首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adenosine tonically inhibits synaptic transmission through actions at A(1) receptors. It also facilitates synaptic transmission, but it is unclear if this facilitation results from pre- and/or postsynaptic A(2A) receptor activation or from indirect control of inhibitory GABAergic transmission. The A(2A) receptor agonist, CGS 21680 (10 nM), facilitated synaptic transmission in the CA1 area of rat hippocampal slices (by 14%), independent of whether or not GABAergic transmission was blocked by the GABA(A) and GABA(B) receptor antagonists, picrotoxin (50 microM) and CGP 55845 (1 microM), respectively. CGS 21680 (10 nM) also inhibited paired-pulse facilitation by 12%, an effect prevented by the A(2A) receptor antagonist, ZM 241385 (20 nM). These effects of CGS 21680 (10 nM) were occluded by adenosine deaminase (2 U/ml) and were made to reappear upon direct activation of A(1) receptors with N(6)-cyclopentyladenosine (CPA, 6 nM). CGS 21680 (10 nM) only facilitated (by 17%) the K(+)-evoked release of glutamate from superfused hippocampal synaptosomes in the presence of 100 nM CPA. This effect of CGS 21680 (10 nM), in contrast to the isoproterenol (30 microM) facilitation of glutamate release, was prevented by the protein kinase C inhibitors, chelerythrine (6 microM) and bisindolylmaleimide (1 microM), but not by the protein kinase A inhibitor, H-89 (1 microM). Isoproterenol (30 microM), but not CGS 21680 (10-300 nM), enhanced synaptosomal cAMP levels, indicating that the CGS 21680-induced facilitation of glutamate release involves a cAMP-independent protein kinase C activation. To discard any direct effect of CGS 21680 on adenosine A(1) receptor, we also show that in autoradiography experiments CGS 21680 only displaced the adenosine A(1) receptor antagonist, 1,3-dipropyl-8-cyclopentyladenosine ([(3)H]DPCPX, 0.5 nM) with an EC(50) of 1 microM in all brain areas studied and CGS 21680 (30 nM) failed to change the ability of CPA to displace DPCPX (1 nM) binding to CHO cells stably transfected with A(1) receptors.Our results suggest that A(2A) receptor agonists facilitate hippocampal synaptic transmission by attenuating the tonic effect of inhibitory presynaptic A(1) receptors located in glutamatergic nerve terminals. This might be a fine-tuning role for adenosine A(2A) receptors to allow frequency-dependent plasticity phenomena without compromising the A(1) receptor-mediated neuroprotective role of adenosine.  相似文献   

2.
Interactions between subtypes of dopamine, glutamate and adenosine receptors seem to play an important integrative role in the function of striatal gamma-aminobutyric acid (GABA)ergic efferent neurons. Recent behavioral and biochemical studies suggest the existence of specific interactions between adenosine A2A receptors (A(2A)R), dopamine D2 receptors (D2R) and the group I metabotropic mGlu5 receptors (mGlu5R) in the dorsal striatum. The dual-probe approach in vivo microdialysis technique in freely moving rats was used to study the role of mGlu5R/A2AR/D2R interactions in the modulation of the ventral striopallidal GABA pathway. Perfusion of a selective mGlu5R agonist (CHPG) in the nucleus accumbens facilitated GABA release in the ipsilateral ventral pallidum. This effect was strongly potentiated by co-perfusion with the A2AR agonist CGS 21680. Co-perfusion with the D2R agonist quinpirole counteracted the increase in pallidal GABA levels induced by CGS 21680 and by CGS 21680 plus CHPG. These results demonstrate that mGlu5R/A2AR/D2R interactions play an important modulatory role in the function of the ventral striopallidal GABA pathway, which might have implications for the treatment of schizophrenia and drug addiction.  相似文献   

3.
The aim of the present study was to explore whether endogenous activation of different purine receptors by ATP and adenosine contributes to or inhibits excess glutamate release evoked by ischemic-like conditions in rat hippocampal slices. Combined oxygen-glucose deprivation (OGD) elicited a substantial, [Ca(2+)](o)-independent release of [(3)H]glutamate, which was tetrodotoxin (1 microM)-sensitive and temperature-dependent. The P2 receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS, 0.1-10 microM), and the selective P2X(7) receptor antagonist Brilliant Blue G (1-100 nM), decreased OGD-evoked [(3)H]glutamate efflux indicating that endogenous ATP facilitates ischemia-evoked glutamate release. The selective A(1)-receptor antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, 0.1-250 nM) and the selective A(2A) receptor antagonists 4-(2-[7-amino-2-)2-furyl(triazolo-[1,3,5]triazin-5-ylamino]ethyl)phenol (ZM241385, 0.1-20 nM) and 7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine (SCH58261, 2-100 nM) decreased OGD-evoked [(3)H]glutamate efflux, indicating that endogenous adenosine also facilitates glutamate release under these conditions. The effect of DPCPX and ZM241385 was reversed, whereas the action of P2 receptor antagonists was potentiated by the selective ecto-ATPase inhibitor 6-N,N-diethyl-D-beta,gamma-dibromomethyleneATP (ARL67156, 50 microM). The binding characteristic of the A(2A) ligand [(3)H]CGS21680 to hippocampal membranes did not change significantly in response to OGD. Taken together these data suggest that while A(1) receptors might became desensitized, A(2A) and P2X receptor-mediated facilitation of glutamate release by endogenous ATP and its breakdown product adenosine remains operational under long-term OGD. Therefore the inhibition of P2X/A(2A) receptors rather than the stimulation of A(1) adenosine receptors could be an effective approach to attenuate glutamatergic excitotoxicity and thereby counteract ischemia-induced neurodegeneration.  相似文献   

4.
Selective A1 adenosine receptor agonists produced a considerable neuroprotective effect during global cerebral ischemia. The neuroprotective effect decreased in the order: A1 agonists-NECA-adenosine-A2A agonist CGS 21680, while selective A3 adenosine receptor agonist was ineffective. Inhibitory analysis showed that A1 adenosine receptors mediate the neuroprotective effect of CPA, are involved in the effects of NECA and adenosine (but not CGS 21680), and participate in natural resistance to cerebral ischemia. The role of A2B adenosine receptors in the realization of neuroprotective effects was also demonstrated.  相似文献   

5.
Recently, adenosine has been proposed to be a "metabolic" switch that may sense and direct immune and inflammatory responses. Inflammation and pro-inflammatory cytokine production are important in development of HIV-1 associated dementia, a devastating consequence of HIV-1 infection of the CNS. The HIV-1 protein Tat induces cell death in the CNS and activates local inflammatory responses partially by inducing calcium release from the endoplasmic reticulum. Because activation of adenosine receptors decreases production of the pro-inflammatory cytokine TNF-alpha in several experimental paradigms both in vitro and in vivo, we hypothesized that adenosine receptor activation would control both increased intracellular calcium and TNF-alpha production induced by Tat. Treatment of primary monocytes with Tat significantly increased the levels of intracellular calcium released from IP3 stores. Activation of adenosine receptors with CGS 21680 inhibited Tat-induced increases of intracellular calcium by 90 +/- 8% and was dependent on protein phosphatase activity because okadaic acid blocked the actions of CGS 21680. Tat-induced TNF-alpha production was inhibited 90 +/- 6% by CGS 21680 and concurrent treatment with okadaic acid blocked the inhibitory actions of CGS 21680. Using a model monocytic cell line, CGS 21680 treatment increased cytosolic serine/threonine phosphatase. Together, these data indicate that A2A receptor activation increases protein phosphatase activity, which blocks IP3 receptor-regulated calcium release and reduction of intracellular calcium inhibits TNF-alpha production in monocytes.  相似文献   

6.
In this study, it was shown that adenosine potentiates caffeine-induced Ca2+ release. It was then proposed that the enhancement of the caffeine-induced Ca2+ release might occur by a direct effect on the ryanodine Ca2+ release channel or on other Ca2+ regulation mechanisms. Furthermore, A2A receptors may be functional on the ferret cardiac sarcoplasmic reticulum. Using chemically skinned fibres, experiments were conducted on ferret cardiac muscle to find out whether adenosine and the A1 and A2A adenosine receptor agonists (CCPA and CGS 21680) and antagonists (DPCPX and ZM 241385) affected caffeine-induced Ca2+ release and the Ca2+ sensitivity of contractile proteins. Changes in the caffeine-induced contracture brought about by adenosine and by adenosine-receptor agonists and antagonists were recorded in saponin-skinned fibres (50 microg ml(-1)). Tension-pCa relationships were then obtained by exposing Triton X-100-skinned fibres (1% v/v) sequentially to solutions of decreasing pCa. Adenosine (1-100 nm) and the specific A2A receptor agonist CGS 21680 (1-50 nm) produced a concentration-dependant potentiation of the caffeine-induced Ca2+ release from saponin-skinned fibres. The data plotted versus adenosine and CGS 21680 concentrations displayed sigmoid relationships (Hill relationship), with potentiation of Ca2+ release by 22.2 +/- 1.6 (n = 6) and 10.9 +/- 0.4% (n = 6), respectively. In addition, the potentiation of caffeine-induced Ca2+ release by adenosine (50 nm; 15.3 +/- 1.0%; n = 6) and by CGS 21680 (50 nm; 11.2 +/- 0.4%; n = 6) was reduced by the specific A2A receptor antagonist ZM 241385 (50 nm) to 8.0 +/- 1.4 (n = 4) and 5.4 +/- 1.2% (n = 4), respectively. The A1 receptor agonist CCPA (1-50 nm) and antagonist DPCPX (50 nm) had no significant effects on caffeine responses. In Triton X-100-skinned fibres, the maximal Ca(2+)-activated tension of the contractile proteins (41.3 +/- 4.1 mN mm(-2); n = 8), the Hill coefficient (nH = 2.2 +/- 0.1; n = 8) and the pCa50 (6.15 +/- 0.05; n = 8) were not significantly modified by adenosine (100 nm) or by CGS 21680 (50 nm).  相似文献   

7.
Saransaari P  Oja SS 《Neuroscience》2000,97(3):425-430
The release of the inhibitory amino acid taurine is markedly enhanced under ischemic conditions in both adult and developing hippocampus, together with a pronounced increase in the release of excitatory amino acids and the neuromodulator adenosine. We studied the effects of adenosine receptor agonists and antagonists as well as adenosine transport inhibitors on hippocampal [(3)H]taurine release in normoxia and ischemia, using a superfusion system. Under standard conditions the adenosine A(1) receptor agonists N(6)-cyclohexyladenosine and R(-)N(6)-(2-phenylisopropyl)adenosine potentiated basal taurine release in developing mice and depressed the release in adults in a receptor-mediated manner. Adenosine A(2) receptor compounds had only minor effects on the basal release and the K(+)-stimulated release was not affected by these drugs. The adenosine uptake inhibitor dipyridamole enhanced basal taurine release in the developing hippocampus and reduced it in the adult. In ischemia the adenosine compounds had no marked effects on taurine release in immature animals, whereas A(1) receptor activation was still able to evoke taurine release in adults by a receptor-mediated mechanism. The results show that the basal release of taurine is modulated by A(1) receptors in both mature and immature hippocampus, whereas in ischemia these receptors potentiate taurine release only in adults.The elevated taurine levels together with the depression of excitatory amino acid release by adenosine receptor activation could be beneficial under ischemic conditions, protecting neural cells against excitotoxicity and hyperexcitation.  相似文献   

8.
Motor nerve terminals possess adenosine A(2A) receptors and brain derived neurotrophic factor (BDNF) TrkB receptors. In the present work we evaluated how BDNF actions on neuromuscular transmission would be influenced by adenosine A(2A) receptors activation. BDNF (20-100 ng/ml) on its own was devoid of effect on evoked endplate potentials (EPPs) recorded intracellularly from rat innervated diaphragms paralysed with tubocurarine. However, when BDNF was applied 45 min after a brief (2 min) depolarizing KCl (10 mM) pulse or when the adenosine A(2A) receptors were activated with CGS 21680 (10 nM), BDNF (20 ng/ml) increased EPPs amplitude without influencing the resting membrane potential of the muscle fibre. The action of BDNF was prevented by the adenosine A(2A) receptor antagonist, ZM 241385 (50 nM) as well as by the TrkB receptor phosphorylation inhibitor, K252a (200 nM). The PKA inhibitor, H-89 (1 microM), prevented the excitatory effect of CGS 21680 (10 nM) on EPPs as well as prevented its ability to trigger a BDNF effect. The PLCgamma inhibitor, U73122 (5 microM), did not prevent the excitatory action of CGS 21680 (10 nM) on neuromuscular transmission, but abolished the action of BDNF in the presence of the A(2A) receptor agonist. The results suggest the following sequence of events in what concerns cooperativity between A(2A) receptors and TrkB receptors at the neuromuscular junction: A(2A) receptor activates the PKA pathway, which promotes the action of BDNF through TrkB receptors coupled to PLCgamma, leading to enhancement of neuromuscular transmission.  相似文献   

9.
The adenosine agonist cyclohexaladenosine injected into the medial pontine reticular formation of the rat induces a long-lasting increase in rapid eye movement sleep. To investigate the adenosine receptor-subtype(s) mediating this effect, the dose-response relationships for increasing rapid eye movement sleep by two highly selective adenosine receptor agonists were compared. Rats were surgically prepared for chronic sleep recording and bilateral guide cannulae were aimed at medial sites in the caudal, oral pontine reticular formation. Injections were made unilaterally in 60 nl volumes within 1 h after lights-on. The adenosine agonists used were A1-selective cyclohexaladenosine (10(-6)-10(-4) M) and A2a-selective CGS 21680 (10(-7)-10(-3) M). Each animal also received a series of three, paired-consecutive injections of the muscarinic receptor antagonist atropine (4x10(-3) M) followed by the lowest effective dose of each agonist or saline as control. The A2a receptor agonist, CGS 21680, was one order of magnitude more potent than the A1 receptor agonist, cyclohexaladenosine, in inducing rapid eye movement sleep increases. Preinjection of atropine at a dose that did not itself affect rapid eye movement sleep resulted in antagonism of CGS 21680, but not cyclohexaladenosine-induced rapid eye movement sleep.The differential sensitivity of these ligands to antagonism by atropine supports the conclusion that both A1 and A2a adenosine receptor subtypes in the reticular formation subserve agonist-induced rapid eye movement sleep and that they do so by independent mechanisms. The A2a mechanism requires the cholinergic system and may act through the increased release of acetylcholine. The A1 mechanism operates at a different locus possibly through an inhibition of GABA neurotransmission.  相似文献   

10.
The release of cortical acetylcholine from the intracortical axonal terminals of cholinergic basal forebrain neurons is closely associated with electroencephalographic activity. One factor which may act to reduce cortical acetylcholine release and promote sleep is adenosine. Using in vivo microdialysis, we examined the effect of adenosine and selective adenosine receptor agonists and antagonists on cortical acetylcholine release evoked by electrical stimulation of the pedunculopontine tegmental nucleus in urethane anesthetized rats. All drugs were administered locally within the cortex by reverse dialysis. None of the drugs tested altered basal release of acetylcholine in the cortex. Adenosine significantly reduced evoked cortical acetylcholine efflux in a concentration-dependent manner. This was mimicked by the adenosine A(1) receptor selective agonist N(6)-cyclopentyladenosine and blocked by the selective A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). The A(2A) receptor agonist 2-[p-(2-carboxyethyl)-phenethylamino]-5'-N-ethylcarboxamidoadenosi ne hydrochloride (CGS 21680) did not alter evoked cortical acetylcholine release even in the presence of DPCPX. Administered alone, neither DPCPX nor the non-selective adenosine receptor antagonist caffeine affected evoked cortical acetylcholine efflux. Simultaneous delivery of the adenosine uptake inhibitors dipyridamole and S-(4-nitrobenzyl)-6-thioinosine significantly reduced evoked cortical acetylcholine release, and this effect was blocked by the simultaneous administration of caffeine.These data indicate that activation of the A(1) adenosine receptor inhibits acetylcholine release in the cortex in vivo while the A(2A) receptor does not influence acetylcholine efflux. Such inhibition of cortical acetylcholine release by adenosine may contribute to an increased propensity to sleep during prolonged wakefulness.  相似文献   

11.
GABA and adenosine contribute to respiratory inhibition in early postnatal life. In this study the adenosine A2A receptor agonist CGS21680 was used to evaluate adenosine receptor specificity and the interrelation of adenosine and GABA in the inhibition of inspiratory drive. In neonatal piglets (n = 10), CGS21680 was injected into the fourth ventricle resulting in apnea and/or decreased burst area and frequency of phrenic discharge. Phrenic burst area decreased to 58.9 +/- 8.6% (S.E.M.) after CGS21680 injection (control = 91.8 +/- 1.0%). Expiratory time increased 261.0 +/- 59.9% after CGS21680 from control (87.7 +/- 2.7%). When bicuculline was injected locally within the rostral ventrolateral medulla (n = 5), or into the fourth ventricle (n = 5), the CGS21680 induced inhibition of phrenic was abolished. To define expression of A2A receptor at the message level (mRNA), we employed in situ hybridization with a digoxigenin-coupled oligonucleotide. Adenosine A2A receptor mRNA was expressed in regions of the medulla oblongata known to contain GABAergic neurons. We conclude that GABAergic inputs affecting respiratory timing and inspiratory drive are modulated by activation of A2A receptors. These findings offer new insight into the mechanism whereby xanthine therapy diminishes apnea of prematurity.  相似文献   

12.
Synaptic transmission is an essential process for neuron physiology. Such process is enabled in part due to modulation of neurotransmitter release. Adenosine is a synaptic modulator of neurotransmitter release in the Central Nervous System, including neurons of medulla oblongata, where several nuclei are involved with neurovegetative reflexes. Adenosine modulates different neurotransmitter systems in medulla oblongata, specially glutamate and noradrenaline in the nucleus tractussolitarii, which are involved in hypotensive responses. However, the intracellular mechanisms involved in this modulation remain unknown. The adenosine A2a receptor modulates neurotransmitter release by activating two cAMP protein effectors, the protein kinase A and the exchange protein activated by cAMP. Therefore, an in vitro approach (cultured cells) was carried out to evaluate modulation of neurotransmission by adenosine A2a receptor and the signaling intracellular pathway involved. Results show that the adenosine A2a receptor agonist, CGS 21680, increases neurotransmitter release, in particular, glutamate and noradrenaline and such response is mediated by protein kinase A activation, which in turn increased synapsin I phosphorylation. This suggests a mechanism of A2aR modulation of neurotransmitter release in cultured cells from medulla oblongata of Wistar rats and suggest that protein kinase A mediates this modulation of neurotransmitter release via synapsin I phosphorylation.  相似文献   

13.
OBJECTIVE: In this study we investigated the effect of CGS 21680 (2-p-(2-Carboxyethyl)phenethylamino-5-N-ethylcarboxamidoadenosine hydrochloride), an adenosine A2A receptor agonist, in a model of dextran sulphate sodium (DSS)-induced colitis. METHODS: NMRI mice were fed 5 % (w/v) DSS, and were treated intraperitoneally with 0.5 mg/kg CGS 21680 or vehicle for 10 days. Changes of bodyweight, colon length, the incidence of rectal bleeding, levels of macrophage inflammatory protein (MIP)-1alpha, MIP-2, interferon gamma, interleukin (IL)-1beta, IL-12 and tumour necrosis factor-alpha from homogenates of colon biopsies, and the release of [3H]acetylcholine (ACh) from longitudinal muscle strip were determined. RESULTS: DSS significantly decreased bodyweight, colon length, and it increased the incidence of rectal bleeding and levels of MIP-1alpha, MIP-2 and IL-1beta compared to DSS-untreated animals. CGS 21680 had no effect on these changes. No change could be observed in release of ACh in DSS-induced colitis with or without CGS 21680. CONCLUSION: In summary, CGS 21680 is ineffective in ameliorating DSS-induced colitis in mice.  相似文献   

14.
Mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase 1 and 2 (ERK1/2) and phosphatidylinositol 3-kinase (PI3-kinase)/protein kinase B (PKB; also known as Akt) are important antiapoptotic signalling pathways which have recently been implicated in cardioprotection. However, at present the involvement of ERK1/2 and PI3-kinase/PKB in adenosine receptor-mediated cardioprotection is poorly understood. In this study we used isolated rat right ventricular strips, contracted by electrical-field stimulation, in order to investigate the role of ERK1/2 and PI3-kinase/PKB in adenosine receptor-induced cardioprotection. Ventricle strips were pretreated for 2 min with the agonists adenosine (non-selective), CPA (A1 selective), CGS 21680 (A2A selective) and Cl-IB-MECA (A3 selective) before 30 min hypoxia followed by 30 min reoxygenation. Each agonist significantly improved posthypoxic percentage contraction recovery compared to control strips. Similarly hypoxic preconditioning (10 min hypoxia followed by 20 min reoxygenation) significantly improved posthypoxic percentage contraction recovery compared to non-preconditioned strips. The selective adenosine receptor antagonists DPCPX (A1), ZM 241385 (A2A) and MRS 1220 (A3) attenuated cardioprotection induced by CPA, CGS 21680 and Cl-IB-MECA, respectively. Pre-incubation (30 min) of ventricle strips with the MEK1 inhibitor PD 98059 (50 microM) or the PI3-kinase inhibitor wortmannin (100 nM) significantly reduced posthypoxic percentage contraction recovery induced by hypoxic preconditioning. In contrast, PD 98059 and wortmannin had no significant effect on cardioprotection induced by CPA, Cl-IB-MECA or CGS 21680. Overall these data indicate that although selective A1, A2A and A3 adenosine receptor agonists induce preconditioning in rat right ventricular strips the effects are independent of ERK1/2- and PI3-kinase-dependent pathways. In contrast ERK1/2 and PI3-kinase-dependent pathways do appear to be involved in early hypoxic preconditioning.  相似文献   

15.

Background  

Permanent functional deficits following spinal cord injury (SCI) arise both from mechanical injury and from secondary tissue reactions involving inflammation. Enhanced release of adenosine and glutamate soon after SCI represents a component in the sequelae that may be responsible for resulting functional deficits. The role of adenosine A2A receptor in central ischemia/trauma is still to be elucidated. In our previous studies we have demonstrated that the adenosine A2A receptor-selective agonist CGS21680, systemically administered after SCI, protects from tissue damage, locomotor dysfunction and different inflammatory readouts. In this work we studied the effect of the adenosine A2A receptor antagonist SCH58261, systemically administered after SCI, on the same parameters. We investigated the hypothesis that the main action mechanism of agonists and antagonists is at peripheral or central sites.  相似文献   

16.
Adenosine, which accumulates rapidly during ischemia due to the breakdown of ATP, has beneficial effects in many tissues. We examined whether adenosine induces the production of glial cell line-derived neurotrophic factor (GDNF) in cultured astrocytes. We evaluated GDNF mRNA expression and GDNF production in astrocytes cultured with adenosine and the adenosine selective receptor agonists 5-(N-ethylcarboxamido) adenosine (NECA), N(6)-cyclopentyladenosine (CPA) and 2-p-(2-carboxyethyl) phenethylamino-5'-N-ethylcarboxamindo-adenosine hydrochloride (CGS 21680). Moreover, we examined the possibility that the expression of GDNF is regulated differently in cultured astrocytes from the stroke-prone spontaneously hypertensive rat (SHRSP) than in those from Wistar Kyoto rats (WKY). In this study, we confirmed that adenosine and the selective A(2B) adenosine receptor agonist NECA induced the expression of GDNF in cultured astrocytes. The A(2B) receptor antagonist alloxazine was able to inhibit the increase in extracellular GDNF produced by adenosine. Furthermore, the amounts of GDNF produced were significantly reduced in astrocytes of the adenosine-treated SHRSP compared with those of WKY. These results indicate that adenosine induces the expression of GDNF, and adenosine A(2B) receptors participate in the regulation of GDNF levels in astrocytes. This expression was attenuated in astrocytes of SHRSP compared with those of WKY.  相似文献   

17.
18.
The survival activity of adenosine A2A agonist CGS21680 on motoneurons in culture through the transactivation of neurotrophin receptor TrkB has been reported previously; however, since adenosine A2A receptor belongs to a Gs-protein-coupled receptor, we investigated the involvement of the cAMP pathway in the survival activity of CGS21680 using purified motoneurons in culture. CGS21680 alone showed only small survival activity, but the activity was significantly enhanced by the addition of a phosphodiesterase inhibitor, IBMX. This survival activity was partially inhibited by a protein kinase A inhibitor H89 or a neurotrophin receptor tyrosine kinase inhibitor K252a, and was completely inhibited by their combination. These results indicate that the survival activity of CGS21680 on motoneurons is exerted by the mixed effect of the adenylate cyclase–cAMP–PKA pathway and transactivation of Trk neurotrophin receptor. Under conditions in which the maximum survival of motoneurons was supported by sufficient concentrations of brain-derived neurotrophic factor (BDNF), a TrkB ligand, the addition of 100 μM AMPA for 3 days led to significant cell death. Treatment with CGS21680 and IBMX protected motoneurons from the toxicity of AMPA, further supporting the presence of a TrkB-independent pathway of CGS21680 activity and suggesting a novel therapeutic approach to motoneuron diseases such as amyotrophic lateral sclerosis.  相似文献   

19.
Human lung mast cells (HLMC) express the Ca2+-activated K+ channel KCa3.1, which opens following IgE-dependent activation. This hyperpolarises the cell membrane and potentiates both Ca2+ influx and degranulation. In addition, blockade of KCa3.1 profoundly inhibits HLMC migration to a variety of diverse chemotactic stimuli. KCa3.1 activation is attenuated by the beta2adrenoceptor through a Galphas-coupled mechanism independent of cyclic AMP. Adenosine is an important mediator that both attenuates and enhances HLMC mediator release through the Galphas-coupled A2A and A2B adenosine receptors, respectively. We show that at concentrations that inhibit HLMC degranulation (10(-5)-10(-3) M), adenosine closes KCa3.1 both dose-dependently and reversibly. KCa3.1 suppression by adenosine was reversed partially by the selective adenosine A2A receptor antagonist ZM241385 but not by the A2B receptor antagonist MRS1754, and the effects of adenosine were mimicked by the selective A2A receptor agonist CGS21680. Adenosine also opened a depolarising current carried by non-selective cations. As predicted from the role of KCa3.1 in HLMC migration, adenosine abolished HLMC chemotaxis to asthmatic airway smooth muscle-conditioned medium. In summary, the Galphas-coupled adenosine A2A receptor closes KCa3.1, providing a clearly defined mechanism by which adenosine inhibits HLMC migration and degranulation. A2A receptor agonists with channel-modulating function may be useful for the treatment of mast cell-mediated disease.  相似文献   

20.
Adenosine modulates synaptic transmission by acting on inhibitory A(1) and facilitatory A(2A) receptors, the densities of which are modified in aged animals. We investigated how A(2A) receptor activation influences A(1) receptor function and whether this interaction is modified in aged rats. In hippocampal and cortical nerve terminals from young adult (6 wk), but not old rats (24 mo), the A(2A) receptor agonist, 2-[4-(2-carboxyethyl) phenethylamino]-5'-N-ethylcarboxamidoadenosine (CGS 21680; 30 nM) decreased the binding affinity of a selective A(1) receptor agonist, cyclopentyladenosine (CPA), an effect prevented by the A(2A) antagonist, (4-(2-[7-amino-2-(2-furyl (1,2,4)-triazolo(2,3-a (1,3,5)triazin-5-yl-aminoethyl)phenol (ZM 241385, 20 nM). This effect of CGS 21680 required intact nerve terminals and was also observed in the absence of Ca(2+). This A(2A)-induced "desensitization" of A(1) receptors was prevented by the protein kinase C inhibitor, chelerythrine (6 microM), and was not detected in the presence of the protein kinase C activator, phorbol-12,13-didecanoate (250 nM), which itself caused a reduction in binding affinity for CPA. The protein kinase A inhibitor, N-(2-guanidinoethyl)-5-isoquinolinesulfonamide (10 microM), and the protein kinase A activator, 8-Br-cAMP (1 mM), had no effects on the A(2A)-induced A(1) receptor desensitization. This A(2A)-induced A(1) receptor desensitization had a functional correlation because CGS 21680 (10 nM) attenuated by 40% the inhibition caused by CPA (10 nM) on CA1 area population spike amplitude in hippocampal slices. This A(2A)/A(1) interaction may explain the attenuation by adenosine deaminase (2 U/ml), which removes tonic A(1) inhibition, of the facilitatory effect of CGS 21680 on synaptic transmission. The requirement of tonic A(1) receptor activation for CGS 21680 to induce facilitation of synaptic transmission was reinforced by the observation that the A(1) receptor antagonist, 1, 3-dipropyl-8-cyclopentylxanthine (20 nM) prevented CGS 21680 (10 nM) facilitation of population spike amplitude. The present results show the ability of A(2A) receptors to control A(1) receptor function in a manner mediated by protein kinase C, but not protein kinase A, in young adult but not in aged rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号