首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Myotonic dystrophy (DM) is caused by a CTG repeat expansion in the 3'UTR of the DM protein kinase (DMPK) gene. A very high level of instability is observed through successive generations and the size of the repeat is generally correlated with the severity of the disease and with age at onset. Furthermore, tissues from DM patients exhibit somatic mosaicism that increases with age. We generated transgenic mice carrying large human genomic sequences with 20, 55 or >300 CTG, cloned from patients from the same affected DM family. Using large human flanking sequences and a large amplification, we demonstrate that the intergenerational CTG repeat instability is reproduced in mice, with a strong bias towards expansions and with the same sex- and size-dependent characteristics as in humans. Moreover, a high level of instability, increasing with age, can be observed in tissues and in sperm. Although we did not observe dramatic expansions (or 'big jumps' over several hundred CTG repeats) as in congenital forms of DM, our model carrying >300 CTG is the first to show instability so close to the human DM situation. Our three models carrying different sizes of CTG repeat provide insight on the different factors modulating the CTG repeat instability.  相似文献   

2.
Summary Myotonic dystrophy (DM) is caused by an abnormal expansion of an unstable CTG trinucleotide repeat in the 3′ untranslated region of mRNA encoding a putative serine/threonine protein kinase. We analyzed 59 patients with DM (28 congenital DM families: 27 families with maternal transmission and 1 paternal transmission) and 27 normal control subjects to evaluate their CTG repeat size between DM patients and the normal controls, and to search for a correlation between the clinical characteristics of congenital DM (CDM) and CTG repeat expansions. Analysis was on the basis of the Southern blot and polymerase chain reaction (PCR) methods, and by direct sequencing of PCR amplified CTG repeats. Analysis of intergenerational differences in the CTG repeat size for mother-child pairs showed a positive correlation (y=1.0384x+1265.2,r 2=0.311). In addition to the strong parental bias, this group showed genetic anticipation. There was a significant correlation of the CTG repeat expansion with disease severity. The largest CTG repeat expansion (2,293 CTG repeats) on average belonged to the severe CDM group, and the smallest (129 CTG repeats) to the subclinical DM group. The mutant allele of an asymptomatic father in the paternally transmitted pedigree revealed 75 CTG repeats, demonstrating that he was a DM protomutation carrier.  相似文献   

3.
The instability of (CTG)?(CAG) repeats can cause >15 diseases including myotonic dystrophy, DM1. Instability can arise during DNA replication, repair or recombination, where sealing of nicks by DNA ligase I (LIGI) is a final step. The role of LIGI in CTG/CAG instability was determined using in vitro and in vivo approaches. Cell extracts from a human (46BR) harbouring a deficient LIGI (~3% normal activity) were used to replicate CTG/CAG repeats; and DM1 mice with >300 CTG repeats were crossed with mice harbouring the 46BR LigI. In mice, the defective LigI reduced the frequency of CTG expansions and increased CTG contraction frequencies on female transmissions. Neither male transmissions nor somatic CTG instability was affected by the 46BR LigI - indicating a post-female germline segregation event. Replication-mediated instability was affected by the 46BR LIGI in a manner that depended upon the location of Okazaki fragment initiation relative to the repeat tract; on certain templates, the expansion bias was unaltered by the mutant LIGI, similar to paternal transmissions and somatic tissues; however, a replication fork-shift reduced expansions and increased contractions, similar to maternal transmissions. The presence of contractions in oocytes suggests that the DM1 replication profile specific to pre-meiotic oogenesis replication of maternal alleles is distinct from that occurring in other tissues and, when mediated by the mutant LigI, is predisposed to CTG contractions. Thus, unlike other DNA metabolizing enzymes studied to date, LigI has a highly specific role in CTG repeat maintenance in the maternal germline, involved in mediating CTG expansions and in the avoidance of maternal CTG contractions.  相似文献   

4.
The vast majority of Friedreich ataxia patients are homozygous for large GAA triplet repeat expansions in intron 1 of the X25 gene. Instability of the expanded GAA repeat was examined in 23 chromosomes bearing 97-1250 triplets in lymphoblastoid cell lines passaged 20-39 times. Southern analyses revealed 18 events of significant changes in length ranging from 69 to 633 triplets, wherein the de novo allele gradually replaced the original over 1-6 passages. Contractions and expansions occurred with equal frequency and magnitude. This behavior is unique in comparison with other large, non-coding triplet repeat expansions [(CGG)(n)and (CTG)(n)] which remain relatively stable under similar conditions. We also report a rare patient who, having inherited two expanded alleles, showed evidence of contracted GAA repeats ranging from nine to 29 triplets in DNA from two independent peripheral blood samples. The GAA triplet repeat is known to adopt a triplex structure, and triplexes in transcribed templates cause enhanced mutagenesis. The poly(A) tract and a 135 bp sequence, both situated immediately upstream of the GAA triplet repeat, were therefore examined for somatic mutations. The poly(A) tract showed enhanced instability when in cis with the GAA expansion. The 135 bp upstream sequence was found to harbor a 3-fold excess of point mutations in DNA derived from individuals homozygous for the GAA triplet repeat expansion compared with normal controls. These data are likely to have important mechanistic and clinical implications.  相似文献   

5.
6.
目的 鉴定一个强直性肌营养不良(dystrophy myotonica,DM)家系的致病突变,探讨实时定量PCR能否用于检测导致DM1的CTG重复延展突变.方法 采集家系成员外周血,提取基因组DNA.针对DM1位点DMPK基因内的CTG重复区和DM2位点CNBP基因内的CCTG重复区进行普通PCR、实时荧光定量PCR、微卫星标记连锁分析.结果 CTG重复区普通PCR产物电泳显示患者特有大于2 kb的弥散带.定量PCR显示,患者CTG重复区相对拷贝数约为0.5,CCTG重复区相对拷贝数约为1.在DM1位点的微卫星标记,患者均有共享等位基因;而在DM2位点的大部分标记,患者没有共享等位基因.结论 此DM家系的致病突变是DM1位点的CTG重复延展突变;应用实时定量PCR可以确定高度重复延展片段扩增失败,从而推断重复延展突变的存在,达到快速检测DM1的目的.  相似文献   

7.
目的 鉴定一个强直性肌营养不良(dystrophy myotonica,DM)家系的致病突变,探讨实时定量PCR能否用于检测导致DM1的CTG重复延展突变.方法 采集家系成员外周血,提取基因组DNA.针对DM1位点DMPK基因内的CTG重复区和DM2位点CNBP基因内的CCTG重复区进行普通PCR、实时荧光定量PCR、微卫星标记连锁分析.结果 CTG重复区普通PCR产物电泳显示患者特有大于2 kb的弥散带.定量PCR显示,患者CTG重复区相对拷贝数约为0.5,CCTG重复区相对拷贝数约为1.在DM1位点的微卫星标记,患者均有共享等位基因;而在DM2位点的大部分标记,患者没有共享等位基因.结论 此DM家系的致病突变是DM1位点的CTG重复延展突变;应用实时定量PCR可以确定高度重复延展片段扩增失败,从而推断重复延展突变的存在,达到快速检测DM1的目的.  相似文献   

8.
目的 鉴定一个强直性肌营养不良(dystrophy myotonica,DM)家系的致病突变,探讨实时定量PCR能否用于检测导致DM1的CTG重复延展突变.方法 采集家系成员外周血,提取基因组DNA.针对DM1位点DMPK基因内的CTG重复区和DM2位点CNBP基因内的CCTG重复区进行普通PCR、实时荧光定量PCR、微卫星标记连锁分析.结果 CTG重复区普通PCR产物电泳显示患者特有大于2 kb的弥散带.定量PCR显示,患者CTG重复区相对拷贝数约为0.5,CCTG重复区相对拷贝数约为1.在DM1位点的微卫星标记,患者均有共享等位基因;而在DM2位点的大部分标记,患者没有共享等位基因.结论 此DM家系的致病突变是DM1位点的CTG重复延展突变;应用实时定量PCR可以确定高度重复延展片段扩增失败,从而推断重复延展突变的存在,达到快速检测DM1的目的.  相似文献   

9.
10.
We recently described an untranslated CTG expansion that causes a previously undescribed form of spinocerebellar ataxia (SCA8). The SCA8 CTG repeat is preceded by a polymorphic but stable CTA tract, with the configuration (CTA)(1-21)(CTG)(n). The CTG portion of the repeat is elongated on pathogenic alleles, which nearly always change in size when transmitted from generation to generation. To better understand the reduced penetrance and maternal penetrance bias associated with SCA8 we analyzed the sequence configurations and instability patterns of the CTG repeat in affected and unaffected family members. In contrast to other triplet repeat diseases, expanded alleles found in affected SCA8 individuals can have either a pure uninterrupted CTG repeat tract or an allele with one or more CCG, CTA, CTC, CCA or CTT interruptions. Surprisingly, we found six different sequence configurations of the CTG repeat on expanded alleles in a seven generation family. In two instances duplication of CCG interruptions occurred over a single generation and in other instances duplications that had occurred in different branches of the family could be inferred. We also evaluated SCA8 instability in sperm samples from individuals with expansions ranging in size from 80 to 800 repeats in blood. Surprisingly the SCA8 repeat tract in sperm underwent contractions, with nearly all of the resulting expanded alleles having repeat lengths of <100 CTGs, a size that is not often associated with disease. These en masse repeat contractions in sperm likely underlie the reduced penetrance associated with paternal transmission.  相似文献   

11.
Myotonic dystrophy type 1 (DM1) is caused by the expansion of an unstable CTG repeat (g.17294_17296(45_1000)) with more repeats associated with increased disease severity and reduced age at onset. Expanded disease-associated alleles are highly unstable in both the germline and soma. Germline instability is expansion biased, providing a molecular explanation for anticipation. Somatic instability is expansion biased, size- and age-dependent, features that have compromised genotype–phenotype correlations and intergenerational studies. We corrected these confounding factors by estimating the progenitor allele length in 54 father–offspring and 52 mother–offspring pairs in Costa Rican DM1 families. Not surprisingly, we found major parental allele length effects on the size of the allele transmitted, the magnitude of the intergenerational length change, the age at onset in the next generation and the degree of anticipation in both male and female transmissions. We also detected, for the first time, an age-of-parent effect for both male and female transmission. Interestingly, we found no evidence for an intrauterine effect in the transmission of congenital DM1, suggesting previous reports may have been an artefact of age-dependent somatic instability and sampling bias. These data provide new insights into the germline dynamics of the CTG repeat and opportunities for providing additional advice and more accurate risk assessments to prospective parents in DM1 families.  相似文献   

12.
Myotonic dystrophy type 1 (DM1) is one of a growing number of inherited human diseases whose molecular basis has been implicated as the expansion of a trinucleotide DNA repeat. Expanded disease-associated alleles of >50 CTG repeats are unstable in both the germline and soma. Expansion of the unstable alleles over time and variation of the level of mutation between the somatic tissues of an individual are thought to account at least partially for the tissue specificity and progressive nature of the symptoms. We previously generated a number of transgenic mouse lines containing a large expanded CTG repeat tract that replicated a number of the features of unstable DNA in humans, including frequent sex-specific changes in allele length during intergenerational transmission. Small length change mutations were apparent in the somatic tissues of young mice in all of the lines generated, but the gross instability observed in human DM1 patients was not replicated. We now show that in one of the lines, Dmt -D, spectacular, expansion-biased, tissue-specific instability is observed in older mice. The highest levels of instability were detected in kidney with gains of >500 repeats, representing a tripling of allele length, in some cells. Mosaicism accumulated in an age-dependent manner, but the tissue specificity did not obviously correlate with cell turnover. Such gross somatic mosaicism was not observed in three other lines examined, further emphasizing a role for flanking DNA in modulating repeat stability.  相似文献   

13.
14.
15.
16.
Myotonic dystrophy type 1 (DM1) is a dominant multisystemic disorder associated with high variability of symptoms and anticipation. DM1 is caused by an unstable CTG repeat expansion that usually increases in successive generations and tissues. DM1 family pedigrees have shown that ~90% and 10% of transmissions result in expansions and contractions of the CTG repeat, respectively. To date, the mechanisms of CTG repeat contraction remain poorly documented in DM1. In this report, we identified two new DM1 families with apparent contractions and no worsening of DM1 symptoms in two and three successive maternal transmissions. A new and unique CAG interruption was found in 5′ of the CTG expansion in one family, whereas multiple 5′ CCG interruptions were detected in the second family. We showed that these interruptions are associated with maternal intergenerational contractions and low somatic mosaicism in blood. By specific triplet‐prime PCR, we observed that CTG repeat changes (contractions/expansions) occur preferentially in 3′ of the interruptions for both families.  相似文献   

17.
18.
Precise measurement of germline repeat number mutations is important for understanding the molecular etiology of expanded trinucleotide repeat diseases. We used single genome-equivalent PCR of sperm DNA to measure the mutation frequencies in two lines of Dmt transgenic mice containing an expanded CTG.CAG tract on an identical genetic background. Single genome-equivalent PCR indicated that apparent mutational spectra derived in other investigations from PCR of bulk sperm DNA were largely the consequence of PCR stutter and not mutations. Here we show that sperm from 8-week-old Dmt-D mice had a significantly higher mutation frequency (change of >1 repeat) (14.2%) than those of Dmt-E mice of the same age (5.5%), in agreement with pedigree analysis. Furthermore, the mutation frequency in sperm of Dmt-D mice increased significantly with age (28.0% at 17 weeks). The age dependence of the degree of expansion implies that mutations accumulate with time in spermatogenic stem cells. Similar rates of expansion per spermatogenic cycle in man would yield the large expansions observed in human diseases such as myotonic dystrophy type 1. Pedigree data showed a significant age-dependent bias toward repeat contraction in female transmissions and a trend towards expansion with age in male transmissions. Thus, direct single genome-equivalent PCR of the sperm DNA of an individual male appears to predict the distribution of mutant allele sizes that might be inherited by its offspring. In further contrast to a recent report, the sex of the offspring had no detectable effect on the direction of the mutational length change.  相似文献   

19.
Spinocerebellar ataxia type 7 (SCA7) is an autosomal dominant cerebellar ataxia caused by a CAG repeat expansion in the ataxin-7 gene. In humans, SCA7 is characterized by marked anticipation due to intergenerational repeat instability with a bias toward expansion, and is thus regarded as the most unstable of the polyglutamine diseases. To study the molecular basis of CAG/CTG repeat instability and its pathological significance, we generated lines of transgenic mice carrying either a SCA7 cDNA construct or a 13.5 kb SCA7 genomic fragment with 92 CAG repeats. While the cDNA transgenic mice showed little intergenerational repeat instability, the genomic fragment transgenic mice displayed marked intergenerational instability with an obvious expansion bias. We then went on to generate additional lines of genomic fragment transgenic mice, and observed that deletion of the 3' genomic region significantly stabilized intergenerational transmission of the SCA7 CAG92 repeat. These results suggest that cis-information present on the genomic fragment is driving the instability process. As the SCA7 genomic fragment contains a large number of replication-associated motifs, the presence of such sequence elements may make the SCA7 CAG repeat region more susceptible to instability. Small-pool and standard PCR analysis of tissues from genomic fragment mice revealed large repeat expansions in their brains and livers, but no such changes were found in any tissues from cDNA transgenic mice that have been shown to undergo neurodegeneration. As large somatic repeat expansions are absent from the brains of SCA7 cDNA mice, our results indicate that neurodegeneration can occur without marked somatic mosaicism, at least in these mice.  相似文献   

20.
The genetic basis of myotonic dystrophy (DM) is the expansion of an unstable CTG repeat in the 34 UTR of the DM protein kinase gene on chromosome 19. One of the principal features of the DM mutation is an extraordinarily high level of somatic mosaicism, due to an extremely high degree of somatic instability both within and between different tissues. This instability appears to be biased towards further expansion and continuous throughout the life of an individual, features that could be associated with the progressive nature of the disease. Although increasing measured allele size between patients clearly correlates with an increased severity of symptoms and an earlier age of onset, this correlation is not precise and measured allele length cannot be used as an accurate predictor of age of onset. In order to further characterize the dynamics of DM CTG repeat somatic instability, we have studied repeat length changes over time in 111 myotonic dystrophy patients with varying clinical severity and CTG repeat size over time intervals of 1-7 years. We have found a direct progression of the size heterogeneity over time related to initial CTG repeat size and the time interval and always biased towards further expansion. Attempts to mathematically model the dynamics have proved only partially successful suggesting that individual specific genetic and/or environmental factors also play a role in somatic mosaicism.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号