首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Germline mutations of the RET proto-oncogene have been found in familial and sporadic forms of Hirschsprung disease (HSCR), but also in the autosomal dominantly inherited multiple endocrine neoplasia type 2 (MEN2) syndromes, which comprise the medullary thyroid carcinoma (MTC) as an obligatory feature. Besides mutations various polymorphisms of the RET proto-oncogene are associated with the HSCR. In this study, we have characterized seven intronic RET polymorphisms (IVS2+9G>A, IVS4+48A>G, IVS12+47C>T, IVS14-24G>A, IVS19+47T>C, IVS20+96C>T, 3'UTR+124A>G) and investigated these variants by DNA sequencing in populations of 76 HSCR patients and 40 sporadic MTC patients as well as in a control population. Variants of four of these seven polymorphisms have a strong association with the HSCR phenotype. In contrast, none of the investigated polymorphisms show a significant difference in the genotype distribution and the allele frequencies in patients with sporadic MTC when compared to controls. These findings support the hypothesis that specific RET haplotypes cause or modify the HSCR phenotype.  相似文献   

2.
The RET proto-oncogene encodes a transmembrane receptor with tyrosine kinase activity. Germline mutations in RET are responsible for a number of inherited diseases. These include the dominantly inherited cancer syndromes multiple endocrine neoplasia types 2A and 2B (MEN 2A and MEN 2B) and familial medullary thyroid carcinoma (FMTC), as well as some cases of familial Hirschsprung disease (HSCR1). RET mutations in HSCR1 have been shown to cause a loss of RET function, while the cancer syndromes result in RET oncogenic activation. Occasionally MEN 2A or FMTC occurs in association with HSCR1, albeit with low penetrance. An initial report linked HSCR1 in MEN 2A solely to the C618R and C620R RET mutations. In this study we have analyzed 44 families with MEN 2A. HSCR1 co-segregated with MEN 2A in seven (16%) of the 44 families. The predisposing RET mutation in all seven families had been previously reported in MEN 2A or FMTC and occurred in exon 10 at codons 609, 618 or 620, resulting in C609Y, C618S, C620R or C620W substitution. MEN 2A families with RET exon 10 Cys mutations had a substantially greater risk of developing HSCR1 than those with the more common RET exon 11 Cys634 or exon 14 c804 mutations (P = 0.0005). These findings suggest that expression of HSCR1 in MEN 2A may be peculiar to RET exon 10 Cys mutations . However, HSCR1 in MEN 2A is not exclusive to C618R or C620R RET mutations and can occur with other exon 10 Cys amino acid substitutions. The strong correlation between disease phenotype and position of the MEN 2A RET mutation suggests that oncogenic activation of RET alone is insufficient to account for co-expression of the diseases.   相似文献   

3.
4.
Liu C  Jin L  Li H  Lou J  Luo C  Zhou X  Li JC 《Journal of human genetics》2008,53(9):825-833
Hirschsprung's disease (HSCR) is a congenital disorder characterized by intestinal obstructions due to the absence of enteric ganglia along variable lengths of the intestinal tract. RET coding mutations have been found in approximately 50% of familial cases, but they only explain a minority of sporadic cases. Here, we report our investigation of a possible role of RET non-coding mutations in sporadic HSCR patients. The haplotypes of seven single nucleotide polymorphisms (SNPs), all located in a region 4 kb upstream of the gene through to 23 kb of intron 1, and one SNP in exon 2 were constructed in 125 Han Chinese patients with sporadic HSCR and in 148 Han Chinese controls. Our results indicated that eight SNPs were significantly associated with HSCR (P < 0.0001). The C allele of rs2505535 would appear to represent a protecting allele for the Chinese population. One single haplotype composed of these eight markers was present in 59.6% of patients, versus 18.1% of controls. Based on our results, we conclude that non-coding mutations in RET have important roles in the development of HSCR. The unknown functional disease variant(s), with a dosage-dependent effect in HSCR, is likely to be located in the 5'-region of the RET gene.  相似文献   

5.
Hirschsprung disease (HSCR) is transmitted in a complex pattern of inheritance and is mostly associated with variants in the RET proto-oncogene. However, RET mutations are only identified in 15–20% of sporadic HSCR cases and solely in 50% of the familial cases. Since genomic rearrangements in particularly sensitive areas of the RET proto-oncogene and/or associated genes may account for the HSCR phenotype in patients without other detectable RET variants, the aim of the present study was to identify rearrangements in the coding sequence of RET as well as in three HSCR-associated genes ( ZEB2 , EDN3 and GDNF ) in HSCR patients by using Multiplex Ligation-dependent Probe Amplification (MLPA). We have screened 80 HSCR patients for genomic rearrangements in RET, ZEB2, EDN3 and GDNF and did not identify any deletion or amplification in these four genes in all patients. We conclude that genomic rearrangements in RET are rare and were not responsible for the HSCR phenotype in individuals without identifiable germline RET variants in our group of patients, yet this possibility cannot be excluded altogether because the confidence to identify variation in at least two percent of the individuals was only 95%.  相似文献   

6.
Hirschsprung associated GDNF mutations do not prevent RET activation   总被引:2,自引:0,他引:2  
Hirschsprung disease (HSCR) is a complex disorder characterised by aganglia of distal gastrointestinal tracts. The highest proportion of both familial and sporadic cases is due to mutations of the RET proto-oncogene. Five germline mutations in the glial cell-line-derived neurotrophic factor (GDNF) gene, one of the RET ligands, have been detected in HSCR patients. Pedigrees analysis and the observed association between these GDNF alterations and RET variants in the same patients raised the question of whether the GDNF gene plays any causative/predisposing role in HSCR pathogenesis. In the present work, we have studied the ability of GDNF proteins, each bearing one of the reported mutations, to activate RET by performing a functional test in cultured neuroblastoma cells. Consistently with the lack of genotype/phenotype correlation in human subjects, our results indicate absence of detectable alterations of mutant GDNF induced RET activation.  相似文献   

7.
Hirschsprung disease (HSCR), a congenital disorder characterized by intestinal obstruction due to absence of enteric ganglia along variable lengths of the intestinal tract, occurs both in familial and sporadic cases. RET mutations have been found in approximately 50% of the families, but explains only a minority of sporadic cases. This study aims at investigating a possible role of RET in sporadic HSCR patients. Haplotypes of 13 DNA markers, within and flanking RET, have been determined for 117 sporadic HSCR patients and their parents. Strong association was observed for six markers in the 5' region of RET. The largest distortions in allele transmission were found at the same markers. One single haplotype composed of these six markers was present in 55.6% of patients versus 16.2% of controls. Odds ratios (ORs) revealed a highly increased risk of homozygotes for this haplotype to develop HSCR (OR>20). These results allowed us to conclude that RET plays a crucial role in HSCR even when no RET mutations are found. An unknown functional disease variant(s) with a dosage-dependent effect in HSCR is likely located between the promoter region and exon 2 of RET.  相似文献   

8.
9.
Hirschsprung disease (HSCR) is a common congenital malformation(1 in 5 000 live births) due to the absence of autonomic gangliain the terminal hindgut, and resulting in intestinal obstructionin neonates. Recently, a dominant gene for familial HSCR hasbeen mapped to chromosome sub-band 10q11.2 and the disease hasbeen ascribed to mutations in a tyrosine kinase receptor genemapping to this region, the RETproto-oncogene. Studying the20 exons of the RET gene by a combination of denaturating gradientgel electrophoresis and single strand conformation polymorphismin a large series of HSCR patients (45 sporadic cases and 35familial forms), we found mutations of the RET gene in 50% offamilial HSCR, regardless of the length of the aganglionic segment.The mean penetrance of the mutant allele in familial HSCR wassignificantly higher in males (72%) than in females (51%). Mostinterestingly, mutations at the RET locus accounted for at least1/3 of sporadic HSCR in our series. These mutations were scatteredalong the length of the gene. Finally, among the mutations identifiedin sporadic cases (16/45), seven proved to be de novo mutationssuggesting that new mutations at the RET locus significantlycontribute to sporadic HSCR. Taken together, the low penetranceof the mutant gene, the lack of genotype-phenotype correlation,the sex-dependent effect of RET mutations and the variable clinicalexpression of the disease support the existence of one or moremodifier genes in familial HSCR.  相似文献   

10.
Mutations in the RET proto-oncogene are associated with MEN 2A and FMTC   总被引:20,自引:0,他引:20  
Multiple endocrine neoplasia type 2A (MEN 2A) and familial medullarythyroid carcinoma (FMTC) are dominantly inherited conditionswhich predispose to the development of endocrine neoplasia.Evidence is presented that sequence changes within the codingregion of the RET proto-oncogene, a putative transmembrane tyrosinekinase, may be responsible for the development of neoplasiain these inherited disorders. Single strand conformational variants(SSCVs) in exons 7 and 8 of the RET proto-oncogene were identifiedin eight MEN 2A and four FMTC families. The variants were observedonly in the DNA of individuals who were either affected or whohad inherited the MEN2A or FMTC allele as determined by haplotypingexperiments. The seven variants identified were sequenced directly.All involved point mutations within codons specifying cysteineresidues, resulting in nonconservative amino acid changes. Sixof the seven mutations are located in exon 7. A single mutationwas found in exon 8. Variants were not detected in four MEN2B families studied for all exon assays available, nor werethey detectable in 16 cases of well documented sporadic medullarythyroid carcinoma or pheochromocytoma that were tested for exon7 variants. Coinheritance of the mutations with disease andthe physical and genetic proximity of the RET proto-oncogeneprovide evidence that RET is responsible for at least two ofthe three inherited forms of MEN 2. Neither the normal function,nor the ligand of RET are yet known. However, its apparent involvementin the development of these inherited forms of neoplasia aswell as in papillary thyroid carcinoma suggest an importantdevelopmental or cell regulatory role for the protein.  相似文献   

11.
Mutation and polymorphism data for Hirschsprung disease (HSCR) varies among ethnic groups. Single nucleotide polymorphisms (SNP) of RET proto-oncogene (RET) were recently shown to be associated with the disease, and with disease severity, in different populations. In this study, comprehensive analysis of RET, GDNF, EDNRB, ET-3, and SOX-10 genes among sporadic HSCR in Thailand was conducted by standard PCR-SSCP, RFLP, and sequencing methods. Of 41 patients, 30 cases had rectosigmoid disease (RSD) and 11 cases were assigned to the long-segment disease (LSD) group. Four missense mutations of RET, S100M, R231H, T278N, and G533S, were identified in three patients. One novel missense mutation, V111Q, was detected in EDNRB. For ET-3, two novel missense mutations, D166E and C173R, occurred concomitantly in a patient. The incidence of missense mutation was significantly higher in our female HSCR patient than in the male counterpart. Statistical analysis of the SNPs revealed a significant difference between allele distribution of RET L769L in patients in the LSD and RSD groups. The predominant genotype construct of RET A45A/L769L in our HSCR was GG/GG, which is obviously different from results from all previous studies. The GG/GG genotype construct was associated with RSD and with males. The study also detected a variant allele of RET S836S which has never been reported in Asian cohorts.  相似文献   

12.
Hirschsprung's disease (aganglionic megacolon, HSCR) is a frequent condition of unknown origin (1/5000 live births) resulting in intestinal obstruction in neonates and severe constipation in infants and adults. In the majority of cases (80%), the aganglionic tract involves the rectum and the sigmoid colon only (short segment HSCR), while in 20% of cases it extends toward the proximal end of the colon (long segment HSCR). In a previous study, we mapped a gene for long segment familial HSCR to the proximal long arm of chromosome 10 (10q11.2). Further linkage analyses in familial HSCR have suggested tight linkage of the disease gene to the RET protoncogene mapped to chromosome 10q11.2. Recently, nonsense and missense mutations of RET have been identified in HSCR patients. However, the question of whether mutations of the RET gene account for both long segment and short segment familial HSCR remained unanswered. We have performed genetic linkage analyses in 11 long segment HSCR families and eight short segment HSCR families using microsatellite DNA markers of chromosome 10q. In both anatomical forms, tight pairwise linkage with no recombinant events was observed between the RET proto-oncogene locus and the disease locus (Zmax = 2.16 and Zmax = 5.38 for short segment and long segment HSCR respectively at 0 = 0%) Multipoint linkage analyses performed in the two groups showed that the maximum likelihood estimate was at the RET locus. Moreover, we show that point mutations of the RET proto-oncogene occur either in long segment or in short segment HSCR families and we provide evidence for incomplete penetrance of the disease causing mutation. These data suggest that the two anatomical forms of familial HSCR, which have been separated on the basis of clinical and genetic criteria, may be regarded as the variable clinical expression of mutations at the RET locus.  相似文献   

13.
Hirschsprung disease (HSCR, aganglionic megacolon) is a complex and heterogeneous disease with an incidence of 1 in 5000 live births. Despite the multifactorial determination of HSCR in the vast majority of cases, there is a monogenic subgroup for which private rare RET coding sequence mutations with high penetrance are found (45% of HSCR familial cases). An asymmetrical parental origin is observed for RET coding sequence mutations with a higher maternal inheritance. A parent-of-origin effect is usually assumed. Here we show that a differential reproductive rate for males and females also leads to an asymmetrical parental origin, which was never considered as a possible explanation till now. In the case of HSCR, we show a positive association between penetrance of the mutation and parental transmission asymmetry: no parental transmission asymmetry is observed in sporadic RET CDS mutation carrier cases for which penetrance of the mutation is low, whereas a parental transmission asymmetry is observed in affected sib-pairs for which penetrance of the mutation is higher. This allows us to conclude that the explanation for this parental asymmetry is that more severe mutations have resulted in a differential reproductive rate between male and female carriers.  相似文献   

14.
Three novel mutations in the RET proto-oncogene   总被引:2,自引:0,他引:2  
Medullary thyroid carcinoma (MTC) occurs as a sporadic tumor or in connection with inherited cancer syndromes of multiple endocrine neoplasia type 2 and familial MTC. Missense RET proto-oncogene mutations and small in-frame deletions are found in most of the cases. In a significant amount of sporadic MTC cases somatic mutation at codon 918 (exon 16), or at codons 609, 611, 618, 620 (exon 10), or codons 630, 634 (exon 11) appear. We report here on three new somatic cell missense mutations of the RET proto-oncogene associated with sporadic MTC. In one tumor mutation at codon 922 TCC(Ser)-->TTC(Phe) in exon 16 was found. In another tumor two mutations at codons 639 GCA(Ala)-->GGA(Gly) and 641 GCT(Ala)-->CGT(Arg) in the exon 11 were observed. Allele-specific PCR followed by sequencing demonstrated the presence of both mutations at the same allele.  相似文献   

15.
Hirschsprung disease (HSCR) is characterised by intestinal obstruction resulting from an absence of ganglion cells in the intestinal tract. The mutations in the major gene, RET, associated with isolated HSCR, are dominant loss-of-function mutations with incomplete penetrance and variable expressivity. We have ascertained a large inbred Israeli-Arab family segregating HSCR. Sequencing of the RET gene showed a splicing mutation, IVS6+5G- >A, in the homozygous state in all the females with severe forms of HSCR and in the heterozygous state in the male patient with short-segment HSCR. The recently described hypomorphic-RET predisposing allele, rs2435357, was transmitted in the heterozygous state to the male patient, but was not transmitted to the three affected females. Although the heterozygous IVS6+5G- >A is of low-penetrance for short-segment HSCR disease, the homozygous state is fully penetrant for total aganglionosis or long-segment HSCR. As in other inbred populations segregating a weakly penetrant RET allele (Mennonite), our findings support the hypothesis that the penetrance of RET gene mutations for the HSCR phenotype depends on: (i) the nature of the mutation, (ii) the allele dosage and (iii) modifier-loci.  相似文献   

16.
17.
Hirschsprung disease (HSCR, aganglionic megacolon) is a frequent congenital malformation regarded as a multigenic neurocristopathy. Two susceptibility genes have been recently identified in HSCR, namely the RET proto-oncogene and the endothelin B receptor (EDNRB) gene. Hitherto however, homozygosity for EDNRB mutations accounted for the HSCR- Waardenburg syndrome (WS) association. Here, we report heterozygous EDNRB missense mutations (G57S, R319W and P383L) in isolated HSCR. These data might suggest that EDNRB mutations could be dosage sensitive: heterozygosity would predispose to isolated HSCR with incomplete penetrance, while homozygosity would result in more complex neurocristopathies associating HSCR and WS features. In addition, the present data give further support to the role of the endothelin- signalling pathway in the development of neural crest-derived enteric neurons.   相似文献   

18.
Interactions between migrating neural crest cells and the environment of the gut are crucial for the development of the enteric nervous system (ENS). A key signalling mediator is the RET-receptor-tyrosine-kinase which, when defective, causes Hirschprung's disease (HSCR, colon aganglionosis). RET mutations alone cannot account for the variable HSCR phenotype, invoking interactions with as yet unknown, and probably inter-related, loci involved in ENS development. Homeobox ( HOX ) genes have a major role in gut development as depicted by the enteric Hox code. We investigated whether DNA alterations in HOX genes, either alone or in combination with RET , are implicated in HSCR. Genotyping effort was minimized by applying the HapMap data on Han Chinese from Beijing (CHB). 194 HSCR patients and 168 controls were genotyped using Sequenom technology for 72 tag, single nucleotide polymorphisms (SNPs) distributed along the HOX clusters. The HapMap frequencies were compared to those in our population and standard statistics were used for frequency comparisons. The multifactor-dimensionality-reduction method was used for multilocus analysis, in which RET promoter SNP genotypes were included. Genetic interactions were found between two HOX loci (5'- HOXA13 and 3'UTR- HOXB7 ) and the RET loci tested. Minor allele frequencies (MAF) of the SNPs tested in our sample were not significantly different from those reported by HapMap when the sample sizes of the populations compared were considered. This is the first evaluation of the HOX genes in HSCR and the first application of HapMap data in a Chinese population. The interacting HOX loci may affect the penetrance of the RET risk allele. HapMap data for the CHB population correlated well with the general Chinese population.  相似文献   

19.
Hirschsprung disease (HSCR) is a common congenital abnormality characterized by absence of the enteric ganglia in the hind gut. In 10- 40% of HSCR cases, mutations of the RET receptor tyrosine kinase have been found. The recent identification of a multimeric RET ligand/receptor complex suggested that mutations of genes encoding other components of this complex might also occur in HSCR. To investigate this role, we examined the gene for glial cell line-derived neurotrophic factor (GDNF), the circulating ligand of the RET receptor complex, for mutations in a panel of sporadic and familial HSCR. We identified GDNF sequence variants in 2/36 HSCR patients. The first of these was a conservative change which did not affect the GDNF protein sequence. The second variant was a de novo missense mutation in a family with no history of HSCR and without mutation of the RET gene. Thus, our data are consistent with a causative role for GDNF mutations in some HSCR cases.   相似文献   

20.
Diverse phenotypes associated with exon 10 mutations of the RET proto-oncogene   总被引:12,自引:0,他引:12  
Mutations of the RET proto-oncogene are the underlying causeof some cases of Hlrschsprung disease (HSCR) and the Inheritedcancer syndromes multiple endocrine neoplasia types 2A (MEN2A) and 2B (MEN 2B) and familial medullary thyroid carcinoma(FMTC). In HSCR these mutations are dispersed throughout thegene, while in MEN 2A and FMTC, they are tightly clustered Infive cystelne codons of the RET extracellular domain. HSCR andMEN 2 are usually distinct but occasional families have beenreported wtth both diseases. In each of five families with HSCRwith or without MEN 2A or FMTC, we have identified a nucleotidesubstitution In one of the five cystelne codons previously associatedwith MEN 2A or FMTC. In one family, which had HSCR as its onlyphenotype, we detected a Cys-Trp mutation at codon 609 whichhad not been previously observed. In three families, both HSCRand MEN 2A were associated with a single Cys—Arg mutationat either codon 618 or 620 of RET. In the fifth family, FMTCand HSCR were present but we could not determine whether HSCRarose from mutation of the RET locus. We suggest that specificmutations In cysteine codons 618 and 620 result In MEN 2A orFMTC, but can also predispose to HSCR with low penetrance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号