首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Promising findings suggest that systemic inflammation and neuroinflammation are central features in cerebrovascular disease. Inflammatory mechanisms are also important participants in the pathophysiology of hypertension. Markers of inflammation have been shown to be upregulated in different forms of cerebrovascular disease, and to correlate with vascular risk. The inhibitor nuclear factor-eB/nuclear factor-eB system is considered a major intracellular inflammatory pathway, mediating most of the vascular inflammatory responses. Increasing evidence indicates that hypertension, through the vasoactive peptides angiotensin and endothelin-1, promotes and accelerates the atherosclerotic process via inflammatory mechanisms. Proinflammatory properties of angiotensin II have been demonstrated. The identification of useful markers of inflammation, of new therapeutic targets to interfere with these mechanisms, and the evaluation of the efficacy of anti-inflammatory treatments will allow progress in our ability to combat cerebrovascular disease and the complications of hypertension. Whether these targets will be useful in the development of risk prediction strategies or therapies for the treatment of stroke in humans is far from clear.  相似文献   

3.
Choi H  Lee RH  Bazhanov N  Oh JY  Prockop DJ 《Blood》2011,118(2):330-338
Human mesenchymal stem/progenitor cells (hMSCs) repair tissues and modulate immune systems but the mechanisms are not fully understood. We demonstrated that hMSCs are activated by inflammatory signals to secrete the anti-inflammatory protein, TNF-α-stimulated gene 6 protein (TSG-6) and thereby create a negative feedback loop that reduces inflammation in zymosan-induced peritonitis. The results demonstrate for the first time that TSG-6 interacts through the CD44 receptor on resident macrophages to decrease zymosan/TLR2-mediated nuclear translocation of the NF-κB. The negative feedback loop created by MSCs through TSG-6 attenuates the inflammatory cascade that is initiated by resident macrophages and then amplified by mesothelial cells and probably other cells of the peritoneum. Because inflammation underlies many pathologic processes, including immune responses, the results may explain the beneficial effects of MSCs and TSG-6 in several disease models.  相似文献   

4.
The lymphatic system plays an important role in the physiological control of the tissue fluid balance and in the initiation of immune responses. Recent studies have shown that lymphangiogenesis, the growth of new lymphatic vessels and/or the expansion of existing lymphatic vessels, is a characteristic feature of acute inflammatory reactions and of chronic inflammatory diseases. In these conditions, lymphatic vessel expansion occurs at the tissue level but also within the draining lymph nodes. Surprisingly, activation of lymphatic vessel function by delivery of vascular endothelial growth factor-C exerts anti-inflammatory effects in several models of cutaneous and joint inflammation. These effects are likely mediated by enhanced drainage of extravasated fluid and inflammatory cells, but also by lymphatic vessel-mediated modulation of immune responses. Although some of the underlying mechanisms are just beginning to be identified, lymphatic vessels have emerged as important targets for the development of new therapeutic strategies to treat inflammatory conditions. In this context, it is of great interest that some of the currently used anti-inflammatory drugs also potently activate lymphatic vessels.  相似文献   

5.
6.
Lipid homeostasis and inflammation are key determinants in atherogenesis, exemplified by the requirement of lipid-laden, foam cell macrophages for atherosclerotic lesion formation. Although the nuclear receptor PPARdelta has been implicated in both systemic lipid metabolism and macrophage inflammation, its role as a therapeutic target in vascular disease is unclear. We show here that orally active PPARdelta agonists significantly reduce atherosclerosis in apoE(-/-) mice. Metabolic and gene expression studies reveal that PPARdelta attenuates lesion progression through its HDL-raising effect and anti-inflammatory activity within the vessel wall, where it suppresses chemoattractant signaling by down-regulation of chemokines. Activation of PPARdelta also induces the expression of regulator of G protein signaling (RGS) genes, which are implicated in blocking the signal transduction of chemokine receptors. Consistent with this, PPARdelta ligands repress monocyte transmigration and macrophage inflammatory responses elicited by atherogenic cytokines. These results reveal that PPARdelta antagonizes multiple proinflammatory pathways and suggest PPARdelta-selective drugs as candidate therapeutics for atherosclerosis.  相似文献   

7.
Asthma is a chronic inflammatory disease of the airways characterized by structural airway changes, which are known as airway remodeling, including smooth muscle hypertrophy, goblet cell hyperplasia, subepithelial fibrosis, and angiogenesis. Vascular remodeling in asthmatic lungs results from increased angiogenesis, which is mainly mediated by vascular endothelial growth factor (VEGF). VEGF is a key regulator of blood vessel growth in the airways of asthma patients by promoting proliferation and differentiation of endothelial cells and inducing vascular leakage and permeability. In addition, VEGF induces allergic inflammation, enhances allergic sensitization, and has a role in Th2 type inflammatory responses. Specific inhibitors of VEGF and blockers of its receptors might be useful to control chronic airway inflammation and vascular remodeling, and might be a new therapeutic approach for chronic inflammatory airway disease like asthma.  相似文献   

8.
Kunnumakkara AB  Nair AS  Ahn KS  Pandey MK  Yi Z  Liu M  Aggarwal BB 《Blood》2007,109(12):5112-5121
Gossypin, a flavone originally isolated from Hibiscus vitifolius, has been shown to suppress angiogenesis, inflammation, and carcinogenesis. The mechanisms of these activities, however, are unknown. Because nuclear factor-kappaB (NF-kappaB) is associated with inflammation, carcinogenesis, hyperproliferation, invasion, and angiogenesis, we hypothesized that gossypin mediates its effects through modulation of NF-kappaB activation. In the present study, we demonstrate that gossypin (and not gossypetin, an aglycone analog) inhibited NF-kappaB activation induced by inflammatory stimuli and carcinogens. Constitutive NF-kappaB activation in tumor cells was also inhibited by this flavone. Inhibition of I kappa B alpha kinase by gossypin led to the suppression of I kappa B alpha phosphorylation and degradation, p65 nuclear translocation, and NF-kappaB-regulated gene expression. This, in turn, led to the down-regulation of gene products involved in cell survival (IAP2, XIAP, Bcl-2, Bcl-xL, survivin, and antiFas-associated death domain-like interleukin-1 beta-converting enzyme-inhibitory protein), proliferation (c-myc, cyclin D1, and cyclooxygenase-2), angiogenesis (vascular endothelial growth factor), and invasion (matrix metalloprotease-9). Suppression of these gene products by gossypin enhanced apoptosis induced by tumor necrosis factor and chemotherapeutic agents, suppressed tumor necrosis factor-induced cellular invasion, abrogated receptor activator of NF-kappaB ligand-induced osteoclastogenesis, and vascular endothelial growth factor-induced migration of human umbilical vein endothelial cells. Overall, our results demonstrate that gossypin inhibits the NF-kappaB activation pathway, which may explain its role in the suppression of inflammation, carcinogenesis, and angiogenesis.  相似文献   

9.
10.
Inflammation and immune response in atherosclerosis   总被引:2,自引:0,他引:2  
Atherosclerosis is an inflammatory disease with a significant autoimmune component. Studies using transgenic murine models have clarified that recruitment of mononuclear leukocytes through vascular leukocyte-adhesion molecules and chemokines, differentiation of monocytes to macrophages, and endocytosis through scavenger receptors all are of decisive importance for atherosclerosis in hypercholesterolemic mice. T and B cells modulate disease progression and lesion development is reduced in mice lacking adaptive immunity. In particular, local immune responses eliciting Th1 effector mechanisms appear to be proatherogenic, whereas protective immune responses can be induced by immunization with oxidized low-density lipoprotein. Thus, innate immunity is necessary for atherosclerosis, whereas adaptive immunity is an important modulator of disease development.  相似文献   

11.
Effect of ethanol on inflammatory responses. Implications for pancreatitis.   总被引:2,自引:0,他引:2  
BACKGROUND/AIMS: Alcohol use alters inflammatory cell responses. While alcohol has direct effects on pancreatic acinar cells, activation of inflammatory cells is a major component of the pathology of alcoholic pancreatitis. METHODS: The effects of acute or chronic alcohol exposure were evaluated in human monocytes on the production of TNFalpha or IL-10 production, pro-inflammatory gene and nuclear factor-kappaB (NF-kappaB) activation. RESULTS: Moderate, acute alcohol consumption or equivalent doses of alcohol in vitro had anti-inflammatory effects on monocyte activation via inhibition of pro-inflammatory genes and NF-kappaB activation, inhibition of TNFalpha production and augmentation of the anti-inflammatory cytokine, IL-10. In contrast, acute alcohol treatment augmented NF-kappaB activation and TNFalpha production and inhibited IL-10 levels in the presence of complex stimulation with combined TLR2 and TLR4 ligands. Prolonged alcohol exposure also resulted in an increase in NF-kappaB and TNFalpha production in response to TLR4 stimulation with LPS. CONCLUSION: These results suggest that alcohol can either attenuate or promote inflammatory responses that are critical in pancreatitis. Our results support the hypothesis that both acute alcohol intake in the presence of complex stimuli (such as necrotic cells) and chronic alcohol exposure result in hyper-responsiveness of monocytes to inflammatory signals and may contribute to increased inflammation in pancreatitis.  相似文献   

12.
13.
14.
LPS and cytokine-activated endothelium   总被引:3,自引:0,他引:3  
  相似文献   

15.
支气管哮喘是由嗜酸粒细胞(EOS)、肥大细胞和T细胞等多种炎性细胞参与的气道慢性炎症性疾病,气道重构是在气道炎症基础上气道壁损伤,在多种细胞、炎症介质、生长因子的参与下出现的不完全修复。本文从病理和发生机制的角度对哮喘的气道重构作一综述。  相似文献   

16.
Angiotensin II (Ang II) upregulates vascular endothelial growth factor (VEGF) and activates vascular inflammation. However, the decisive role of VEGF in Ang II-induced vascular inflammation and remodeling has not been addressed. Ang II infusion to wild-type mice increased local expression of VEGF and its receptors in cells of aortic wall and plasma VEGF, and caused aortic inflammation (monocyte infiltration) and remodeling (wall thickening and fibrosis). Hypoxia-inducible factor-1alpha colocalized with VEGF-positive cell types. Blockade of VEGF by the soluble VEGF receptor 1 (sFlt-1) gene transfer attenuated the Ang II-induced inflammation and remodeling. The sFlt-1 gene transfer also inhibited the increased expression of VEGF and inflammatory factors such as monocyte chemoattractant protein-1. In contrast, sFlt-1 gene transfer did not affect Ang II-induced arterial hypertension and cardiac hypertrophy. VEGF is an essential mediator in Ang II-induced vascular inflammation and structural changes through its proinflammatory actions.  相似文献   

17.
In the absence of a single initiating aetiological factor, most workers envisage Crohn's disease as the manifestation of poorly regulated immune and inflammatory processes within the gut wall. Initially these responses may arise as a response to common antigens associated with the gut—bacterial products being amongst the most obvious candidates. In genetically predisposed individuals there is overexpression both of local immune response mechanisms in the gut wall (T-cells, B-cells and macrophages) and of systemic inflammatory cells (predominantly polymorphonuclear leukocytes), which are attracted into the inflamed gut through activation of adhesion molecules on the vascular endothelium. As a consequence a large number of pro-inflammatory processes are expressed in the gut wall, inadequately checked by the normal counter-inflammatory processes that should serve to limit inflammation. Defining the relative importance of the individual processes, and identifying critical steps that could be inhibited or enhanced for therapeutic purposes, is a major challenge of Crohn's disease research.  相似文献   

18.
19.
Type 2 diabetes is associated with an increased incidence of coronary heart disease and cardiovascular complications. One crucial step in the initiation and progression of atherosclerosis is the unregulated uptake of oxidized low-density lipoprotein (oxLDL) by vascular wall components through scavenger receptors. Identification of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) as the major receptor for oxLDL in endothelial cells has provided a new clue to the mechanisms involved in oxLDL accumulation in the vessel wall. This receptor, by facilitating the uptake of oxLDL, induces endothelial dysfunction and mediates numerous oxLDL-induced proatherogenic effects. Besides endothelial cells, LOX-1 is also expressed by smooth muscle cells and macrophages. In these cells, LOX-1 may function as a scavenger receptor and promote foam cell formation. Notably, LOX-1 is induced by multiple stimuli relevant to atherogenesis and inflammation and is up-regulated in various proatherogenic conditions, including diabetes. As such, activation of vascular cells by oxLDL through LOX-1 may be relevant to the development and progression of human diabetic vasculopathy. This review summarizes recent advances related to the role of LOX-1 in atherosclerosis, its regulation by metabolic and inflammatory factors relevant to diabetes and the impact of these factors on LOX-1-mediated proatherogenic events linked to diabetic vasculopathy.  相似文献   

20.
Atherosclerosis is an inflammatory process triggered by the presence of lipids in the vascular wall and encompasses a complex interaction between inflammatory cells, vascular elements and lipoproteins through the expression of several adhesion molecules and cytokines. Activation of the nuclear receptor peroxisome proliferator-activated receptor-alpha (PPAR-alpha) has been demonstrated to modulate many aspects of lipoprotein metabolism and inflammation in vitro as well as in animal and human studies. The tissue distribution of PPAR-alpha is extensive and it is abundantly present in the vascular wall where it may mediate many of anti-inflammatory and antiatherogenic effects. Major clinical trials, such as the Veterans Affairs High-Density Lipoprotein Intervention Trial, the Helsinki Heart Study and the Diabetes Atherosclerosis Intervention Study, have demonstrated the beneficial effects of synthetic agonists of PPAR-alpha, specifically fibric acid derivatives, on cardiovascular disease outcome. Although fibric acid trials have reported cardiovascular risk reduction in patients with dyslipidemia, the favorable alterations in plasma lipids can only partially explain the reduction in cardiovascular events in these studies. One common link among these trials was a cohort with a high prevalence of insulin resistance or diabetes, conditions associated with heightened systemic inflammation and increased risk for development and progression of atherosclerosis. In this paper, we will review the many antiatherogenic effects of PPAR-alpha ligands and evidence from fibric acid trials that individuals with insulin resistance or diabetes benefit the most from these drugs, consistent with their anti-inflammatory and antithrombotic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号