首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Efficient integration of functional genes is an essential prerequisite for successful gene delivery such as cell transfection, animal transgenesis, and gene therapy. Gene delivery strategies based on viral vectors are currently the most efficient. However, limited cargo capacity, host immune response, and the risk of insertional mutagenesis are limiting factors and of concern. Recently, several groups have used transposon-based approaches to deliver genes to a variety of cells. The piggyBac (pB) transposase in particular has been shown to be well suited for cell transfection and gene therapy approaches because of its flexibility for molecular modification, large cargo capacity, and high transposition activity. However, safety considerations regarding transposase gene insertions into host genomes have rarely been addressed. Here we report our results on engineering helper-independent pB plasmids. The single-plasmid gene delivery system carries both the piggyBac transposase (pBt) expression cassette as well as the transposon cargo flanked by terminal repeat element sequences. Improvements to the helper-independent structure were achieved by developing new plasmids in which the pBt gene is rendered inactive after excision of the transposon from the plasmid. As a consequence, potentially negative effects that may develop by the persistence of an active pBt gene posttransposition are eliminated. The results presented herein demonstrate that our helper-independent plasmids represent an important step in the development of safe and efficient gene delivery methods that should prove valuable in gene therapy and transgenic approaches.  相似文献   

2.
Antibiotics target functions that are required for bacterial growth and survival. As genetic tools for studying Mycobacterium tuberculosis continue to improve we are increasingly able to identify genes that encode these important effectors. Here we review the strategies that have been used to identify and validate essential genes in mycobacteria and look forward to possible future advances.  相似文献   

3.
Neff T  Beard BC  Kiem HP 《Blood》2006,107(5):1751-1760
Stem cell gene therapy has long been limited by low gene transfer efficiency to hematopoietic stem cells. Recent years have witnessed clinical success in select diseases such as X-linked severe combined immunodeficiency (SCID) and ADA deficiency. Arguably, the single most important factor responsible for the increased efficacy of these recent protocols is the fact that the genetic correction provided a selective in vivo survival advantage. Since, for most diseases, there will be no selective advantage of gene-corrected cells, there has been a significant effort to arm vectors with a survival advantage. Two-gene vectors can be used to introduce the therapeutic gene and a selectable marker gene. Efficient in vivo selection strategies have been demonstrated in clinically relevant large-animal models. Mutant forms of the DNA repair-enzyme methylguanine methyltransferase in particular have allowed for efficient in vivo selection and have achieved sustained marking with virtually 100% gene-modified cells in large animals, and with clinically acceptable toxicity. Translation of these strategies to the clinical setting is imminent. Here, we review how in vivo selection strategies can be used to make stem cell gene therapy applicable to the treatment of a wider scope of genetic diseases and patients.  相似文献   

4.
An increasing number of microbial genomes have been completely sequenced, and the identified genes are categorized based on their homology to genes of known function. However, the function of a large number of genes cannot be determined on this basis alone. Here, we describe a technique, transposon site hybridization (TraSH), which allows rapid functional characterization by identifying the complete set of genes required for growth under different conditions. TraSH combines high-density insertional mutagenesis with microarray mapping of pools of mutants. We have made large pools of independent transposon mutants in mycobacteria by using a mariner-based transposon and efficient phage transduction. By using TraSH, we have defined the set of genes required for growth of Mycobacterium bovis bacillus Calmette-Guérin on minimal but not rich medium. Genes of both known and unknown functions were identified. Of the genes with known functions, nearly all were involved in amino acid biosynthesis. TraSH is a powerful method for categorizing gene function that should be applicable to a variety of microorganisms.  相似文献   

5.
Alternative premessenger RNA splicing enables genes to generate more than one gene product. Splicing events that occur within protein coding regions have the potential to alter the biological function of the expressed protein and even to create new protein functions. Alternative splicing has been suggested as one explanation for the discrepancy between the number of human genes and functional complexity. Here, we carry out a detailed study of the alternatively spliced gene products annotated in the ENCODE pilot project. We find that alternative splicing in human genes is more frequent than has commonly been suggested, and we demonstrate that many of the potential alternative gene products will have markedly different structure and function from their constitutively spliced counterparts. For the vast majority of these alternative isoforms, little evidence exists to suggest they have a role as functional proteins, and it seems unlikely that the spectrum of conventional enzymatic or structural functions can be substantially extended through alternative splicing.  相似文献   

6.
The goal of cancer gene therapy is the selective and efficient eradication of tumor cells without significant systemic toxicity. Although several different gene therapy approaches have been developed and tested both in preclinical and clinical trials, none of these methods are suitable for the safe and efficient treatment of cancer. Recent advances in tumor cell biology have accelerated the identification of novel proteins as targets for gene transfer strategies. However, the development of vectors and delivery systems for specific and efficient gene therapy has not kept pace with these discoveries. Below, we describe the most widely used gene therapy approaches and discuss the caveats of using these techniques in the clinic.  相似文献   

7.
Current methods for the functional analysis of microarray gene expression data make the implicit assumption that genes with similar expression profiles have similar functions in cells. However, among genes involved in the same biological pathway, not all gene pairs show high expression similarity. Here, we propose that transitive expression similarity among genes can be used as an important attribute to link genes of the same biological pathway. Based on large-scale yeast microarray expression data, we use the shortest-path analysis to identify transitive genes between two given genes from the same biological process. We find that not only functionally related genes with correlated expression profiles are identified but also those without. In the latter case, we compare our method to hierarchical clustering, and show that our method can reveal functional relationships among genes in a more precise manner. Finally, we show that our method can be used to reliably predict the function of unknown genes from known genes lying on the same shortest path. We assigned functions for 146 yeast genes that are considered as unknown by the Saccharomyces Genome Database and by the Yeast Proteome Database. These genes constitute around 5% of the unknown yeast ORFome.  相似文献   

8.
Recent progress in genomic applications have led to a better understanding of the relationship between genetic background and cardiovascular diseases such as heart failure. The broad variability in heart failure patient outcome is in part secondary to modifier genes, i.e. genes that are not involved in the genesis of a disease but modify the severity of the phenotypic expression once the disease has developed. The strategy most commonly used to identify modifier genes is based on association studies between the severity of the phenotype and the sequence variation(s) of selected candidate gene(s). Using this strategy, several polymorphisms of the beta 1 and beta 2-adrenergic receptors genes and the angiotensin converting enzyme gene have been correlated to the prognosis of patients with heart failure. Recently, we have applied an experimental strategy, known as genome mapping, for the identification of heart failure modifier genes. Genome mapping has previously been used with success to identify the genes involved in the development of both monogenic and multifactorial diseases. We have shown that the prognosis of heart failure mice, induced through calsequestrin overexpression, is linked to two Quantitative Trait Loci localized on chromosomes 2 and 3. Using both strategies (candidate gene and genome mapping) should allow us to identify a number of modifier genes that may provide a more rational approach to identify patients with the worst prognosis and to predict their response to therapy.  相似文献   

9.
The liver is the largest internal organ of the body, which may suffer acute or chronic injury induced by many factors, leading to cirrhosis and hepatocarcinoma. Cirrhosis is the irreversible end result of fibrous scarring and hepatocellular regeneration, characterized by diffuse disorganization of the normal hepatic structure, regenerative nodules and fibrotic tissue. Cirrhosis is associated with a high co-morbidity and mortality without effective treatment, and much research has been aimed at developing new therapeutic strategies to guarantee recovery. Liver-based gene therapy has been used to downregulate specific genes, to block the expression of deleterious genes, to delivery therapeutic genes, to prevent allograft rejection and to augment liver regeneration. Viral and non-viral vectors have been used, with viral vectors proving to be more efficient. This review provides an overview of the main strategies used in liver-gene therapy represented by non-viral vectors, viral vectors, novel administration methods like hydrodynamic injection, hybrids of two viral vectors and blocking molecules, with the hope of translating findings from the laboratory to the patient′s bed-side.  相似文献   

10.
Transgenic mouse lines have been developed that express the tv-a receptor under the control of the chicken beta-actin promoter. These mice express the tv-a receptor in most or all tissues and in the early embryo. An avian leukosis virus (ALV)-based retroviral vector system was used for the efficient delivery of genes into preimplantation mouse embryos from these transgenic lines. Experimental animals could be generated quickly and easily by infecting susceptible blastocysts with ALV-based retroviral vectors. Expression of the delivered genes was controlled by either the constitutive viral promoter contained in the long terminal repeat or an internal nonviral tissue-specific promoter. Mating the infected founder chimeric animals produced animals that carry the ALV provirus as a transgene. A subset of the integrated proviruses expressed the chloramphenicol acetyltransferase reporter gene from either the promoter in the long terminal repeat or an internal promoter, which we believe indicates that many of the sites that are accessible to viral DNA insertion in preimplantation embryos are incompatible with expression in older animals. This approach should prove useful for studies on murine cell lineage and development, providing models for studying oncogenesis, and testing gene therapy strategies.  相似文献   

11.
12.
13.
14.
15.
Analysis of growth factor function has come from studies both in vitro and in vivo. However, the generation of mice deficient in a specific growth factor via gene targeting (for example, "knockout") strategies in embryonic stem (ES) cells will often evaluate the essential roles of the protein in vivo and, in many cases, discover new functions. In this review, studies to date are discussed on the generation and analysis of mice deficient in members of the transforming growth factor (TGF-beta) superfamily. Among the genes targeted via ES cell strategies are the TGF-beta1, Müllerian-inhibiting substance (MIS), inhibin alpha, activin betaA, and activin betaB genes. In addition, the mouse short ear and brachypodism mutants and insertional mutant 413-d have been identified as mutations in the BMP-5, GDF-5, and nodal loci, respectively. These studies have led to critical insights into the functions of these gene products and have further emphasized the importance of members of the TGF-beta superfamily in mammalian development, reproduction, and oncogenesis.  相似文献   

16.
17.
RNA interference (RNAi) is a ubiquitous mechanism of eukaryotic gene regulation that can be exploited for specific gene silencing. Retroviruses have been successfully used for stable expression of short hairpin RNAs in mammalian cells, leading to persistent inhibition of gene expression by RNAi. Here, we apply retrovirus-mediated RNAi to epithelial Madin-Darby canine kidney cells, whose properties limit the applicability of other RNAi methods. We demonstrate efficient suppression of a set of 13 target genes by retroviral coexpression of short hairpin RNAs and a selectable marker. We characterize the resulting knockdown cell populations with regard to composition and stability, and examine the usefulness of proposed guidelines for choosing RNAi target sequences. Finally, we show that this system can be used to simultaneously target two genes, giving rise to double knockdowns. Thus, retrovirus-mediated RNAi is a convenient method for gene silencing in Madin-Darby canine kidney cells, and is likely to be applicable to virtually any mammalian cell.  相似文献   

18.
Global gene expression patterns can provide comprehensive molecular portraits of biologic diversity and complex disease states, but understanding the physiologic meaning and genetic basis of the myriad gene expression changes have been a challenge. Several new analytic strategies have now been developed to improve the interpretation of microarray data. Because genes work together in groups to carry out specific functions, defining the unit of analysis by coherent changes in biologically meaningful sets of genes, termed modules, improves our understanding of the biological processes underlying the gene expression changes. The gene module approach has been used in exploratory discovery of defective oxidative phosphorylation in diabetes mellitus and also has allowed definitive hypothesis testing on a genomic scale for the relationship between wound healing and cancer and for the oncogenic mechanism of cyclin D. To understand the genetic basis of global gene expression patterns, computational modeling of regulatory networks can highlight key regulators of the gene expression changes, and many of these predictions can now be experimentally validated using global chromatin-immunoprecipitation analysis.  相似文献   

19.
Recent progress in genomic applications have led to a better understanding of the relationship between genetic background and cardiovascular diseases such as heart failure. A considerable component of the variability in heart failure outcome is due to modifier genes, i.e. genes that are not involve in the genesis of a disease but modify the severity of the phenotypic expression once the disease has developed. The strategy most commonly used to identify modifier genes is based on association studies between the severity of the phenotype of the disease (morbidity and/or mortality) and the sequence variation(s) of selected candidate gene(s). This strategy has showed that several polymorphisms of the beta1 and beta2 adrenergic receptors genes and the angiotensin converting enzyme gene are correlated to the prognosis of patients with heart failure. Recently, we have applied an experimental strategy, known as genome mapping, for the identification of heart failure modifier genes. Genome mapping has previously been used with success to identify the genes involved in the development of both monogenic and multifactorial diseases. We have showed that the prognosis of heart failure mice, induced through overexpressing calsequestrin, is linked to 2 Quantitative Trait Loci (QTL) localized on chromosome 2 and 3. Using both strategies (candidate gene and genome mapping) should allow us to identify a number of modifier genes that may provide a more rational approach to identify patients at risk for disease and response to therapy.  相似文献   

20.
Efficient gene transfer into human hepatocytes by baculovirus vectors.   总被引:25,自引:0,他引:25       下载免费PDF全文
Viral vectors are the most efficient tools for gene delivery, and the search for tissue-specific infecting viruses is important for the development of in vivo gene therapy strategies. The baculovirus Autographa californica nuclear polyhedrosis virus is widely used as a vector for expression of foreign genes in insect cells, and its host specificity is supposed to be restricted to arthropods. Here we demonstrate that recombinant A. californica nuclear polyhedrosis virus is efficiently taken up by human hepatocytes via an endosomal pathway. High-level reporter gene expression from heterologous promoters was observed in human and rabbit hepatocytes in vitro. Mouse hepatocytes and some other epithelial cell types are targeted at a considerably lower rate. The efficiency of gene transfer by baculovirus considerably exceeds that obtained by calcium phosphate or lipid transfection. These properties of baculovirus suggest a use for it as a vector for liver-directed gene transfer but highlight a potential risk in handling certain recombinant baculoviruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号