regulated. The mRNA expression of myogenic regulator factors and fibroblast growth factors (FGFs) was not affected throughout the experiment, except for myogenin, which first decreased and then showed a rebound effect after 4 weeks of fasting. Myostatin mRNA expression did not change during fasting, although re-feeding caused a significant decrease. In conclusion, re-feeding of previously fasted trout induced compensatory growth. The differential regulation in muscle expression of IGF-I, IGF-I receptors, and myostatin indicates their contribution to this compensatory mechanism.  相似文献   

3.
4.
Nutritional factors influence regulation of the growth hormone (GH) and the insulin-like growth factor (IGF) system in fish, but so far there are no published studies describing how single indispensable amino acids influence these systems. Therefore, the present study aimed to test whether lysine (Lys) intake at low (LL=2.85 g/16 gN), medium (ML=4.91 g/16 gN) and high levels (HL=9.19 g/16 gN) affected the expression of genes related to the GH-IGF system (i.e. GH receptor, GH-R, IGF-I, IGF-II, IGF binding protein 1, IGFBP-1, IGF-I receptor IGF-IR) in Atlantic salmon during seawater growth phase. Salmon fed the HL diet significantly up-regulated hepatic IGF-I mRNA level by a factor of 2.2 as compared to those with medium Lys intake. In addition a significant up-regulation of 2.7-fold in muscle IGF-II mRNA was present. Low Lys intake decreased the nitrogen deposition and muscle protein accretion in fish and significantly down-regulated hepatic IGFBP-1 as well as muscle GH-R and IGF-II, as compared to those fed the ML diet. mRNA of IGF-IR on the other hand was not affected by Lys intake. High Lys intake resulted in a 7-fold up-regulation of muscle IGF-II mRNA level as compared to low Lys intake, and thus might be an important local anabolic regulator in fast muscle tissue. The single indispensable amino acid Lys indeed affected signalling through the genes of IGF-I, IGFBP-1 in hepatic tissue and GH-R, IGF-II in fast muscle in Atlantic salmon. Concomitantly the higher Lys intake increased nitrogen deposition to a certain level.  相似文献   

5.
Feeding time is a major synchronizer of many physiological rhythms in many organisms. Alteration in the nutritional status, specifically fasting, also affects the secretion rhythms of growth hormone (GH) and insulin-like growth factor-I (IGF-I). In this study, we investigated whether the expression patterns for the mRNAs of GH, prolactin (PRL) and somatolactin (SL) in the pituitary gland, and insulin-like growth factor I and II (IGF-I and IGF-II) in the liver of juvenile rabbitfish (Siganus guttatus) follow a rhythm according to feeding time and whether these hormone rhythms changes with starvation. Hormone mRNA levels were determined by real time PCR. The daily expression pattern for the mRNAs of GH, PRL and SL was not altered whether food was given in the morning (10:00 h) or in the afternoon (15:00 h). The daily GH mRNA expression pattern, however, was affected when food was not available for 3 days. In contrast, the daily expression pattern for IGF-I mRNA reaches its peak at roughly 5-6h after feeding. This pattern, however, was not observed with IGF-II mRNA. During 15-day starvation, GH mRNA levels in starved fish were significantly higher than the control fish starting on the 9th day of starvation until day 15. The levels returned to normal after re-feeding. In contrast to GH, PRL mRNA levels in starved fish were significantly lower than the control group starting on the 6th day of starvation until 3 days after re-feeding. SL mRNA levels were not significantly different between the control and starved group at anytime during the experiment. Both IGF-I and IGF-II mRNA levels in starved group were significantly higher than the control fish on the 3rd and 6th day of starvation. mRNA levels of both IGF-I and II in the starved fish decreased starting on the 9th day of starvation. While IGF-I mRNA levels in the starved group continued to decrease as starvation progressed, IGF-II mRNA levels were not significantly different from the control during the rest of the starvation period. The results indicate that aside from GH and IGF-I, PRL and IGF-II are likewise involved in starvation in rabbitfish.  相似文献   

6.
We investigated in vitro effects of insulin-like growth factors (IGF-I and -II) on growth hormone (GH) and prolactin (PRL) release and gene expression in euryhaline tilapia, Oreochromis mossambicus. Pituitaries were removed from freshwater-acclimated adult males and incubated for 2-24h in the presence of human IGF-I or -II at doses ranging from 1-1000 ng/ml (0.13-130 nM). IGF-I at concentrations higher than 10 ng/ml and IGF-II higher than 100 ng/ml significantly inhibited GH release after 8, 16, and 24h. No effect of IGFs was seen during the first 4h of incubation. IGFs at the same concentrations also significantly attenuated GH gene expression after 24h, although no effect was seen at 2h. By contrast, PRL(188) release was stimulated significantly and in a dose-related manner by IGF-I at concentrations higher than 10 ng/ml and by IGF-II at concentrations higher than 100 ng/ml within 2h. No stimulation was observed after 4h. Similarly, both IGFs at concentrations higher than 10 ng/ml increased PRL(177) release within 2h. However, no significant effect of IGF-I or -II was observed on mRNA levels of both PRLs after 2 and 24h at all concentrations examined. These results clearly indicate differential regulation of GH and PRL release and synthesis by IGFs in the tilapia pituitary, i.e., rapid-acting, stimulatory effects of IGFs on PRL release and slow-acting, inhibitory effects on GH release and synthesis.  相似文献   

7.
OBJECTIVE: The aim was to study the relationship between growth hormone (GH) and insulin-like growth factor-I (IGF-I) in critically ill patients. DESIGN: Case-control study of critically ill patients admitted to the intensive care unit was carried out. PATIENTS: Six critically ill patients (51-78 years) who required ventilation and parenteral nutrition and six age, weight, height, and sex-matched healthy adults were studied. MEASUREMENTS: The patients and controls were studied for two 24-hour periods; the patients before and after starting parenteral feeding, and the controls during a 36-hour fast and when taking meals equivalent in calories and protein to the patients' parenteral feed. Serum GH was measured at 20-minute intervals and analysed by a pulse detection algorithm (Pulsar) and Fourier transformation. IGF-I was measured at 0, 12, and 24 hours. RESULTS: Patients had low serum IGF-I levels compared with controls, whether fasted or fed, despite having mean GH levels similar to fasted controls. For fasted patients vs fasted controls the mean (+/- 1 SD) GH levels were 4.5 +/- 2.0 vs 4.0 +/- 2.4 mU/l respectively, and IGF-I levels at the end of the fast were 0.17 +/- 0.11 vs 0.78 +/- 0.29 U/ml (P = 0.003). Patients showed elevated baseline GH levels compared with controls when fasted and during parenteral feeding (patients vs controls fasted 3.1 +/- 1.9 vs 0.8 +/- 0.5 mU/l, P = 0.01; patients vs controls fed 4.2 +/- 4.5 vs 0.5 +/- 0.04 mU/l, P = 0.028). Fourier transformation confirmed oscillatory GH levels in the controls, fasted or fed, but this activity was attenuated in the patients. Parenteral feeding had no effect on the GH profiles or IGF-I levels of patients, but controls showed greater mean GH levels during their fast than when fed. CONCLUSIONS: We have demonstrated that critically ill patients have low IGF-I levels associated with augmented baseline GH levels which show reduced oscillatory activity. The results would be compatible with the hypothesis that there is an adaptive change in critically ill patients away from the indirect effects of GH (stimulation of IGF-I production and anabolism) and toward the direct effects (lipolysis and insulin antagonism) which increase the availability of energy substrates. The pattern of GH levels seen in our patients may be important in this adaptation.  相似文献   

8.
In this study, we detected the expression of IGF-I, IGF-II, IGF-IR, IGF-IIR, and IGFBP-3 mRNA at 50 (E50), 70 (E70), and 90 (E90) days of gestation, and 1 (D1), 20 (D20), 70 (D70), 120 (D120), and 180 (D180) days of age in the longissimus dorsi (LD) and the semitendinosus (ST) of pigs from a Yorkshire boar × Erhualian sow (YE) cross as well as a Erhualian boar × Yorkshire sow (EY) cross. We found that the expression of IGF-I and IGF-II mRNA in skeletal muscle tissues differed based on developmental age and reciprocal cross type (P < 0.05). The expression of IGF-I mRNA exhibited a fluctuant ascending trend. In contrast, IGF-II showed a fluctuant descending trend after birth. The levels of IGF-IR mRNA were higher before birth compared with after birth except for the ST of EY pigs at D120 (P < 0.05). The expression of IGF-IIR and IGFBP-3 mRNA remarkably changed with age and reciprocal cross type (P < 0.05). IGF-I, IGF-II, and IGFBP-3 mRNA were positively correlated with IGF-IR from 50E to 180D. These data suggest that the expression of IGF-system genes exhibits specific developmental patterns in the skeletal muscle tissues of pigs from reciprocal crosses at different developmental stages and may show linked expression during certain periods of development. Our results may provide a valuable resource for the molecular breeding of pigs.  相似文献   

9.
We investigated the influence of maternal dietary restriction between days 28 and 80 of gestation followed by re-feeding to the intake of well-fed ewes up to 140 days of gestation (term is 147 days) in sheep, on expression of mRNA for insulin-like growth factor (IGF)-I, IGF-II and growth hormone receptor (GHR) in fetal liver and skeletal muscle. Singleton bearing ewes either consumed 3.2-3.8 MJ/day of metabolisable energy (ME) (i.e. nutrient restricted - approximately 60% of ME requirements, taking into account requirements for both ewe maintenance and growth of the conceptus) or 8.7-9.9 MJ/day (i.e. well fed - approximately 150% of ME requirements) between days 28 and 80 of gestation. All ewes were then well fed (150% of ME requirements) up to day 140 of gestation and consumed 8-10.9 MJ/day. At days 80 and 140 of gestation, five ewes were sampled from each group and fetal tissues taken. There was no difference in fetal body weight or liver weights between groups at either sampling date, or skeletal muscle (quadriceps) weight at 140 days. IGF-I mRNA abundance was lower in livers of nutrient-restricted fetuses at day 80 of gestation (nutrient restricted 2.35; well fed 3.70 arbitrary units), but was higher than well-fed fetuses at day 140 of gestation, after 60 days of re-feeding (restricted/re-fed 4.27; well fed 2.83;s.e.d. 0.98 arbitrary units, P=0.061 for dietxage interaction). IGF-II mRNA abundance was consistently higher in livers of nutrient-restricted fetuses (80 days: nutrient restricted 7.78; well fed 5.91; 140 days: restricted/re-fed 7.23; well fed 6.01;s.e.d. 1.09 arbitrary units, P=0.061 for diet). Nutrient restriction had no effect on hepatic GHR mRNA abundance, but re-feeding of previously nutrient-restricted fetuses increased GHR mRNA compared with continuously well-fed fetuses (80 days: nutrient restricted 70.6; well fed 75.1; 140 days: restricted/re-fed 115.7; well fed 89.4;s.e.d. 10.13 arbitrary units, P=0.047 for dietxage interaction). In fetal skeletal muscle, IGF-I mRNA abundance was not influenced by maternal nutrition and decreased with gestation age (P<0.01). IGF-II mRNA abundance was higher in skeletal muscle of nutrient-restricted fetuses compared with well-fed fetuses at day 80 of gestation (nutrient restricted 16.72; well fed 10.53 arbitrary units), but was lower than well-fed fetuses after 60 days of re-feeding (restricted/re-fed 7.77; well fed 13.72;s.e.d. 1.98 arbitrary units, P<0.001 for dietxage interaction). There was no effect of maternal nutrition or gestation age on fetal skeletal muscle GHR expression. In conclusion, maternal nutrient restriction in early to mid gestation with re-feeding thereafter results in alterations in hepatic and skeletal muscle expression of IGF-I, IGF-II and/or GHR in the fetus which may subsequently relate to altered organ and tissue function.  相似文献   

10.
11.
OBJECTIVE The pathophysiological mechanisms underlying the failure of catch up-growth in children with short stature after Intrauterine growth retardation (IUGR) remain obscure. Since GH secretion disturbances might play a role in the growth retardation of these children we have Investigated various aspects of the GH/IGF axis. DESIGN Cross-sectional study in one group of patients. PATIENTS Forty prepubertal children (15 glrls/25 boys; mean age (range) 7·5 years (3·4-10·8)) with short stature (height below the third centile) after IUGR, defined as a birth length below the third centile for gestational age, were studied. MEASUREMENTS GH secretion was determined by a 24-hour plasma GH profile (sampling every 20 minutes) and, on a separate occasion, by a standard arginine provocation test (ATT). Plasma IGF-I and IGF-II levels were measured at the start of the OH profile. Urine was collected to measure urinary OH levels. Plasma and urinary OH were determined by double antibody RIA. IGF-I and IGF-II were determined by specific RIA after acid chromatography. The 24-hour OH profiles were analysed using Pulsar. RESULTS Endogenous GH secretion was similar for boys and girls. Boys had significantly lower mean GH levels compared to healthy controls. Forty per cent of the children met our criterla for a normal 24-hour GH profile (group A; n = 16) and 60% (n = 24) did not. We subdivided these 24 children into two groups: group B (n = 14) (children with either mean GH levels less than controls but with at least one spontaneous GH peak above 20 μ/I and children with normal mean GH levels but with no OH peak above 20 mull (subnormal 24-hour GH profile)) and group C (n = 10) (children with mean GH levels less than controls and no OH peak above 20 μ/l (low 24-hour GH profile)). The GH secretory abnormalities were due to a decrease in pulse amplitude, not in pulse frequency. Mean (SD) maximal GH response during ATT was 22·3 (12·1) μ/I. Nineteen children (47·5%) had a maximal OH value <20mU/I. Moderate, but significant, correlations were found between several 24-hour GH profile characteristics and the maximal OH response during All (r = 0·31-0·35; P<0·05). Mean (SD) overnight urinary GH excretion was 3·8 (2·1) and 4·4 (3·5) μU/night for boys and girls, respectively. Compared to healthy schoolchildren, overnight urinary GH was lower in boys, but not in girls. Mean (SD) IGF-I and IGF-II SDS levels for chronological age were ?0·88 (1·40) and ?0·64 (1·48), respectively. Plasma IGF-I and IGF-II levels were significantly reduced compared to controls. Height SDSCA or height velocity SDSCA did not correlate with either spontaneous or stimulated OH secretion, urinary OH excretion or plasma IGF-I or IGF-II levels. CONCLUSIONS Our study indicates that 50-60% of children with short stature after Intrauterine growth retardation have 24-hour GH profile abnormalities and/or subnormal responses to arginine provocation, while mean plasma IGF-I and IGF-II levels are significantly reduced, indicating GH Insufficiency. Urinary GH excretion is lower in boys, but not in girls. The precise mechanism of the failure to catch up growth needs further elucidation. It seems justified to start clinical trials in order to investigate whether treatment with exogenous GH might be beneficial for these Children.  相似文献   

12.
Growth hormone regulates numerous processes in vertebrates including growth promotion and lipid mobilization. During periods of food deprivation, growth is arrested yet lipid depletion is promoted. In this study, we used rainbow trout on different nutritional regimens to examine the regulation of growth hormone (GH)-insulin-like growth factor-I (IGF-I) system elements in order to resolve the growth-promoting and lipid catabolic actions of GH. Fish fasted for 2 or 6 weeks displayed significantly reduced growth compared to their fed counterparts despite elevated plasma GH, while refeeding for 2 weeks following 4 weeks of fasting partially restored growth and lowered plasma GH. Fish fasted for 6 weeks also exhausted their mesenteric adipose tissue reserves. Sensitivity to GH in the liver was reduced in fasting fish as evidenced by reduced expression of GH receptor type 1 (GHR 1) and GHR 2 mRNAs and by reduced (125)I-GH binding capacity. Expression of GHR 1 and GHR 2 mRNAs also was reduced in the gill of fasted fish. In adipose tissue, however, sensitivity to GH, as indicated by GHR 1 expression and by (125)I-GH binding capacity, increased after 6 weeks of fasting in concert with the observed lipid depletion. Fasting-associated growth retardation was accompanied by reduced expression of total IGF-I mRNA in the liver, adipose and gill, and by reduced plasma levels of IGF-I. Sensitivity to IGF-I was reduced in the gill of fasted fish as indicated by reduced expression of type 1 IGF-I receptor (IGFR 1A and IGFR 1B) mRNAs. By contrast, fasting did not affect expression of IGFR 1 mRNAs or (125)I-IGF-I binding in skeletal muscle and increased expression of IGFR 1 mRNAs and (125)I-IGF-I binding in cardiac muscle. These results indicate that nutritional state differentially regulates GH-IGF-I system components in a tissue-specific manner and that such alterations disable the growth-promoting actions of GH and promote the lipid-mobilizing actions of the hormone.  相似文献   

13.
Primary culture of gilthead sea bream skeletal muscle cells was used to examine the effects of growth hormone (GH) and insulin-like growth factors (IGFs) in fish muscle proliferation and growth. Proliferation was measured as the percentage of positive cells expressing the proliferating cell nuclear antigen (PCNA) analyzed by immunocytochemistry. First, the effects of GH from two different origins (mammals and fish) were tested. GH from human (hGH) did not stimulate proliferation except at 3 h at the dose of 1 nM. On the other hand, sea bream GH (sbGH) significantly stimulated proliferation, without differences between the three incubation times studied (3, 6, and 18 h), at the dose of 10 nM, demonstrating that the homologous hormone has a more potent effect. In addition, the results with the IGFs indicated that both peptides, IGF-I and IGF-II significantly stimulated proliferation of sea bream myocytes, but IGF-II showed higher effects than IGF-I, and even than those of sbGH. Finally, the combinations of peptide treatments (GHs with IGFs) indicated that IGF-I has higher effects on proliferation when it is combined with GHs compared with IGF-I alone, while IGF-II has similar effects alone or combined with either GH. These results indicate that IGF-II may have an important role on muscle proliferation that appears to be independent of GH. On the contrary, IGF-I seems to play a synergistic action with GH stimulating myocyte proliferation.  相似文献   

14.
Using green fluorescent protein to study intracellular signalling   总被引:6,自引:0,他引:6  
Insulin-like growth factors (IGFs) stimulate growth rate in a number of animal species and are likely to contribute to genetic variations of growth potential. The present study was designed to link levels of IGF-I and IGF-II mRNA and peptides with growth rate in divergently selected genotypes of chickens with high (HG) or low (LG) growth rates. Circulating IGF-I and -II and hepatic mRNA levels were measured under ad libitum feeding conditions from 1 to 12 weeks of age, and at 6 weeks of age under three different nutritional conditions (fed, fasted for 16 or 48 h, re-fed for 4 or 24 h after a 48-h fast). IGF binding proteins (IGFBPs) were also measured. Circulating IGFs increased with age and were higher in HG chickens from 1 to 6 weeks. They decreased with fasting and only IGF-II was fully restored after 24 h of re-feeding, while IGF-I remained low. A significant decrease in steady state IGF-I mRNA levels was also observed with fasting. Across the nutritional study, hepatic IGF-I mRNAs were significantly higher in HG chickens. Variations of IGF-II mRNA levels with nutritional state or genotype exhibited a similar trend. IGFBP (28, 34 and 40 kDa) levels increased with age, while only faint differences were observed between genotypes. IGFBP-28 transiently increased with fasting and was inversely related to blood glucose and insulin levels, suggesting that it is equivalent to mammalian IGFBP-1. In HG chickens, IGFBP-28 and IGFBP-34 levels decreased markedly following re-feeding. Therefore, high and low growth rates were respectively associated with high and low IGF-I and -II levels, supporting the hypothesis of a stimulatory role for both IGFs during post-hatching growth of chickens.  相似文献   

15.
Total and free insulin-like growth factor-I (IGF-I) levels were quantified in plasma from growth hormone (GH)-treated and fasted coho salmon. Total IGF-I was measured by radioimmunoassay after acid-ethanol extraction and free IGF-I was separated from protein-bound IGF-I using ultrafiltration by centrifugation. Total and free IGF-I increased in plasma after GH treatment and decreased after fasting. The level of free IGF-I, however, was maintained at approximately 0.3% in both experiments. Unsaturated binding activity in plasma for IGF-I was assessed by incubation with (125)I-recombinant salmon IGF-I ((125)I-sIGF-I). Although there was no difference in binding activity between GH-treated and control fish, fasted fish showed higher binding activity than did fed fish, suggesting induction of unsaturated binding protein by fasting. IGF-binding protein (IGFBP) bands were observed in plasma of coho salmon by Western ligand blotting using (125)I-sIGF-I. A low-molecular-weight (22 kDa) band was clear in fasted fish but not detectable in fed fish. The IGFBP band, which has molecular weight similar to that of human IGFBP-3 (41 kDa), was more intense in GH-treated fish than in controls. The molecular distribution of IGF-I in plasma was examined by gel filtration under neutral conditions. Most IGF-I was eluted around 40 kDa. This result suggests that the major form of bound IGF-I in the circulation of coho salmon may be in a 40-kDa binary complex rather than in a 150-kDa ternary complex, as in mammals.  相似文献   

16.
OBJECTIVE: Clinical acromegaly is characterized by elevated GH secretion in the presence of high circulating IGF-I levels. We hypothesized that the physiological IGF-I/GH negative feedback loop may be reset in somatotroph adenomas, specifically in terms of the level of expression of these receptors or mutations of the GH receptor (GH-R) in such tumours. METHODS: We therefore investigated the full coding sequence of the GH-R in a series of somatotroph and other pituitary adenomas. We also investigated the mRNA expression of these putative feedback receptors in a series of pituitary adenomas and normal pituitary tissue, and their protein expression by immunostaining. Real-time RT-PCR assay was used for the quantification of the type 1 IGF receptor (IGF-R) and GH receptor (GH-R) mRNA, and sequence analysis was performed on the coding region of the GH-R gene. RESULTS: No somatic mutations of the GH-R mRNA were detected in 18 GH-secreting tumours or two nonfunctioning pituitary adenomas (NFPAs). However, the levels of GH-R mRNA were significantly lower in both somatotroph tumours and NFPAs compared to the normal pituitary (P < 0.05 for both). Immunostaining for GH-R also showed significantly less GH-R expression in somatotroph adenomas compared to normal pituitary tissue (P < 0.0001). IGF-R mRNA levels were significantly lower in somatotroph tumours compared to normal pituitary (P = 0.005), and trended lower in corticotroph tumours (P = 0.07), while the other tumour types showed no significant difference from normal pituitary. Immunostaining for IGF-R also showed less IGF-R protein in the somatotroph adenomas compared to the normal pituitary tissue (P < 0.01). CONCLUSIONS: Our findings suggest that decreased feedback inhibition of GH because of somatic mutations of the coding region of the GH-R are unlikely to be a common factor in the pathogenesis of these tumours. Nevertheless, decreased expression of the GH-R and of IGF-R in somatotroph tumours (both at the mRNA and protein level) may, at least in part, help explain the continuous secretion of GH from the tumour despite the high circulating levels of IGF-I and GH.  相似文献   

17.
Effects of 17 alpha-methyltestosterone (MT) treatment and environmental salinity on the growth hormone (GH)/insulin-like growth factor (IGF) axis were examined in the euryhaline tilapia, Oreochromis mossambicus. Yolk-sac fry were collected from brood stock in fresh water (FW). After yolk-sac absorption, they were assigned randomly to 1 of 4 groups: FW, MT treatment in FW, SW, and MT treatment in seawater (SW). After 147 days, FW controls had the lowest levels of GH mRNA followed by FW fish treated with MT and SW control fish. Seawater fish fed with a diet containing MT, which grew the fastest, had significantly higher levels of GH mRNA than all the other groups. A significant correlation was observed between GH mRNA and the size of the individual fish. By contrast, plasma GH levels did not vary significantly among the groups. Pituitary GH mRNA levels, plasma IGF-I levels, and fish size varied in a correlated pattern, i.e., SW+MT>FW+MT=SW control>FW control. The tilapia pituitary produces two prolactins (PRLs), PRL(177) and PRL(188). Prolactin(177), but not PRL(188), exhibits growth-promoting actions in FW tilapia. Pituitary mRNA levels of both PRLs were significantly higher in fish reared in FW than those reared in SW. Treatment with MT significantly increased mRNA levels of both PRLs in FW, but had no effect on SW fish. No correlation was seen between plasma PRL levels and growth or between PRL mRNA levels and growth. These results indicate that SW rearing and MT treatment stimulate the GH/IGF-I axis, and suggest that pituitary GH mRNA at this stage of development is a better indicator of growth than plasma levels of GH and IGF-I.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号