首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Higher crystallinity and extended chain morphology are induced in ultra-high molecular weight polyethylene (UHMWPE) in the hexagonal phase at temperatures and pressures above the triple point, resulting in improved mechanical properties. In this study, we report the effects of the presence of a plasticizing agent, namely vitamin E (α-tocopherol), in UHMWPE during high pressure crystallization. We found that this new vitamin E-blended and high pressure crystallized UHMWPE (VEHPE) has improved fatigue strength and wear resistance compared to virgin high pressure crystallized (HP) UHMWPE. This suggested different mechanisms of wear reduction and fatigue crack propagation resistance in UHMWPE.  相似文献   

2.
D.F. Farrar  A.A Brain 《Biomaterials》1997,18(24):1677-1685
The microstructure of ultra-high molecular weight polyethylene (UHMWPE) has been studied using a range of techniques. Both the unprocessed base powder and ram-extruded polymer have been examined using optical microscopy, scanning and transmission electron microscopy and smallangle light scattering. By examining the microstructure of samples compression moulded at a range of temperatures, techniques have been developed to assess the degree of consolidation of the processed polymer. The raw polymer is a powder with a particle size in the range 50–250 μm. These particles are themselves agglomerates of much finer particles typically 0.5–1 μm in size. It has been suggested that these sub-micron particles may be the origin of the sub-micron wear debris found in tissues around total joint replacements. However, examination of the ram-extruded polymer, from which implants are machined, shows a different structure from the powder, with no evidence of retention of the 0.5–1 μm structure seen in the powder in the processed material. It thus appears that the similarity in size between the sub-micron wear debris particles and the fine structure seen in the unprocessed UHMWPE resin is coincidental. Processed UHMWPE does show a ‘memory’ of the grain boundaries between powder particles and the degree of consolidation can be assessed by observing the distinctiveness of these boundaries.  相似文献   

3.
Ultra High Molecular Weight Polyethylene (UHMWPE) is a polymeric material employed in critical biomedical applications. Knowledge of its mechanical behavior is essential in order to obtain accurate prediction of stresses and deformations in real components, in particular when cyclic loading is considered. In the present research the effects of alternating and pulsating cyclic strain on the mechanical response of UHMWPE were studied by means of an experimental procedure based on tests carried out in strain control at different mean cyclic strain levels. During the tests the temperature increase due to hysteretic heating was controlled by means of a compressed air cooling apparatus specifically devised. By taking advantage of the possibility to control and stabilize temperature, cyclic steady-state mechanical response was investigated at room temperature and at 37 and 50 °C, comparing the effects of alternating and pulsating loading cycles. A transient thermal analysis using the finite element method (FEM) was also carried out to analyze temperature distribution within the specimen. UHMWPE exhibited cyclic softening as a result of a thermal contribution due to temperature increase and of a mechanical contribution related to the effects of applied load on the microstructure. The material exhibited different peak stress percent reductions for pulsating and alternating loading and during tensile and compressive loading phases. For pulsating tests significant cyclic mean stress relaxation was also observed. Based on the experimental procedure described the cyclic curve was determined as a function of temperature and fitted with a Ramberg–Osgood type constitutive equation, in which material parameters are temperature dependent. In this way the combined effects of temperature rises, such as those that might occur in biological environments or due to frictional heating, and mechanical loads could effectively be taken into account for constitutive modeling purposes of cyclic mechanical behavior of UHMWPE.  相似文献   

4.
Sterilization with ethylene oxide (EO) and gas plasma (GP) are well-known methods applied to ultra-high molecular weight polyethylene (UHMWPE) surfaces in the belief that they prevent major material changes caused by gamma irradiation. However, the influence of these surface sterilization methods on bacterial adherence to UHMWPE is unknown. UHMWPE samples with various degrees of roughness (0.3, 0.8 and 2.0 µm) were sterilized with either GP or EO. The variations in hydrophobicity, surface free energy and surface functional groups were investigated before and after sterilization. Sterilized samples were incubated with either Staphylococcus aureus or Staphylococcus epidermidis in order to study bacterial adherence to these materials. Fewer bacteria adhered to UHMWPE after sterilization with EO than after sterilization with GP, especially to the smoothest surfaces. No changes in chemical composition of the UHMWPE surface due to sterilization were observed using X-ray photoemission spectroscopy analysis. The decreased bacterial adherence to UHMWPE found at the smoothest surfaces after sterilization with EO was not directly related to changes in chemical composition. Increased bacterial adherence to rougher surfaces was associated with increased polar surface energy of EO-sterilized surfaces.  相似文献   

5.
The density, ash content and hardness were determined for ultra high molecular weight polyethylene from a single block of medical grade RCH 1000. The effect on these parameters of position within the block and of 2.5 Mrad irradiation was determined. The density was 942 ± 1 kgm?3. It varied slightly with position and increased slightly after irradiation. The ash content was less than 200 ppm, and varied slightly with position. The ash contained Ca, Al and Si. The hardness (DIN 53456) was 36 MNm?2 and no variation due to position or irradiation could be detected. It was concluded that the observed variations would be unlikely to have a significant effect on the wear behaviour.  相似文献   

6.
The ultimate goal in manipulating the surface and substrate of a cross-linked polyethylene (CLPE) liner is to obtain not only high wear resistance but also high oxidative stability and high-mechanical properties for life-long orthopedic bearings. We have demonstrated the fabrication of highly hydrophilic and lubricious poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) grafting layer onto the antioxidant vitamin E-blended CLPE (HD-CLPE(VE)) surface. The PMPC grafting layer with a thickness of 100 nm was successfully fabricated on the vitamin E-blended CLPE surface by using photoinduced-radical graft polymerization. Since PMPC has a highly hydrophilic nature, the water wettability and lubricity of the PMPC-grafted CLPE and HD-CLPE(VE) surfaces were greater than that of the untreated CLPE surface. The PMPC grafting contributed significantly to wear reduction in a hip-joint simulator wear test. Despite high-dose gamma-ray irradiation for cross-linking and further UV irradiation for PMPC grafting, the substrate modified by vitamin E blending maintained high-oxidative stability because vitamin E is an extremely efficient radical scavenger. Furthermore, the mechanical properties of the substrate remained almost unchanged even after PMPC grafting or vitamin E blending, or both PMPC grafting and vitamin E blending. In conclusion, the PMPC-grafted HD-CLPE(VE) provided simultaneously high-wear resistance, oxidative stability, and mechanical properties.  相似文献   

7.
Ultra-high molecular weight polyethylene (UHMWPE) is frequently employed in joint replacements because of its high biocompatibility; however, this material does not exhibit particularly strong wear performance, thus potentially reducing the longevity of such devices. Numerous techniques have been investigated to increase the resistance to wear of UHMWPE, but they are all based on expensive machinery and require a high level of safety precautions. Cold atmospheric pressure gas plasma treatment is an inexpensive process that has been used as a surface modification method and as a sterilization technique. We demonstrate for the first time that a helium/oxygen cold atmospheric pressure gas plasma can be used to enhance the wear performance of UHMWPE without affecting the cytocompatibility of the material. The exposure to a cold atmospheric pressure gas plasma results in a greater level of crosslinking of the polyethylene chains. As a consequence of the higher crosslinking, the material stiffness of the treated surface is increased.  相似文献   

8.
In this study the friction, wear and surface mechanical behavior of medical-grade ultra-high molecular weight polyethylene (UHMWPE) (GUR 1050 resin) were evaluated as a function of polymer crystallinity. Crystallinity was controlled by heating UHMWPE to a temperature above its melting point and varying the hold time and cooling rates. The degree of crystallinity of the samples was evaluated using differential scanning calorimetry (DSC). A higher degree of crystallinity in the UHMWPE resulted in lower friction force and an increase in scratch resistance at the micro- and nanoscales. On the nanoscale, the lamellar structure appeared to affect the observed wear resistance. Reciprocating-wear tests performed using a microtribometer showed that an increase in crystallinity also resulted in lower wear depth and width. Nanoindentation experiments also showed an increase in hardness values with an increase in sample crystallinity.  相似文献   

9.
Irradiated, thermally stabilized, highly cross-linked UHMWPE bearings have demonstrated superior wear performance and improved in vitro oxidation resistance compared with terminally gamma-sterilized bearings, yet retrieval analysis reveals unanticipated in vivo oxidation in these materials despite fewer or no measurable free radicals. There has been little evidence to date that the oxidation mechanism in thermally stabilized materials is the same as that in conventional materials, and so it is unknown whether oxidation in these materials is leading to chain scission and a degradation of mechanical properties, molecular weight, and crosslink density. The aim of this study was to determine whether measured in vivo oxidation in retrieved, highly cross-linked tibial bearings corresponds with a decreasing crosslink density. Analysis of three tibial bearing materials revealed that crosslink density decreased following in vivo duration, and that the change in crosslink density was strongly correlated with oxidation. The results suggest that oxidation in highly cross-linked materials is causing chain scissions that may, in time, impact the material properties. If in vivo oxidation continues over longer durations, there is potential for a clinically significant degradation of mechanical properties.  相似文献   

10.
Pruitt LA 《Biomaterials》2005,26(8):905-915
Medical grade ultra high molecular weight polyethylene (UHMWPE) has been used as the bearing surface of total joint replacements for over four decades. These polymeric devices are susceptible to accumulated cyclic damage in vivo. Wear debris formation that ultimately leads to a need for revision surgery is linked to the plasticity, fatigue and fracture mechanisms of UHMWPE. This paper examines the deformation, yielding, fracture and fatigue behavior of conventional and highly cross-linked medical grade UHMWPE. Such properties play an important role in determining the long-term success of orthopedic devices. The mechanical properties discussed include the deformation behavior of UHMWPE, the yielding associated with quasi-static tension and compression, fracture toughness, cyclic loading, and fatigue resistance.  相似文献   

11.
Ultra-high molecular weight polyethylene (UHMWPE) is a heterogeneous material composed of a networked substructure of grain boundary and grain aggregation. A new numerical model based on the discrete element method (DEM) was proposed to examine microscopic defect formation and propagation in UHMWPE. Numerical simulations were carried out using this model under two types of loading condition: unidirectional repetitive compression (simple loading) and bidirectional repetitive compression (switched loading). Subsurface defects were initiated and propagated in the vicinity of grain boundaries under both loading conditions. The defect propagation behavior was especially sensitive to grain boundary allocation under switched loading. An increase in defects was more rapid under switched loading than under simple loading. These numerical results showed qualitatively good agreement with experimental ones. It is suggested that the newly developed numerical method based on the DEM is a promising method to investigate fatigue behavior of a heterogeneous material such as UHMWPE under complicated loading conditions.  相似文献   

12.
Periprosthetic osteolysis is one of the main reasons for revision of arthroplasty. The osteolytic reaction is influenced by the dose, size and shape of the wear particles. For arthroplasty, a low number and biologically less active particles are required. This is the first study which analyzes the impact of different knee designs, combined with crosslinked polyethylenes (sequentially irradiated and annealed as well as remelted techniques), on the amount, size and shape of particles. Overall, six material combinations, four of them with crosslinked polyethylene (XPE) and two of them with ultra-high molecular weight polyethylene (UHMWPE) inserts, including fixed and mobile bearings, were tested in a knee joint simulator. After isolation nearly 100,000 particles were analyzed in size, shape and number by scanning electron microscopy and image analysis. For all the designs, the wear was predominantly smooth and granular with few fibrillar particles. The Scorpio® design with the X3™ insert, the Natural Knee® II design with the Durasul™ insert and the LCS® design, also combined with a crosslinked polyethylene insert, generated statistically significant (< 0.05) lower particle numbers. The particle size was independent of the radiation dose. The wear generated by the LCS® knee design (XPE and UHMWPE) had a higher percentage fraction of particles >1 μm in size (equivalent circle diameter). The NexGen® design, tested with the Prolong™ insert, showed a high number of particles in the biologically active size range compared with the other crosslinked designs, which could be a predictor for higher biological reactivity.  相似文献   

13.
14.
Confocal spectroscopic techniques are applied to selected Raman bands to study the microscopic features of acetabular cups made of ultra-high molecular weight polyethylene (UHMWPE) before and after implantation in vivo. The micrometric lateral resolution of a laser beam focused on the polymeric surface (or subsurface) enables a highly resolved visualization of 2-D conformational population patterns, including crystalline, amorphous, orthorhombic phase fractions, and oxidation index. An optimized confocal probe configuration, aided by a computational deconvolution of the optical probe, allows minimization of the probe size along the in-depth direction and a nondestructive evaluation of microstructural properties along the material subsurface. Computational deconvolution is also attempted, based on an experimental assessment of the probe response function of the polyethylene Raman spectrum, according to a defocusing technique. A statistical set of high-resolution microstructural data are collected on a fully 3-D level on gamma-ray irradiated UHMWPE acetabular cups both as-received from the maker and after retrieval from a human body. Microstructural properties reveal significant gradients along the immediate material subsurface and distinct differences are found due to the loading history in vivo, which cannot be revealed by conventional optical spectroscopy. The applicability of the confocal spectroscopic technique is valid beyond the particular retrieval cases examined in this study, and can be easily extended to evaluate in-vitro tested components or to quality control of new polyethylene brands. Confocal Raman spectroscopy may also contribute to rationalize the complex effects of gamma-ray irradiation on the surface of medical grade UHMWPE for total joint replacement and, ultimately, to predict their actual lifetime in vivo.  相似文献   

15.
Gencur SJ  Rimnac CM  Kurtz SM 《Biomaterials》2006,27(8):1550-1557
To prolong the life of total joint replacements, highly crosslinked ultra-high molecular weight polyethylenes (UHMWPEs) have been introduced to improve the wear resistance of the articulating surfaces. However, there are concerns regarding the loss of ductility and potential loss in fatigue crack propagation (FCP) resistance. The objective of this study was to evaluate the effects of gamma radiation-induced crosslinking with two different post-irradiation thermal treatments on the FCP resistance of UHMWPE. Two highly crosslinked and one virgin UHMWPE treatment groups (ram-extruded, orthopedic grade, GUR 1050) were examined. For the two highly crosslinked treatment groups, UHMWPE rods were exposed to 100 kGy and then underwent post-irradiation thermal processing either above the melt temperature or below the melt temperature (2 h-150 degrees C, 110 degrees C). Compact tension specimens were cyclically loaded to failure and the fatigue crack growth rate, da/dN, vs. cyclic stress intensity factor, DeltaK, behavior was determined and compared between groups. Scanning electron microscopy was used to examine fracture surface characteristics. Crosslinking was found to decrease the ability of UHMWPE to resist crack inception and propagation under cyclic loading. The findings also suggested that annealing as a post-irradiation treatment may be somewhat less detrimental to FCP resistance of UHMWPE than remelting. Scanning electron microscopy examination of the fracture surfaces demonstrated that the virgin treatment group failed in a more ductile manner than the two highly crosslinked treatment groups.  相似文献   

16.
《Acta biomaterialia》2014,10(5):1817-1823
Hyaluronic acid (HA) of different molecular weights (Mw) was grafted onto mica surfaces to study the effects of Mw on the conformation and wear protection properties of a grafted HA (gHA) layer in lubricin (LUB) and bovine synovial fluid (BSF) using a surface forces apparatus. The Mw of gHA had significant effects on the wear pressure (Pw), at which point the wear initiates. Increasing the gHA Mw from 51 to 2590 kDa increased Pw from 4 to 8 MPa in LUB and from 15 to 31 MPa in BSF. The 2590 kDa gHA in BSF had the best wear protection (Pw  31 MPa), even though it exhibited the highest friction coefficient (μ  0.35), indicating that a low μ does not necessarily result in good wear protection, as is often assumed. The normal force profile indicated that BSF confines the gHA structure, making it polymer brush-like, commonly considered as an excellent structure for boundary lubrication.  相似文献   

17.
Prosthetic joints appear to show a strong relationship between the type of relative motion and wear, requiring careful consideration in the design of wear simulators. This relationship was studied with a 12-station pin-on-disk device, specifically adapted for the wear simulation of prosthetic hip joints. Each station had a unique motion, characterized by the so-called slide track, the track of the pin on the disk. The slide track shapes included 10 ellipses, their aspect ratio (AR) varying from 1.1 to 11.0, and a circle and a straight line as extreme cases. Hence for the first time in hip wear simulation, the motion was systematically varied over a wide range. Conventional UHMWPE pins were tested against polished CoCr disks in diluted calf serum three times for 3 million cycles. Below the AR value of 5.5, the polyethylene wear factor and wear mechanisms agreed with clinical observations. Above this value, the wear factor decreased to unrealistically low values, and the wear surface topography differed from that of retrieved acetabular cups. The wear particles, however, were similar to those isolated from periprosthetic tissues, irrespective of the AR value. In conclusion, it is recommended that the AR value be kept well below the critical point of 5.5.  相似文献   

18.
Fatigue-related damage in UHMWPE is one of the main causes of long-term failure in total joint replacements. Crosslinking ultrahigh molecular weight polyethylene (UHMWPE) by gamma or electron-beam irradiation, in combination with prior or further thermal treatment, enhances its wear resistance against metallic components in total hip replacements, and eventually in knees. However, little information is available on the fatigue response of this modified UHMWPE. The objective of this study was to compare electron-beam-irradiated UHMWPE at 50, 100, and 150 kGy, with the well-known 25 kGy gamma-irradiated UHMWPE. Two different cyclic tests were performed under tensile stress, with a zero load ratio, R = 0. First, specimens were subjected to a sinusoidal load cycle at 1 Hz, which provided stress-life curves with the use of a failure criterion based on 12% yield strain. Second, specimens were tested under 50 load cycles at a displacement rate of 15 mm/min, which provided information about the evolution of secant modulus and plastic strain. The incubation period was also analyzed. DSC measurements were carried out to check the crystallization effect of irradiation. According to the results of fatigue resistance there was a crossover behavior between gamma- and electron-beam-irradiated UHMWPE regarding the applied stress. When the stress was higher than the crossover value, the fatigue resistance of gamma-irradiated samples was higher than electron-beam-irradiated ones. When the stress was lower, the fatigue behavior was the opposite. The crossover stress depended on the electron-beam-irradiation dose. The clinical relevance of this study lies in an improved knowledge of electron-beam-irradiated material under extreme mechanical circumstances, such as fatigue.  相似文献   

19.
The aim of this work is to understand the role of chemical and radiation induced crosslinking on the fatigue crack propagation resistance of medical grade ultrahigh molecular weight polyethylene (UHMWPE). In recent years, the need to improve the tribological performance of UHMWPE used in total joint replacements has resulted in the widespread utilization of crosslinking as a method to improve wear resistance. Although crosslinking has been shown to drastically improve the wear resistance of the polymer, the potential trade-off in fatigue properties has yet to be addressed. Fatigue crack propagation resistance is a concern in tibial inserts where large cyclic stresses are sufficient to drive the growth of subsurface cracks that potentially contribute to delamination wear mechanisms. For clinical relevance, the combined effects of sterilization and aging are examined in two commercially available crosslinked resins. Nonsterile and unaged resins serve as a control. To evaluate the effect of crosslinking, a comparison is made to uncrosslinked resins. Scanning electron microscopy is used to provide an understanding of fatigue fracture mechanisms in the crosslinked polymers. The results of this study show that the current level of crosslinking used in orthopedic resins for enhanced wear resistance is not beneficial for fatigue crack propagation resistance.  相似文献   

20.
Turell MB  Bellare A 《Biomaterials》2004,25(17):3389-3398
Ultra-high molecular weight polyethylene (UHMWPE) has gained worldwide acceptance as a bearing material used in orthopaedic implants. Despite its widespread use, inherent properties of the polymer continue to limit the wear resistance and the clinical lifespan of implanted knee and hip prosthetics containing UHMWPE components. The degree of crystallinity of UHMWPE is known to strongly influence several of its tensile mechanical properties such as Young's modulus, yield stress, strain-hardening rates, work of fracture and ultimate tensile properties. In this study, medical grade UHMWPE was subjected to four different crystallization conditions resulting in UHMWPE with a range of crystalline morphologies. Thereafter, the crystalline nanostructure was quantitatively characterized using a combination of ultra-small angle X-ray scattering and differential scanning calorimetry. Low-voltage scanning electron microscopy was employed as a supplementary technique to compare the crystalline morphology resulting from each crystallization condition. In addition, uniaxial tensile tests were performed to assess the effects of crystallization conditions on the mechanical properties of UHMWPE. This study showed that while crystallization conditions strongly influenced the morphology of UHMWPE, in most cases the mechanical properties of the material were not significantly affected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号