首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The significance of why a similar set of brain regions are associated with the default mode network and value-related neural processes remains to be clarified. Here, we examined i) whether brain regions exhibiting willingness-to-pay (WTP) task-related activity are intrinsically connected when the brain is at rest, ii) whether these regions overlap spatially with the default mode network, and iii) whether individual differences in choice behavior during the WTP task are reflected in functional brain connectivity at rest. Blood-oxygen-level dependent (BOLD) signal was measured by functional magnetic resonance imaging while subjects performed the WTP task and at rest with eyes open. Brain regions that tracked the value of bids during the WTP task were used as seed regions in an analysis of functional connectivity in the resting state data. The seed in the ventromedial prefrontal cortex was functionally connected to core regions of the WTP task-related network. Brain regions within the WTP task-related network, namely the ventral precuneus, ventromedial prefrontal and posterior cingulate cortex overlapped spatially with publically available maps of the default mode network. Also, those individuals with higher functional connectivity during rest between the ventromedial prefrontal cortex and the ventral striatum showed greater preference consistency during the WTP task. Thus, WTP task-related regions are an intrinsic network of the brain that corresponds spatially with the default mode network, and individual differences in functional connectivity within the WTP network at rest may reveal a priori biases in choice behavior.  相似文献   

2.
Resting-state networks dissociate in the early stage of Alzheimer's disease (AD). The posterior cingulate cortex (PCC) in AD brain is vulnerable to isolation from the rest of brain. However, it remains unclear how this functional connectivity is related to PCC changes. We employed resting-state functional MRI (fMRI) to examine brain regions with a functional connection to PCC in a mild AD group compared with matched control subjects. PCC connectivity was gathered by investigating synchronic low frequency fMRI signal fluctuations with a temporal correlation method. We found asymmetric PCC-left hippocampus, right dorsal-lateral prefrontal cortex and right thalamus connectivity disruption. In addition, some other regions such as the bilateral visual cortex, the infero-temporal cortex, the posterior orbital frontal cortex, the ventral medial prefrontal cortex and the precuneus showed decreased functional connectivity to the PCC. There were also some regions, primarily in the left frontal-parietal cortices, that showed increased connectivity. These regions included the medial prefrontal cortex, bilateral dorsal-lateral prefrontal cortex, the left basal ganglia and the left primary motor cortex. Impairments to memory, high vision-related functions and olfaction in AD can be explained by a disruption to the functional connection of resting-state networks. The results of increased connectivity may support the compensatory-recruitment hypothesis. Our findings suggest that the characteristics of resting-state functional connectivity could plausibly provide an early imaging biomarker for AD.  相似文献   

3.
目的 利用静息状态功能磁共振成像(fMRI)研究阿尔茨海默病(AD)早期后扣带回相关的静息脑网络连通性是如何变化的.方法 运用fMRI研究了16例轻度AD患者和16名健康对照者在静息状态后扣带回的功能连通性.与后扣带回有功能连通性的脑区是通过检测低频波动信号的时程相关性获得的.应用通用的SPM2图像统计软件计算组间和组内连通性差异,激活区阈值设置:P<0.01(校正),像素范围>5.利用SPM2软件随机效应分析t检验(经校正P<0.01,t=2.47,像素范围>5),比较患者组和对照组连通性激活的脑区.结果 与后扣带回有功能连通性减弱的脑区包括前额叶中线区、楔前叶、双侧视皮质、双侧颞下回、左侧海马、右侧丘脑、右侧额叶背外侧区;偏左侧化的连通性增高的脑区包括前额叶中线区、左侧颞下回、左侧基底节区、双侧额叶背外侧区及左侧中央前区.结论 与后扣带回相关的静息状态脑网络连通性减低与AD早期情节记忆损害和高级视觉功能损害有关系,轻度AD保留着功能连接的重塑性以便维持脑功能.静息fMRI是一种探索AD脑功能机制的适宜方法.  相似文献   

4.
Functional magnetic resonance imaging studies have shown that the insular cortex has a significant role in pain identification and information integration, while the default mode network is associated with cognitive and memory-related aspects of pain perception. However, changes in the functional connectivity between the default mode network and insula during pain remain unclear. This study used 3.0 T functional magnetic resonance imaging scans in 12 healthy subjects aged 24.8 ± 3.3 years to compare the differences in the functional activity and connectivity of the insula and default mode network between the baseline and pain condition induced by intramuscular injection of hypertonic saline. Compared with the baseline, the insula was more functionally connected with the medial prefrontal and lateral temporal cortices, whereas there was lower connectivity with the posterior cingulate cortex, precuneus and inferior parietal lobule in the pain condition. In addition, compared with baseline, the anterior cingulate cortex exhibited greater connectivity with the posterior insula, but lower connectivity with the anterior insula, during the pain condition. These data indicate that experimental low back pain led to dysfunction in the connectivity between the insula and default mode network resulting from an impairment of the regions of the brain related to cognition and emotion, suggesting the importance of the interaction between these regions in pain processing.  相似文献   

5.
In this paper, we build on our previous analysis [Bluhm, R.L., Miller, J., Lanius, R.A., Osuch, E.A., Boksman, K., Neufeld, R.W.J., et al., 2007 Spontaneous low-frequency fluctuations in the BOLD signal in schizophrenic patients: anomalies in the default network. Schizophrenia Bulletin 33, 1004–1012] of resting state connectivity in schizophrenia by examining alterations in connectivity of the retrosplenial cortex. We have previously demonstrated altered connectivity of the posterior cingulate/precuneus, particularly with other regions of the “default network” (which includes the medial prefrontal cortex and bilateral lateral parietal cortex). It was hypothesized that the retrosplenial cortex would show aberrant patterns of connectivity with regions of the default network and regions associated with memory. Patients with schizophrenia (N = 17) and healthy controls (N = 17) underwent a 5.5-min resting functional magnetic resonance imaging scan. Lower correlations were observed in patients with schizophrenia than in healthy controls between the retrosplenial cortex and both the temporal lobe and regions of the default network. In patients with schizophrenia, activity in the retrosplenial cortex correlated negatively with activity in bilateral anterior cingulate gyrus/medial prefrontal cortex (BA 32/10), despite the fact that these regions, as part of the default network, were expected to show positive correlations in activity. Connectivity of the retrosplenial cortex was greater in patients with more positive symptoms with areas previously associated with hallucinations, particularly the left superior temporal gyrus. These results suggest that spontaneous activity in the retrosplenial cortex during rest is altered in patients with schizophrenia. These alterations may help to explain alterations in self-oriented processing in this patient population.  相似文献   

6.
Neurobiological theories posit that schizophrenia relates to disturbances in connectivity between brain regions. Resting-state functional magnetic resonance imaging is a powerful tool for examining functional connectivity and has revealed several canonical brain networks, including the default mode, dorsal attention, executive control, and salience networks. The purpose of this study was to examine changes in these networks in schizophrenia. 42 patients with schizophrenia and 61 healthy subjects completed a RS-fMRI scanning session. Seed-based region-of-interest correlation analysis was used to identify the default mode, dorsal attention, executive control, and salience networks. Compared to healthy subjects, individuals with schizophrenia demonstrated greater connectivity between the posterior cingulate cortex, a key hub of the default mode, and the left inferior gyrus, left middle frontal gyrus, and left middle temporal gyrus. Interestingly, these regions were more strongly connected to the executive control network in healthy control subjects. In contrast to the default mode, patients demonstrated less connectivity in the executive control and dorsal attention networks. No differences were observed in the salience network. The results indicate that resting-state networks are differentially affected in schizophrenia. The alterations are characterized by reduced segregation between the default mode and executive control networks in the prefrontal cortex and temporal lobe, and reduced connectivity in the dorsal attention and executive control networks. The changes suggest that the process of functional specialization is altered in schizophrenia. Further work is needed to determine if the alterations are related to disturbances in white matter connectivity, neurodevelopmental abnormalities, and genetic risk for schizophrenia.  相似文献   

7.
以前额叶为种子点,利用静息态fMRI进行全脑时域相关的功能连接分析,观察长期海洛因成瘾者前额叶功能连接的变化。结果发现相比于正常对照,以左侧前额叶为种子点进行功能连接分析,海洛因成瘾者左侧前额叶与左侧海马、右侧前扣带回、左侧额中回、右侧额中回、右侧楔前叶功能连接明显降低;以右侧前额叶为种子点进行功能连接分析,海洛因成瘾者右侧前额叶与左侧眶额叶、左侧额中回功能连接明显降低。提示长期海洛因成瘾者前额叶与相关脑区的功能连接减弱,可能与海洛因成瘾的维持与戒断后复吸相关。  相似文献   

8.
目的研究颞叶内侧癫癎患者右侧海马与全脑,尤其是默认网络功能连接的关系,探讨颞叶内侧癫癎患者默认网络异常的机制及其形成的颞叶癫癎网络。方法23例颞叶内侧癫癎患者,采用静息功能连接的功能磁共振成像,选择右侧海马作为兴趣区,获得正常对照组和颞叶内侧癫癎组受试者的脑功能连接激活图,观察其右侧海马与全脑的功能连接。结果正常对照组受试者默认网络包括海马、后扣带回和(或)楔前叶、前扣带回和(或)前额叶内侧、角回及前颞叶。颞叶内侧癫癎组患者右侧海马与默认网络的正向功能连接明显减弱,与右侧额下回、颞上回及第一运动感觉皮质下部的正向功能连接增强;与前额叶背侧、顶间沟及第一运动感觉皮质上部的负向功能连接减弱。结论在颞叶内侧癫癎患者功能连接网络中,默认网络及部分正向功能连接网络受损,提示患者存在广泛的、与海马相关的生理功能丧失;与右侧额下回、颞上回及第一感觉运动皮质下部的功能连接增强则可能与颞叶癫癎网络有关。  相似文献   

9.
The hippocampus is believed to have close relationship with many cerebral cortexes and constitute memory network to modulate and facilitate communication, which makes it especially interesting and meaningful in the study of functional connectivity in mild cognitive impairment (MCI). However, functional connectivity between the hippocampus and other brain regions remains unclear in MCI. Furthermore, the longitudinal changes of the hippocampal connectivity have not been reported. In the study, resting state functional MRI (fMRI) was used to examine changes in hippocampal connectivity comparing 14 patients and 14 healthy age-matched controls. We found that functional connectivity between the hippocampus and a set of regions was disrupted in MCI, these regions are: the right frontal lobe, the bilateral temporal lobe and the right insular. While, the left posterior cingulate cortex, precuneus, hippocampus, caudate and right occipital gyrus showed increased connectivity to the hippocampus in MCI. Additionally, we traced the seven MCI patients and compared the hippocampal connectivity in initial stage and 3 years later stage. Several regions presented decreased connectivity to the hippocampus after 3 years. Finally, the hippocampal connectivity with some regions showed significant correlation with the cognitive performance of patients. Based on these findings, the decreased hippocampal connectivity might indicate reduced integrity of hippocampal cortical memory network in MCI. In addition, the increased hippocampal connectivity suggested compensation for the loss of memory function. With the development of the disease, the hippocampal connectivity may lose some compensation and add some more disruption due to the pathological changes.  相似文献   

10.
Recent neuroimaging studies have shown that several brain regions - namely, the posterior cingulate cortex (PCC), ventral medial prefrontal cortex (vmPFC), and the bilateral angular gyrus - are more active during resting states than during cognitive tasks (i.e., default mode network). Although there is evidence showing that the default mode network is associated with unconscious state, it is unclear whether this network is associated with unconscious processing when normal human subjects perform tasks without awareness. We manipulated the level of conscious processing in normal subjects by asking them to perform an implicit and an explicit memory task, and analyzed signal changes in the default mode network for the stimuli versus baseline in both tasks. The functional magnetic resonance imaging (fMRI) analysis showed that the level of activation in regions within this network during the implicit task was not significantly different from that during the baseline, except in the left angular gyrus and the insula. There was strong deactivation for the explicit task when compared with the implicit task in the default mode regions, except in the left angular gyrus and the left middle temporal gyrus. These data suggest that the activity in the default network is sustained and less disrupted when an implicit memory task is performed, but is suspended when explicit retrieval is required. These results provide evidence that the default mode network is associated with unconscious processing when human subjects perform an implicit memory task.  相似文献   

11.

Background:

Abnormal connectivity of the anticorrelated intrinsic networks, the task-negative network (TNN), and the task-positive network (TPN) is implicated in schizophrenia. Comparisons between schizophrenic patients and their unaffected siblings enable further understanding of illness susceptibility and pathophysiology. We examined the resting-state connectivity differences in the intrinsic networks between schizophrenic patients, their unaffected siblings, and healthy controls.

Methods:

Resting-state functional magnetic resonance images were obtained from 25 individuals in each subject group. The posterior cingulate cortex/precuneus and right dorsolateral prefrontal cortex were used as seed regions to identify the TNN and TPN through functional connectivity analysis. Interregional connectivity strengths were analyzed using overlapped intrinsic networks composed of regions common to all subject groups.

Results:

Schizophrenic patients and their unaffected siblings showed increased connectivity in the TNN between the bilateral inferior temporal gyri. By contrast, schizophrenic patients alone demonstrated increased connectivity between the posterior cingulate cortex/precuneus and left inferior temporal gyrus and between the ventral medial prefrontal cortex and right lateral parietal cortex in the TNN. Schizophrenic patients exhibited increased connectivity between the left dorsolateral prefrontal cortex and right inferior frontal gyrus in the TPN relative to their unaffected siblings, though this trend only approached statistical significance in comparison to healthy controls.

Conclusion:

Resting-state hyperconnectivity of the intrinsic networks may disrupt network coordination and thereby contribute to the pathophysiology of schizophrenia. Similar, though milder, hyperconnectivity of the TNN in unaffected siblings of schizophrenic patients may contribute to the identification of schizophrenia endophenotypes and ultimately to the determination of schizophrenia risk genes.  相似文献   

12.
Alterations in brain function in schizophrenia and other neuropsychiatric disorders are evident not only during specific cognitive challenges, but also from functional MRI data obtained during a resting state. Here we apply probabilistic independent component analysis (pICA) to resting state fMRI series in 25 schizophrenia patients and 25 matched healthy controls. We use an automated algorithm to extract the ICA component representing the default mode network (DMN) as defined by a DMN-specific set of 14 brain regions, resulting in z-scores for each voxel of the (whole-brain) statistical map. While goodness of fit was found to be similar between the groups, the region of interest (ROI) as well as voxel-wise analysis of the DMN showed significant differences between groups. Healthy controls revealed stronger effects of pICA-derived connectivity measures in right and left dorsolateral prefrontal cortices, bilateral medial frontal cortex, left precuneus and left posterior lateral parietal cortex, while stronger effects in schizophrenia patients were found in the right amygdala, left orbitofrontal cortex, right anterior cingulate and bilateral inferior temporal cortices. In patients, we also found an inverse correlation of negative symptoms with right anterior prefrontal cortex activity at rest and negative symptoms. These findings suggest that aberrant default mode network connectivity contributes to regional functional pathology in schizophrenia and bears significance for core symptoms.  相似文献   

13.
Creativity is imperative to the progression of human civilization, prosperity, and well‐being. Past creative researches tends to emphasize the default mode network (DMN) or the frontoparietal network (FPN) somewhat exclusively. However, little is known about how these networks interact to contribute to creativity and whether common or distinct brain networks are responsible for visual and verbal creativity. Here, we use functional connectivity analysis of resting‐state functional magnetic resonance imaging data to investigate visual and verbal creativity‐related regions and networks in 282 healthy subjects. We found that functional connectivity within the bilateral superior parietal cortex of the FPN was negatively associated with visual and verbal creativity. The strength of connectivity between the DMN and FPN was positively related to both creative domains. Visual creativity was negatively correlated with functional connectivity within the precuneus of the pDMN and right middle frontal gyrus of the FPN, and verbal creativity was negatively correlated with functional connectivity within the medial prefrontal cortex of the aDMN. Critically, the FPN mediated the relationship between the aDMN and verbal creativity, and it also mediated the relationship between the pDMN and visual creativity. Taken together, decreased within‐network connectivity of the FPN and DMN may allow for flexible between‐network coupling in the highly creative brain. These findings provide indirect evidence for the cooperative role of the default and executive control networks in creativity, extending past research by revealing common and distinct brain systems underlying verbal and visual creative cognition. Hum Brain Mapp 38:2094–2111, 2017. © 2017 Wiley Periodicals, Inc.  相似文献   

14.
Studies of in mesial temporal lobe epilepsy (mTLE) patients with hippocampal sclerosis (HS) have reported reductions in both functional and structural connectivity between hippocampal structures and adjacent brain regions. However, little is known about the connectivity among the default mode network (DMN) in mTLE. Here, we hypothesized that both functional and structural connectivity within the DMN were disturbed in mTLE. To test this hypothesis, functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) were applied to examine the DMN connectivity of 20 mTLE patients, and 20 gender‐ and age‐matched healthy controls. Combining these two techniques, we explored the changes in functional (temporal correlation coefficient derived from fMRI) and structural (path length and connection density derived from DTI tractography) connectivity of the DMN. Compared to the controls, we found that both functional and structural connectivity were significantly decreased between the posterior cingulate cortex (PCC)/precuneus (PCUN) and bilateral mesial temporal lobes (mTLs) in patients. No significant between‐group difference was found between the PCC/PCUN and medial prefrontal cortex (mPFC). In addition, functional connectivity was found to be correlated with structural connectivity in two pairwise regions, namely between the PCC/PCUN and bilateral mTLs, respectively. Our results suggest that the decreased functional connectivity within the DMN in mTLE may be a consequence of the decreased connection density underpinning the degeneration of structural connectivity. Hum Brain Mapp, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
Several recent studies have compared episodic and spatial memory in neuroimaging paradigms in order to understand better the contribution of the hippocampus to each of these tasks. In the present study, we build on previous findings showing common neural activation in default network areas during episodic and spatial memory tasks based on familiar, real‐world environments (Hirshhorn et al. (2012) Neuropsychologia 50:3094–3106). Following previous demonstrations of the presence of functionally connected sub‐networks within the default network, we performed seed‐based functional connectivity analyses to determine how, depending on the task, the hippocampus and prefrontal cortex differentially couple with one another and with distinct whole‐brain networks. We found evidence for a medial prefrontal‐parietal network and a medial temporal lobe network, which were functionally connected to the prefrontal and hippocampal seeds, respectively, regardless of the nature of the memory task. However, these two networks were functionally connected with one another during the episodic memory task, but not during spatial memory tasks. Replicating previous reports of fractionation of the default network into stable sub‐networks, this study also shows how these sub‐networks may flexibly couple and uncouple with one another based on task demands. These findings support the hypothesis that episodic memory and spatial memory share a common medial temporal lobe‐based neural substrate, with episodic memory recruiting additional prefrontal sub‐networks. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
The clinical misdiagnosis ratio of bipolar disorder (BD) patients to major depressive disorder (MDD) patients is high. Recent findings hypothesize that the ability to flexibly recruit functional neural networks is differently altered in BD and MDD patients. This study aimed to explore distinct aberrance of network flexibility during dynamic networks configuration in BD and MDD patients. Resting state functional magnetic resonance imaging of 40 BD patients, 61 MDD patients, and 61 matched healthy controls were recruited. Dynamic functional connectivity matrices for each subject were constructed with a sliding window method. Then, network switching rate of each node was calculated and compared among the three groups. BD and MDD patients shared decreased network switching rate of regions including left precuneus, bilateral parahippocampal gyrus, and bilateral dorsal medial prefrontal cortex. Apart from these regions, MDD patients presented specially decreased network switching rate in the bilateral anterior insula, left amygdala, and left striatum. Taken together, BD and MDD patients shared decreased network switching rate of key hubs in default mode network and MDD patients presented specially decreased switching rate in salience network and striatum. We found shared and distinct aberrance of network flexibility which revealed altered adaptive functions during dynamic networks configuration of BD and MDD.  相似文献   

17.
目的比较成年早发抑郁症(EOD)和成年晚发抑郁症(LOD)患者默认网络(DMN)内部功能连接的差异,探究不同发病年龄的抑郁症患者是否有不同的发病机制。方法选取在昆明医科大学第一附属医院精神科门诊或住院的EOD患者(n=58)和LOD患者(n=62)为研究对象,同期招募年轻健康对照组(n=60)和年老健康对照组(n=52)。对受试者进行静息态功能磁共振扫描,选择左侧楔前叶为种子点,计算该种子点与全脑的功能连接,并比较各组间该种子点的功能连接差异。结果四组之间功能连接具有差异的脑区涉及双侧额叶、颞叶、基底节、枕叶、顶叶及小脑等脑区。EOD组左侧楔前叶与左侧小脑Crus1区、左侧小脑IX区、左侧颞中回、右侧楔前叶、右侧前扣带回、右侧额中回、右侧角回、右侧脑岛、右侧内侧额上回、右侧颞中回的功能连接均高于年轻健康对照组(Z=3. 752 4~5. 867 8,P均0. 05);而左侧楔前叶与左侧额中回、左侧中央旁小叶、右侧缘上回、右侧额上回、右侧颞下回、右侧中央后回、右侧中央前回、右侧枕上回的功能连接均低于年轻健康对照组(Z=-5. 007 6~-3. 797 7,P均0. 05)。LOD组左侧楔前叶与左侧小脑Crus2区、左侧尾状核、左侧颞下回、左侧小脑Crus1区、左侧角回、左侧额中回、右侧额中回、右侧角回、右侧眶额部额中回的功能连接均高于年老健康对照组(Z=4. 122 8~6. 579 4,P均0. 05);与左侧海马旁回、左侧额上回、右侧枕中回、右侧中央前回、右侧内侧额上回、右侧锯状回、右侧颞下回、右侧中央旁小叶、右侧梭状回、右侧后扣带回的功能连接均低于年老健康对照组(Z=-5. 884 0~-3. 617 2,P均0. 05)。EOD组左侧楔前叶与左侧锯状回、左侧小脑IV-VI区、左侧小脑Crus2区的功能连接比LOD组高(Z=4. 087 7、3. 937 4、3. 672 1,P均0. 05);EOD组左侧楔前叶与右侧额中回、右侧眶额部额下回、右侧额上回的功能连接比LOD组低(Z=-4. 274 8、-3. 956 8、-4. 724 3、-3. 663 2,P均0. 05)。结论 DMN内部功能连接增高及额顶网络功能连接降低可能与EOD的发病机制相关,而DMN前部功能连接增高和后部功能连接降低可能与LOD的发病机制相关,不同发病年龄的成年抑郁症患者可能有不同的发病机制。  相似文献   

18.
Background: Impairments in social cognition have been described in schizophrenia and relate to core symptoms of the disorder. Social cognition is subserved by a network of brain regions, many of which have been implicated in schizophrenia. We hypothesized that deficits in connectivity between components of this social brain network may underlie the social cognition impairments seen in the disorder. Methods: We investigated brain activation and connectivity in a group of individuals with schizophrenia making social judgments of approachability from faces (n = 20), compared with a group of matched healthy volunteers (n = 24), using functional magnetic resonance imaging. Effective connectivity from the amygdala was estimated using the psychophysiological interaction approach. Results: While making approachability judgments, healthy participants recruited a network of social brain regions including amygdala, fusiform gyrus, cerebellum, and inferior frontal gyrus bilaterally and left medial prefrontal cortex. During the approachability task, healthy participants showed increased connectivity from the amygdala to the fusiform gyri, cerebellum, and left superior frontal cortex. In comparison to controls, individuals with schizophrenia overactivated the right middle frontal gyrus, superior frontal gyrus, and precuneus and had reduced connectivity between the amygdala and the insula cortex. Discussion: We report increased activation of frontal and medial parietal regions during social judgment in patients with schizophrenia, accompanied by decreased connectivity between the amygdala and insula. We suggest that the increased activation of frontal control systems and association cortex may reflect a compensatory mechanism for impaired connectivity of the amygdala with other parts of the social brain networks in schizophrenia.Key words: fMRI, social cognition, approachability, psychosis, neural, psychophysiological interaction  相似文献   

19.
The default network exhibits correlated activity at rest and has shown decreased activation during performance of cognitive tasks. There has been little investigation of changes in connectivity of this network during task performance. In this study, we examined task‐related modulation of connectivity between two seed regions from the default network posterior cingulated cortex (PCC) and medial prefrontal cortex (mPFC) and the rest of the brain in 12 healthy adults. The purpose was to determine (1) whether connectivity within the default network differs between a resting state and performance of a cognitive (working memory) task and (2) whether connectivity differs between these nodes of the default network and other brain regions, particularly those implicated in cognitive tasks. There was little change in connectivity with the other main areas of the default network for either seed region, but moderate task‐related changes in connectivity occurred between seed regions and regions outside the default network. For example, connectivity of the mPFC with the right insula and the right superior frontal gyrus decreased during task performance. Increased connectivity during the working memory task occurred between the PCC and bilateral inferior frontal gyri, and between the mPFC and the left inferior frontal gyrus, cuneus, superior parietal lobule, middle temporal gyrus and cerebellum. Overall, the areas showing greater correlation with the default network seed regions during task than at rest have been previously implicated in working memory tasks. These changes may reflect a decrease in the negative correlations occurring between the default and task‐positive networks at rest. Hum Brain Mapp, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
Zhou Y  Shu N  Liu Y  Song M  Hao Y  Liu H  Yu C  Liu Z  Jiang T 《Schizophrenia Research》2008,100(1-3):120-132
Hippocampus has been implicated in participating in the pathophysiology of schizophrenia. However, the functional and anatomical connectivities between hippocampus and other regions are rarely concurrently investigated in schizophrenia. In the present study, both functional magnetic resonance imaging (fMRI) during rest and diffusion tensor imaging (DTI) were performed on 17 patients with paranoid schizophrenia and 14 healthy subjects. Resting-state functional connectivities of the bilateral hippocampi were separately analyzed by selecting the anterior hippocampus as region of interest. The fornix body was reconstructed by diffusion tensor tractography, and the integrity of this tract was evaluated using fractional anisotropy (FA). In patients with schizophrenia, the bilateral hippocampi showed reduced functional connectivities to some regions which have been reported to be involved in episodic memory, such as posterior cingulate cortex, extrastriate cortex, medial prefrontal cortex, and parahippocampus gyrus. We speculated that these reduced connectivity may reflect the disconnectivity within a neural network related to the anterior hippocampus in schizophrenia. Meanwhile the mean FA of the fornix body was significantly reduced in patients, indicating the damage in the hippocampal anatomical connectivity in schizophrenia. The concurrence of the functional disconnectivity and damaged anatomical connectivity between the hippocampus and other regions in schizophrenia suggest that the functional–anatomical relationship need to be further investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号