首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary: Assembly of major histocompatibility complex (MHC) class I molecules in the endoplasmic reticulum is a highly coordinated process that results in abundant class I/peptide complexes at the cell surface for recognition by CD8+ T cells and natural killer cells. During the assembly process, a number of chaperones and accessory molecules, such as transporter associated with antigen processing, tapasin, ER60, and calreticulin, assist newly synthesized class I molecules to facilitate loading of antigenic peptides and to optimize the repertoire of surface class I/peptide complexes. This review focuses on the relative importance of these accessory molecules for CD8+ T‐cell responses in vivo and discusses reasons that may help explain why some CD8+ T‐cell responses develop normally in mice deficient in components of class I assembly, despite impaired antigen presentation.  相似文献   

2.
Summary: Major histocompatibility complex (MHC) class I complexes present peptides from both self and foreign intracellular proteins on the surface of most nucleated cells. The assembled heterotrimeric complexes consist of a polymorphic glycosylated heavy chain, non‐polymorphic β2 microglobulin, and a peptide of typically nine amino acids in length. Assembly of the class I complexes occurs in the endoplasmic reticulum and is assisted by a number of chaperone molecules. A multimolecular unit termed the peptide‐loading complex (PLC) is integral to this process. The PLC contains a peptide transporter (transporter associated with antigen processing), a thiooxido‐reductase (ERp57), a glycoprotein chaperone (calreticulin), and tapasin, a class I‐specific chaperone. We suggest that class I assembly involves a process of optimization where the peptide cargo of the complex is edited by the PLC. Furthermore, this selective peptide loading is biased toward peptides that have a longer off‐rate from the assembled complex. We suggest that tapasin is the key chaperone that directs this action of the PLC with secondary contributions from calreticulin and possibly ERp57. We provide a framework model for how this may operate at the molecular level and draw parallels with the proposed mechanism of action of human leukocyte antigen‐DM for MHC class II complex optimization.  相似文献   

3.
Summary: In antigen‐presenting cells (APCs), loading of major histocompatibility complex class II (MHC II) molecules with peptides is regulated by invariant chain (Ii), which blocks MHC II antigen‐binding sites in pre‐endosomal compartments. Several molecules then act upon MHC II molecules in endosomes to facilitate peptide loading: Ii‐degrading proteases, the peptide exchange factor, human leukocyte antigen‐DM (HLA‐DM), and its modulator, HLA‐DO (DO). Here, we review our findings arguing that DM stabilizes a globally altered conformation of the antigen‐binding groove by binding to a lateral surface of the MHC II molecule. Our data imply changes in the interactions between specificity pockets and peptide side chains, complementing data from others that suggest DM affects hydrogen bonds. Selective weakening of peptide/MHC interactions allows DM to alter the peptide repertoire. We also review our studies in cells that highlight the ability of several factors to modulate surface expression of MHC II molecules via post‐Golgi mechanisms; these factors include MHC class II‐associated Ii peptides (CLIP), DM, and microbial products that modulate MHC II traffic from endosomes to the plasma membrane. In this context, we discuss possible mechanisms by which the association of some MHC II alleles with autoimmune diseases may be linked to their low CLIP affinity.  相似文献   

4.
Processing of exogenous hepatitis B surface antigen (HBsAg) particles in an endolysosomal compartment generates peptides that bind to the major histocompatibility complex (MHC) class I molecule Ld and are presented to CD8+ cytotoxic T lymphocytes. Surface-associated ‘empty’ MHC class I molecules associated neither with peptide, nor with β2-microglobulin (β2m) are involved in this alternative processing pathway of exogenous antigen for MHC class I-restricted peptide presentation. Here, we demonstrate that internalization of exogenous β2m is required for endolysosomal generation of presentation-competent, trimeric Ld molecules in cells pulsed with exogenous HBsAg. These data point to a role of endocytosed exogenous β2m in the endolysosomal assembly of MHC class I molecules that present peptides from endosomally processed, exogenous antigen.  相似文献   

5.
Tapasin is disulfide linked to ERp57 within the peptide loading complex. In cell‐free assays, a soluble variant of the tapasin/ERp57 dimer recruits MHC class I molecules and promotes peptide binding to them, whereas soluble tapasin alone does not. Here we show that within cells, tapasin conjugation with ERp57 is as critical as its integration into the membrane for efficient MHC class I assembly, surface expression, and Ag presentation to CD8+ T cells. Elimination of both of these properties severely compromises tapasin function, in keeping with predictions from in vitro studies.  相似文献   

6.
In this report, we demonstrate stimulation of T cell receptor (TCR) transgenic CD8 T cells by isolated major histocompatibility complex (MHC) class I H-2Ld complexes and antigenic peptide. This is the first demonstration of CD8 T cells activated by MHC and antigenic peptide in the absence of antigen priming. Furthermore, isolated MHC and a potent peptide antigen can stimulate phenotypically naive CD44? T cells to become CTL effectors and to produce interleukin-2 in nanogram per milliliter amounts. These results demonstrate that particular TCR antigen pairs may overcome the need for specialized antigen-presenting cells and have implications for mechanisms of autoimmunity and tolerance induction.  相似文献   

7.
Major histocompatibility complex (MHC) class II molecules present antigenic peptides derived from engulfed exogenous proteins to CD4+ T cells. Exogenous antigens are processed in mature endosomes and lysosomes where acidic proteases reside and peptide‐binding to class II alleles is favoured. Hence, maintenance of the microenvironment within these organelles is probably central to efficient MHC class II‐mediated antigen presentation. Lysosome‐associated membrane proteins such as LAMP‐2 reside in mature endosomes and lysosomes, yet their role in exogenous antigen presentation pathways remains untested. In this study, human B cells lacking LAMP‐2 were examined for changes in MHC class II‐restricted antigen presentation. MHC class II presentation of exogenous antigen and peptides to CD4+ T cells was impaired in the LAMP‐2‐deficient B cells. Peptide‐binding to MHC class II on LAMP‐2‐deficient B cells was reduced at physiological pH compared with wild‐type cells. However, peptide‐binding and class II‐restricted antigen presentation were restored by incubation of LAMP‐2‐negative B cells at acidic pH, suggesting that efficient loading of exogenous epitopes by MHC class II molecules is dependent upon LAMP‐2 expression in B cells. Interestingly, class II presentation of an epitope derived from an endogenous transmembrane protein was detected using LAMP‐2‐deficient B cells. Consequently, LAMP‐2 may control the repertoire of peptides displayed by MHC class II molecules on B cells and influence the balance between endogenous and exogenous antigen presentation.  相似文献   

8.
Major histocompatibility complex (MHC) class II molecules are expressed by antigen-presenting cells and stimulate CD4+ T cells, which initiate humoral immune responses. Over the past decade, interest has developed to therapeutically impact the peptides to be exposed to CD4+ T cells. Structurally diverse small molecules have been discovered that act on the endogenous peptide exchanger HLA-DM by different mechanisms. Exogenously delivered peptides are highly susceptible to proteolytic cleavage in vivo; however, it is only when successfully incorporated into stable MHC II–peptide complexes that these peptides can induce an immune response. Many of the small molecules so far discovered have highlighted the molecular interactions mediating the formation of MHC II–peptide complexes. As potential drugs, these small molecules open new therapeutic approaches to modulate MHC II antigen presentation pathways and influence the quality and specificity of immune responses. This review briefly introduces how CD4+ T cells recognize antigen when displayed by MHC class II molecules, as well as MHC class II–peptide-loading pathways, structural basis of peptide binding and stabilization of the peptide–MHC complexes. We discuss the concept of MHC-loading enhancers, how they could modulate immune responses and how these molecules have been identified. Finally, we suggest mechanisms whereby MHC-loading enhancers could act upon MHC class II molecules.  相似文献   

9.
We used a newly generated T‐cell receptor mimic monoclonal antibody (TCRm MAb) that recognizes a known nonself immunodominant peptide epitope from West Nile virus (WNV) NS4B protein to investigate epitope presentation after virus infection in C57BL/6 mice. Previous studies suggested that peptides of different length, either SSVWNATTAI (10‐mer) or SSVWNATTA (9‐mer) in complex with class I MHC antigen H‐2Db, were immunodominant after WNV infection. Our data establish that both peptides are presented on the cell surface after WNV infection and that CD8+ T cells can detect 10‐ and 9‐mer length variants similarly. This result varies from the idea that a given T‐cell receptor (TCR) prefers a single peptide length bound to its cognate class I MHC. In separate WNV infection studies with the TCRm MAb, we show that in vivo the 10‐mer was presented on the surface of uninfected and infected CD8α+CD11c+ dendritic cells, which suggests the use of direct and cross‐presentation pathways. In contrast, CD11b+CD11c? cells bound the TCRm MAb only when they were infected. Our study demonstrates that TCR recognition of peptides is not limited to certain peptide lengths and that TCRm MAbs can be used to dissect the cell‐type specific mechanisms of antigen presentation in vivo.  相似文献   

10.
As a preliminary step towards the use of cell surface single-chain class I major histocompatibility complex (MHC) molecules as T cell immunogens, we have engineered a recombinant gene encoding a full-length cell surface single-chain version of the H-2Dd class I MHC molecule (SCβDdm) which has β2-microglobulin (β2m) covalently linked to the amino terminus of a full-length H-2Dd heavy chain via a peptide spacer. The single-chain protein is correctly folded and stably expressed on the surface of transfected L cells. It can present an antigenic peptide to an H-2Dd-restricted antigen-specific T cell hybridoma. When expressed in peptide-transport-deficient cells, SCβDdm can be stabilized and pulsed for antigen presentation by incubation with extracellular peptide at 27° or 37 °C, allowing the preparation of cells with single-chain molecules that are loaded with a single chosen antigenic peptide. SCβDdm can be stably expressed in β2m-negative cells, showing that the single-chain molecule uses its own β2m domain to achieve correct folding and surface expression. Furthermore, the β2m domain of SCβDdm, unlike transfected free β2m, does not rescue surface expression of endogenous class I MHC in the β2m-negative cells. This strict cis activity of the β2m domain of SCβDdm makes possible the investigation of class I MHC function in cells, and potentially in animals, that express but a single type of class I MHC molecule.  相似文献   

11.
To establish an effective cancer immunotherapy, it is crucial that cancer cells present a cancer‐specific antigen in a hypoxic area, a hallmark of the tumor microenvironment. Here, we show the impact of hypoxia on MHC class I antigen presentation in vitro and in vivo in murine tumors. Activation of antigen‐specific CTLs by tumor cells that had been pre‐incubated under a condition of hypoxia was enhanced compared with that by tumor cells pre‐incubated under a condition of normoxia. Cell surface expression of MHC class I‐peptide complex on the tumor cells was increased under a condition of hypoxia, thereby leading to higher susceptibility to specific CTLs. We show that the hypoxia‐inducible ER‐resident oxidase ERO1‐α plays an important role in the hypoxia‐induced augmentation of MHC class I‐peptide complex expression. ERO1‐α facilitated oxidative folding of MHC class I heavy chains, thereby resulting in the augmentation of cell surface expression of MHC class I‐peptide complex under hypoxic conditions. These results suggest that since the expression of MHC class I‐peptide complex is augmented in a hypoxic tumor microenvironment, strategies for inhibiting the function of regulatory T cells and myeloid‐derived suppressor cells and/or immunotherapy with immune checkpoint inhibitors are promising for improving cancer immunotherapy.  相似文献   

12.
An exclusive feature of dendritic cells (DCs) is their ability to cross‐present exogenous antigens in MHC class I molecules. We analyzed the fate of protein antigen in antigen presenting cell (APC) subsets after uptake of naturally formed antigen‐antibody complexes in vivo. We observed that murine splenic DC subsets were able to present antigen in vivo for at least a week. After ex vivo isolation of four APC subsets, the presence of antigen in the storage compartments was visualized by confocal microscopy. Although all APC subsets stored antigen for many days, their ability and kinetics in antigen presentation was remarkably different. CD8α+ DCs showed sustained MHC class I‐peptide specific CD8+ T‐cell activation for more than 4 days. CD8α? DCs also presented antigenic peptides in MHC class I but presentation decreased after 48 h. In contrast, only the CD8α? DCs were able to present antigen in MHC class II to specific CD4+ T cells. Plasmacytoid DCs and macrophages were unable to activate any of the two T‐cell types despite detectable antigen uptake. These results indicate that naturally occurring DC subsets have functional antigen storage capacity for prolonged T‐cell activation and have distinct roles in antigen presentation to specific T cells in vivo.  相似文献   

13.
14.
MHC class I heavy chains assemble in the endoplasmic reticulum with beta(2)-microglobulin and peptide to form heterotrimers. Although full assembly is required for stable class I molecules to be expressed on the cell surface, class I alleles can differ significantly in their rates of, and dependencies on, full assembly. Furthermore, these differences can account for class I allele-specific disparities in antigen presentation to T cells. Recent studies suggest that class I assembly is assisted by an elaborate complex of proteins in the endoplasmic reticulum, collectively referred to as the peptide loading complex. In this report we take a mutagenesis approach to define how HLA-B27 molecules interact with the peptide loading complex. Our results define subtle differences between how B27 mutants interact with tapasin (TPN) and calreticulin (CRT) in comparison to similar mutations in other mouse and human class I molecules. Furthermore, these disparate interactions seen among class I molecules allow us to propose a spatial model by which all class I molecules interact with TPN and CRT, two molecular chaperones implicated in facilitating the binding of high-affinity peptide ligands.  相似文献   

15.
The molecular definition of major histocompatibility complex (MHC) class I‐presented CD8+ T‐cell epitopes from clinically relevant Mycobacterium tuberculosis (Mtb) target proteins will aid in the rational design of T‐cell‐based diagnostics of tuberculosis (TB) and the measurement of TB vaccine‐take. We used an epitope discovery system, based on recombinant MHC class I molecules that cover the most frequent Caucasian alleles [human leucocyte antigen (HLA)‐A*0101, A*0201, A*0301, A*1101, A*2402, B*0702, B*0801 and B*1501], to identify MHC class I‐binding peptides from overlapping 9‐mer peptides representing the Mtb protein TB10.4. A total of 33 MHC class I‐binding epitopes were identified, spread across the entire amino acid sequence, with some clustering at the N‐ and C‐termini of the protein. Binding of individual peptides or closely related peptide species to different MHC class I alleles was frequently observed. For instance, the common motif of xIMYNYPAMx bound to six of eight alleles. Affinity (50% effective dose) and off‐rate (half life) analysis of candidate Mtb peptides will help to define the conditions for CD8+ T‐cell interaction with their nominal MHC class I‐peptide ligands. Subsequent construction of tetramers allowed us to confirm the recognition of some of the epitopes by CD8+ T cells from patients with active pulmonary TB. HLA‐B alleles served as the dominant MHC class I restricting molecules for anti‐Mtb TB10.4‐specific CD8+ T‐cell responses measured in CD8+ T cells from patients with pulmonary TB.  相似文献   

16.
The expression of major histocompatibility complex class II (MHC II) molecules is post‐translationally regulated by endocytic protein turnover. Here, we identified the serine protease cathepsin G (CatG) as an MHC II‐degrading protease by in vitro screening and examined its role in MHC II turnover in vivo. CatG, uniquely among endocytic proteases tested, initiated cleavage of detergent‐solubilized native and recombinant soluble MHC II molecules. CatG cleaved human leukocyte antigen (HLA)‐DR isolated from both HLA‐DM‐expressing and DM‐null cells. Even following CatG cleavage, peptide binding was retained by pre‐loaded, soluble recombinant HLA‐DR. MHC II cleavage occurred on the loop between fx1 and fx2 of the membrane‐proximal β2 domain. All allelic variants of HLA‐DR tested and murine I‐Ag7 class II molecules were susceptible, whereas murine I‐Ek and HLA‐DM were not, consistent with their altered sequence at the P1’ position of the CatG cleavage site. CatG effects were reduced on HLA‐DR molecules with DRB mutations in the region implicated in interaction with HLA‐DM. In contrast, addition of CatG to intact B‐lymphoblastoid cell lines (B‐LCLs) did not cause degradation of membrane‐bound MHC II. Moreover, inhibition or genetic ablation of CatG in primary antigen‐presenting cells did not cause accumulation of MHC II molecules. Thus, in vivo, the CatG cleavage site is sterically inaccessible or masked by associated molecules. A combination of intrinsic and context‐dependent proteolytic resistance may allow peptide capture by MHC II molecules in harshly proteolytic endocytic compartments, as well as persistent antigen presentation in acute inflammatory settings with extracellular proteolysis.  相似文献   

17.
We investigated the requirement for calnexin in the biogenesis of MHC class I molecules. Mutant human cells lacking calnexin were infected with recombinant vaccinia viruses encoding mouse MHC class I molecules, K d , Kb , Kk , D d , Db , and Ld . Flow cytometry indicated that each of the six MHC class I allomorphs was transported to the cell surface at similar rates in calnexin-deficient cells and transfectants expressing calnexin. For Kb and K d , the calnexin-independent biogenesis occurred regardless of whether the MHC class I molecules contained human or mouse β2-microglobulin. Also addressed was the effect of calnexin on the surface expression of Kb molecules bearing the immunodominant peptide from ovalbumin (OVA257 – 264 ). This was detected with a recently described monoclonal antibody specific for the Kb/peptide complex. Calnexin expression had no significant effect on the formation of Kb /peptide complexes generated from full-length OVA, cytosolic OVA257 – 264 , or endoplasmic reticulum-targeted OVA257 – 264 , which was expressed in the presence of the herpes simplex virus ICP47 protein to ensure detection of TAP-independent peptide-MHC class I complexes. Complementary results were obtained with TAP-independent formation of K d /peptide complexes. These findings indicate that calnexin is not required for the efficient assembly of MHC class I molecules with TAP-dependent or independent peptides.  相似文献   

18.
The efficiency of antigen (Ag) processing by dendritic cells (DCs) is vital for the strength of the ensuing T‐cell responses. Previously, we and others have shown that in comparison to protein vaccines, vaccination with synthetic long peptides (SLPs) has shown more promising (pre‐)clinical results. Here, we studied the unknown mechanisms underlying the observed vaccine efficacy of SLPs. We report an in vitro processing analysis of SLPs for MHC class I and class II presentation by murine DCs and human monocyte‐derived DCs. Compared to protein, SLPs were rapidly and much more efficiently processed by DCs, resulting in an increased presentation to CD4+ and CD8+ T cells. The mechanism of access to MHC class I loading appeared to differ between the two forms of Ag. Whereas whole soluble protein Ag ended up largely in endolysosomes, SLPs were detected very rapidly outside the endolysosomes after internalization by DCs, followed by proteasome‐ and transporter associated with Ag processing‐dependent MHC class I presentation. Compared to the slower processing route taken by whole protein Ags, our results indicate that the efficient internalization of SLPs, accomplished by DCs but not by B or T cells and characterized by a different and faster intracellular routing, leads to enhanced CD8+ T‐cell activation.  相似文献   

19.
The expression of major histocompatibility complex (MHC) class I molecules on the cell surface is critical for recognition by cytotoxic T lymphocytes (CTL). This recognition event leads to destruction of cells displaying MHC class I—viral peptide complexes or cells displaying MHC class I—mutant peptide complexes. Before they can be transported to the cell surface, MHC class I molecules must associate with their peptide ligand in the endoplasmic reticulum (ER) of the cell. Within the ER, numerous proteins assist in the appropriate assembly and folding of MHC class I molecules. These include the heterodimeric transporter associated with antigen processing (TAP1 and TAP2), the heterodimeric chaperone-oxidoreductase complex of tapasin and ERp57 and the general ER chaperones calreticulin and calnexin. Each of these accessory proteins has a well-defined role in antigen presentation by MHC class I molecules. However, alternate splice forms of MHC class I heavy chains, TAP and tapasin, have been reported suggesting additional complexity to the picture of antigen presentation. Here, we review the importance of these different accessory proteins and the progress in our understanding of alternate splicing in antigen presentation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号