首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
4-(N,N-Diacetylamino)benzo[a]pyrene, a potent mutagen, is derived from a carcinogenic polycyclic aromatic hydrocarbon, benzo[a]pyrene. Metabolism of this compound by rat liver microsomes was studied. Metabolites were separated by reversed-phase high-performance liquid chromatography and were identified by analysis of their UV-vis absorption, mass, and proton nuclear magnetic resonance spectral data. Seven metabolites were identified, namely, the 9-phenol, 1,9-hydroquinone, and trans-9,10-dihydrodiol of 4-(N,N-diacetylamino)benzo[a]pyrene, 4-(N-acetylamino)benzo[a]pyrene, and the 5-phenol, 5,9-hydroquinone, and trans-9,10-dihydrodiol of 4-(N-acetylamino)benzo[a]pyrene. Comparison of these results with those of metabolism of benzo[a]pyrene indicates that the N,N-diacetylamino substitutent at the 4-carbon of benzo[a]pyrene inhibits metabolism at the peri position (3-carbon) and positions (6-, 7-, and 8-carbons) remote from the substituent. The results also indicate that while 4-(N,N-diacetylamino)-benzo[a]pyrene is a substrate of the rat liver microsomal deacetylase, the formed 4-(N-acetylamino)benzo[a]pyrene apparently is not a substrate.  相似文献   

2.
Polycyclic aromatic hydrocarbons, such as benzo[a]pyrene, are widespread environmental carcinogens of human concern. Several enzymatic systems have been shown to activate benzo[a]pyrene 7, 8-dihydrodiol, the proximate carcinogenic metabolite of benzo[a]pyrene, to a reactive species which produces both a chemiluminescence response and genotoxic lesions. The chemiluminescence response has been proposed to be the result of the formation of a dioxetane which upon ring opening forms a reactive dialdehyde intermediate. In in vitro incubations involving phorbol ester-stimulated human polymorphonuclear leukocytes or an isolated enzyme system consisting of myeloperoxidase, taurine, and hydrogen peroxide, a prolonged (>60 min) chemiluminescence response was observed from benzo[a]pyrene 7,8-dihydrodiol. HPLC analysis of the reaction mixture revealed the existence of a product which is dependent upon both taurine and the hydrocarbon. Characterization of this product using UV, NMR, and MS indicated that the product is a pyrene with two side chains resulting from bond breakage of a ring, yielding a dialdehyde. These side chains contain a portion of taurine covalently attached through imine formation with the aldehydes resulting from dioxetane ring opening. Replacement of taurine with either protein or DNA also produced a prolonged chemiluminescence response. These results demonstrate for the first time the formation of a novel electrophilic species from benzo[a]pyrene 7,8-dihydrodiol which along with an increased production of photons from this activation mechanism may lead to DNA and/or protein damage that is different from that elicited by diol epoxides.  相似文献   

3.
The excretion and biliary metabolites of intravenously administered benzo[a]pyrene 4,5-oxide were studied in the rat at two dose levels. After administration of 4.5 or 0.47 mumol, half of the dose was excreted in the bile in 60 min. Biliary metabolites were separated by reverse-phase high-pressure liquid chromatography and identified by cochromatography with biosynthetic standards, beta-glucuronidase hydrolysis, ultraviolet spectrophotometry and, in the case of the thioether conjugates, identification of the constituent amino acids. The major biliary metabolite was a mixture of isomeric glutathione conjugates. Some cysteine conjugate was also present, but no cysteinylglycine conjugate was detected. Hydration to transbenzo[a]pyrene-4,5-dihydrodiol followed by glucuronidation was also a quantitatively important metabolic pathway. Although benzo[a]pyrene-4,5-dihydrodiol glucuronide was more readily excreted by the liver than was benzo[a]pyrene 4,5-oxide:glutathione conjugate, the rate of glucuronidation of the dihydrodiol was low, resulting in its accumulation in the liver and possible release into the circulation. Therefore, the glutathione S-transferases may provide a more efficient mechanism for the removal of benzo[a]pyrene 4,5-oxide from the body than is provided by expoxide hydrolase.  相似文献   

4.
The effects of harman and norharman, nitrogen-containing pyrolysis products of amino acids present in cigarette smoke, on the metabolism of benzo(a)pyrene in rat lung microsomes in vitro and in isolated perfused rat lung were studied. In rat lung microsomes, both harman and norharman inhibited the metabolism of benzo(a)pyrene (BP) to dihydrodiols, phenols and quinones at concentrations over approximately 0.05 mM. The formation of BP-7, 8-dihydrodiol and BP-9, 10-dihydrodiol was inhibited more than that of BP-4, 5-dihydrodiol. No appreciable differences in inhibition were seen between microsomes from control or 3-methylcholanthrene-pretreated rats. In isolated perfused rat lung, 1 mM of harman in the perfusion fluid inhibited the formation of ethyl acetate-soluble metabolites of benzo(a)pyrene except BP-9, 10-dihydrodiol, and inhibited the total covalent binding of benzo(a)pyrene metabolites to lung tissue macromolecules. 0.03 mM of harman seemed to increase other metabolites than BP-7,8-dihydrodiol without changing the total covalent binding. These results suggest that at most concentrations both β-carboline derivatives, harman and norharman, inhibit benzo(a)pyrene metabolism and covalent binding both in lung microsomes in vitro and in isolated perfused rat lung.  相似文献   

5.
By the treatment of newborn male rats with monosodium glutamate (MSG), microsomal benzo[a]pyrene hydroxylation, propoxycoumarin O-depropylation, and testosterone (T) 6 beta- and 2 beta-hydroxylations in the adult rats were decreased significantly, while microsomal aniline and T 7 alpha-hydroxylations were increased. However, the treatment of newborn female rats did not significantly alter any of the drug-metabolizing activities examined, except that T 6 beta-hydroxylation and androstenedione formation were slightly increased. The hepatic contents of male-specific cyt. P-450, P-450-male and P-4506 beta, which show high catalytic activities on respective T 16 alpha/2 alpha-, and T 6 beta/2 beta-hydroxylations, decreased in MSG-treated male rats. The level of the female specific enzyme, P-450-female, slightly decreased in the MSG-treated female rats, whereas higher phenobarbital (PB)-induction of PB-inducible isozymes, P-450b and P-450e, was observed in MSG-treated than in control female rats. These results are consistent with the idea that disruption of a pulsatile secretion of growth hormone, which is induced by the neonatal MSG treatment, leads to changes in drug metabolizing activities through the alteration of the levels of sex-specific cyt. P-450s, but also indicate that MSG-treated rats are not an animal model equivalent to hypophysectomized rats.  相似文献   

6.
The Ah locus encodes a cytosolic receptor that regulates the induction of certain drug-metabolizing enzymes by polycyclic aromatic hydrocarbons such as benzo[a]pyrene. Some inbred mouse strains such as C57BL/6N have the high-affinity Ah receptor (Ahb/Ahb), others such as DBA/2N, the poor-affinity receptor (Ahd/Ahd). Presence of the high-affinity receptor leads to greater cytochrome P1-450 induction by benzo[a]pyrene; in turn, enhanced benzo[a]pyrene metabolism can result in more toxic intermediates or greater detoxication, depending upon the test system studied. Benzo[a]pyrene in the growth medium, in direct contact with cultured myeloid cells, is more toxic to C57BL/6N than DBA/2N cultured cells. Oral benzo[a]pyrene induces P1-450 (measured by benzo[a]pyrene trans-7,8-dihydrodiol formation determined by high-performance liquid chromatography) in C57BL/6N but not DBA/2N intestine and liver. In the bone marrow of oral benzo[a]pyrene-treated C57BL/6N and DBA/2N mice, the magnitude of P1-450 induction is about the same. WB/ReJ (Ahd/Ahd), C57BL/6J (Ahb/Ahb), or (WB/ReJ)(C57BL/6J)F1 (Ahb/Ahd) marrow was transplanted into lethally irradiated (WB/ReJ)(C57BL/6J)F1 mice. DBA/2J (Ahd/Ahd) marrow was transplanted into lethally irradiated BALB/cByJ (Ahb/Ahb) mice and vice versa. Mice having the Ahd/Ahd intestine and liver died in less than 3 weeks of benzo[a]pyrene feeding (120 mg/kg/day), irrespective of the source of transfused marrow. All the data are consistent with pharmacokinetic differences in the tissue distribution of benzo[a]pyrene: mice having the high-affinity receptor, and therefore the P1-450 induction process in the intestine and liver, are protected from oral benzo[a]pyrene-induced myelotoxicity.  相似文献   

7.
Dibenzo[a,l]pyrene (DB[a,l]P) is one of the most potent carcinogens ever tested in mouse skin and rat mammary gland. DB[a,l]P is present in cigarette smoke and, presumably, in other environmental pollutants. Metabolism and mutagenicity studies of this compound compared to the weak carcinogen dibenzo[a,e]pyrene (DB[a,e]P) can provide preliminary evidence on its mechanism of carcinogenesis. The mutagenicity of DB[a,l]P, DB[a,e]P, and benzo[a]pyrene (BP) was compared in the Ames assay with Aroclor-induced rat liver S-9. BP was the strongest mutagen. In strain TA100, DB[a,l]P and DB[a,e]P were marginally mutagenic. In strain TA98 both compounds were mutagenic, and DB[a,l]P induced more than twice as many revertants as DB[a,e]P. The mutagenicity of DB[a,l]P does not correlate with its carcinogenicity, since DB[a,l]P is a much stronger carcinogen, but a much weaker mutagen, than BP. The NADPH-supported metabolism of DB[a,e]P and DB[a,l]P was conducted with uninduced and 3-methylcholanthrene-induced rat liver microsomes. Metabolites were analyzed by reverse-phase HPLC and identified by NMR, UV, and mass spectrometry. Uninduced microsomes produced only traces of metabolites with either compound. The major metabolites of DB[a,l]P with induced microsomes were DB[a,l]P 8,9-dihydrodiol, DB[a,l]P 11,12-dihydrodiol, 7-hydroxyDB[a,l]P, and a DB[a,l]P dione. The metabolites of DB[a,e]P with induced microsomes were DB[a,e]P 3,4-dihydrodiol, 3-hydroxyDB[a,e]P, 7-hydroxyDB[a,e]P, and 9-hydroxyDB[a,e]P. Some of these metabolites are very useful in assessing possible pathways of activation in the initiation of cancer.  相似文献   

8.
To investigate the influence of unsaturation of dietary fat on the oxidation of benzo[a]pyrene-7,8-dihydrodiol to DNA binding products, we fed diets containing 10% by weight of either safflower oil or lard to weanling rats. Compared with the group fed lard, the group fed safflower oil had 2.0- to 2.5-fold higher levels of unstimulated and peroxidation-stimulated activation of benzo[a]pyrene-7,8-dihydrodiol to DNA-binding metabolites, respectively, in hepatic nuclei. The rats fed safflower oil had a significant 75% higher level of lipid peroxidation as measured by the thiobarbituric acid assay. Rats fed safflower oil also showed 30% greater binding of (-)-benzo[a]pyrene-7,8-dihydrodiol oxidation products to DNA compared with animals fed lard, following administration of this dihydrodiol enantiomer through the hepatic portal vein. Significant diet-dependent differences were not apparent in DNA binding of the (+)-isomer, or in the tetrol production from either isomer; however, rats fed safflower oil showed a trend towards production of higher levels of anti-benzo[a]pyrene diol epoxide-derived tetrols. Activities of hepatic nuclear and microsomal aryl hydrocarbon hydroxylase and of cytosolic and microsomal glutathione S-transferases were not significantly affected by diet, nor was the activity of microsome-mediated binding of (+)- or (-)-benzo[a]pyrene-7,8-dihydrodiol to DNA in vitro. The results indicate that polyunsaturated fat in quantities as low as 10% by weight of the diet is sufficient to increase significantly the extent to which DNA-binding metabolites of benzo[a]pyrene are produced, and that this increased metabolism is likely to be independent of mixed-function oxidases.  相似文献   

9.
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants. Due to its structural similarity with the potent carcinogen dibenzo[a,l]pyrene (DB[a,l]P) and because of its environmental presence, dibenzo[c,mno]chrysene (naphtho[1,2-a]pyrene, N[1,2-a]P) is of considerable research interest. We therefore developed an efficient synthesis of N[1,2-a]P, and examined its in vitro metabolism by male Sprague Dawley rat liver S9 fraction. Its mutagenic activity in S. typhimurium TA 100 and its morphological cell transforming ability in mouse embryo fibroblasts were evaluated. On the basis of spectral analyses, the in vitro major metabolites were identified as the fjord region dihydrodiol trans-9,10-dihydroxy-9,10-dihydro-N[1,2-a]P (N[1,2-a]P-9,10-dihydrodiol), the K-region diols N[1,2-a]P-4,5-dihydrodiol and N[1,2-a]P-7,8-dihydrodiol, and also the 1-, 3-, and 10-hydroxy-N[1,2-a]P; the structure of N[1,2-a]P-9,10-dihydrodiol was also confirmed by independent synthesis. In assays with S. typhimurium TA 100, N[1,2-a]P-9,10-dihydrodiol was half as mutagenic as (+/-)-trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (B[a]P-7,8-dihydrodiol) at > or =4 nmol/plate. N[1,2-a]P-9,10-dihydrodiol was much more mutagenic than N[1,2-a]P at all dose levels, suggesting that the N[1,2-a]P-9,10-dihydrodiol is the likely proximate mutagen of N[1,2-a]P. Evaluation of morphological cell transformation in C3H10T1/2C18 mouse embryo fibroblasts revealed that N[1,2-a]P was comparable to B[a]P. We further examined the pattern of in vitro adduct formation between calf thymus DNA and (+/-)-anti-9,10-dihydroxy-9,10-dihydro-11,12-epoxy-9,10,11,12-tetrahydro-N[1,2-a]P (N[1,2-a]PDE) and found that dG-adduct formation is 2.9-fold greater than dA-adduct formation. On the basis of our results and those reported in the literature, our working hypothesis is that N[1,2-a]P may be added to the list of potent carcinogens that includes DB[a,l]P. This hypothesis is currently being tested in our laboratory.  相似文献   

10.
Polycyclic aromatic hydrocarbon (PAH)-type compounds induce at least two rat UDP-glucuronosyltransferase isoforms, UGT1A6 and UGT1A7. Among the glucuronidation reactions of PAH metabolites studied, mono- and diglucuronide formation of benzo[a]pyrene and chrysene-3,6-diphenol showed the highest induction factors in rat liver microsomes. Availability of AHH-1 cells stably expressing UGT1A7 allowed us to study whether this PAH-inducible isoform could catalyze benzo[a]pyrene and chrysene-3,6-diphenol glucuronidation. It was found that UGT1A7 indeed catalyzed mono- and diglucuronide formation of both benzo[a]pyrene and chrysene 3,6-diphenols. V79 cell-expressed rat UGT1A6 also catalyzed these reactions, except for chrysene diphenol diglucronide formation (Bock et al., Mol Pharmacol 42: 613-618, 1992). Enzyme kinetic studies of the glucuronidation of 6-hydroxychrysene (used as a stable PAH phenol) indicated that UGT1A7 conjugated this compound with a lower apparent Km value (0.1 microM) than UGT1A6 (10 microM). The results suggest that the two PAH-inducible UGTs may cooperate in conjugating PAH metabolites, but that UGT1A7 is more efficient.  相似文献   

11.
Effects of four cannabinoids [cannabidiol (CBD), delta 8-tetrahydrocannabinol, delta 9-tetrahydrocannabinol, and cannabinol] on hepatic microsomal oxidation of testosterone (17 beta-hydroxy-androst-4-ene-3-one) were examined in adult male rats. Only CBD (30 microM) competitively inhibited 2 alpha-hydroxy-testosterone (2 alpha-OH-T) and 16 alpha-OH-T formation by hepatic microsomes but did not affect androstenedione (androst-4-ene-3,17-dione) and 7 alpha-OH-T formation. Kinetic analyses demonstrated that the inhibitory profile of CBD for testosterone oxidation was different from those of SKF 525-A, which caused competitive inhibition for 2 alpha- and 16 alpha-hydroxylations and noncompetitive inhibition for 6 alpha-hydroxylation, and of metyrapone, which inhibited only 6 beta-hydroxylation competitively. CBD also suppressed formation of 2 alpha-OH-T, 16 alpha-OH-T, and androstenedione from testosterone, catalyzed by a reconstituted system containing hepatic cytochrome P-450 purified from phenobarbital-treated rats. Pretreatment of the rat with CBD (10 mg/kg, ip, once a day for 3 days) decreased testosterone oxidation at the 2 alpha-, 16 alpha-, and 17-positions and increased 7 alpha-OH-T formation, while total cytochrome P-450 content was decreased. These results suggest that CBD suppresses hepatic testosterone oxidation at the 2 alpha-, 16 alpha-, and 17-positions through selective inhibition of the male-specific cytochrome P-450 in the adult male rat.  相似文献   

12.
Rifampicin induces cytochrome P-450 3c, progesterone 16 alpha- and 6 beta-hydroxylation, 17 beta-estradiol 2-hydroxylation, benzo[a] pyrene hydroxylation, and erythromycin N-demethylation in rabbit liver microsomes. Kinetic analysis of the 6 beta-hydroxylation of progesterone as catalyzed by liver microsomes prepared from rifampicin-treated B/J rabbits exhibits a curvilinear double-reciprocal plot, suggestive of substrate activation. Further experimentation demonstrated that alpha-naphthoflavone could augment the catalytic efficiency [Vmax/Km] observed for the 16 alpha- and 6 beta-hydroxylation of progesterone and the 2-hydroxylation of 17 beta-estradiol, whereas erythromycin N-demethylase activity was partially inhibited. Allosteric activation of these steroid hydroxylases by alpha-naphthoflavone is also found for human liver microsomes, indicating that the activation of these enzymes is conserved in man and rabbit.  相似文献   

13.
The metabolism of benzo(a)pyrene and two of its metabolites 7,8-dihydro-7,8-dihydroxybenzo(a)pyrene (7,8-dihydrodiol) and 9,10-dihydro-9,10-dihydroxybenzo(a)pyrene (9,10-dihydrodiol) to both ethyl acetate-soluble and water-soluble metabolites has been studied using short-term organ cultures of hamster lung. Benzo(a)pyrene is metabolised to ethyl acetate-soluble metabolites which co-chromatograph with 9,10-dihydrodiol, 7,8-dihydrodiol and benzo(a)pyren-3-yl hydrogen sulphate but little or no 3-hydroxybenzo(a)pyrene and 4,5-dihydro-4,5-dihydroxybenzo(a)pyrene (4,5-dihydrodiol) are detected. After culture with benzo(a)pyrene, the amount of 9,10-dihydrodiol in the medium is 9-fold greater than the amount of 7,8-dihydrodiol. Benzo(a)pyrene is also metabolised by short-term organ cultures of hamster lung to water-soluble metabolites, which on hydrolysis with β-glucuronidase yield metabolites co-chromatographing with 3-hydroxybenzo(a)pyrene, quinones, 4,5-dihydrodiol and 7,8-dihydrodiol. However little or no 9,10-dihydrodiol is detected. Both 7,8- and 9,10-dihydrodiols are metabolised by cultures of hamster lung to an ethyl acetate-soluble metabolite which co-chromatographs and has similar fluorescence excitation and emission spectra to 7,8,9,10-tetrahydro-7,8,9,10-tetrahydroxybenzo(a)pyrene (7,8,9,10-tetrahydrotetrol). More 7,8,9,10-tetrahydrotetrol is formed from 7,8-than 9,10-dihydrodiol. A major route for metabolism of 7,8-dihydrodiol is conversion into water-soluble metabolites, which on hydrolysis with β-glucuronidase yield an ethyl acetate-soluble metabolite co-chromatographing with 7,8-dihydrodiol. However only small amounts of water-soluble metabolites are observed after short-term organ culture with 9,10-dihydrodiol. The amount of covalent binding after short-term organ culture with 7,8-dihydrodiol was greater than that with 9,10-dihydrodiol and benzo(a)pyrene. This was in agreement with the many observations showing the high biological activity of the further metabolite of 7,8-dihydrodiol, i.e. 7,8-dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide. These results however, also raise the possibility of a role for 9,10-dihydrodiol as a precursor of active metabolites.  相似文献   

14.
Cultured human monocytes, lymphocytes, Fischer rat liver (TRL-2) cells, and Buffalo rat liver (BRL) cells catalyzed the conversion of 3H(-)-trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene [3H(-)t-7,8-dihydrodiol BP] to r-7,t-8-dihydroxy-t-9,10-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene (diol epoxide I) and r-7,t-7-8-dihydroxy-c-9,10-oxy-7,8,9,10- tetrahydrobenzo[a]pyrene (diol epoxide II; r-7 indicates that the substituent at the 7-position is the reference, and t and c indicate that the substituents trans and cis, respectively, to the reference substituent). These appear to be the most reactive metabolites of benzo[a]pyrene (BP) and were covalently bound to both exogenous and intact cellular DNA in tissue culture media. The cells induced by benzanthracene (BA) exhibited greater levels of DNA binding than the controls and this binding was linear with increasing cell content in human monocytes, in TRL-2 cells and in Buffalo rat liver cells. The binding to DNA was greater than controls in BA-preinduced lymphocytes, but was not linear. The DNA binding in control cells showed a nonlinear increase with increasing cell concentration in all experiments. The addition of human liver epoxide hydrolase (EC 3.3.2.3) to the incubation medium reduced the amount of reactive metabolites binding to DNA by 12-15% in control and by 23-41% in BA-induced monocytes. Thus, with whole cell systems of either human monocytes or lymphocytes, the addition of purified human liver epoxide hydrolase reduced the binding of 3H(-)t-7,8-dihydrodiol BP metabolites to DNA. Human monocytes and lymphocytes also catalyzed the covalent binding of 3H(-)t-7,8-dihydrodiol BP to intact cellular DNA. The addition of 3H(-)t-7,8-dihydrodiol BA to tissue culture media caused the inhibition of covalent DNA binding in BA-preinduced monocyte by 58% and lymphocytes by 25%. Previous work has shown that BA is metabolized and converted to BA-diol epoxides by microsomes. These results indicate that BA-diol epoxides and BP diol epoxides are competing for the same binding sites on DNA. On the other hand, the addition of 10 nmol of 3H(-)t-7,8-dihydrodiol BP to the incubation of control and BA-preinduced cell homogenate and further incubation at 37 degrees C for 25 min showed that the DNA binding in BA-preinduced cell homogenates was much greater than controls. Homogenates of cells induced by BA exhibited a greater level of DNA binding than controls.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Rainbow trout hepatocytes were used as an in vitro bioassay to assess the genotoxic potential of single chemicals and marine sediment extracts. Freshly prepared trout hepatocytes were exposed to either benzo[a]pyrene, N-methyl-N′-nitro-N-nitrosoguanidine, β-naphtoflavone, or organic extracts of marine sediments for 24 h at 15°C. Genotoxicity was assayed using the nick translation assay, which makes use of a nonradioactive nucleotide (biotin-dUTP), and the DNA alkaline precipitation assay followed by fluorometric detection of DNA strands. Exposure to benzo[a]pyrene or methyl-N′-nitro-N-nitrosoguanidine, known indirect-and direct-acting genotoxins respectively, produced genotoxicity to rainbow trout hepatocytes with both assays. β-Naphtoflavone displayed genotoxic activity in trout hepatocytes. Sediment extracts and reference sediment extracts displayed high toxicity and genotoxicity to trout hepatocytes. Chemical analyses showed that these sediments contained significant amounts of organochlorine pesticides, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons. Cell toxicity was correlated with total levels of organochlorine pesticides and polychlorinated biphenyls but not total levels of polycyclic aromatic hydrocarbons. No positive correlation was found with the nick translation assay between total levels of chemicals and genotoxicity in marine sediments. Genotoxicity obtained with the alkaline precipitation assay was correlated with levels of the organochlorine pesticide DDT. However, more tests would be required to further substantiate possible links with other specific chemicals. © by John Wiley & Sons, Inc.  相似文献   

16.
Oxidants, such as those generated by activated polymorphonuclear leukocytes (PMNs) during inflammation, have been implicated in the metabolic activation of procarcinogens to their ultimate carcinogenic form. In this study we examined the effect of inflammation on the metabolic activation of (+/-)-trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-dihydrodiol) to a covalent binding species in mouse epidermis. Interaction of BP 7,8-dihydrodiol with 12-O-tetradecanoylphorbol-13-acetate (TPA)-stimulated murine leukocytes resulted in the generation of both a chemiluminescent intermediate and one that covalently bound to the DNA of cocultured epidermal keratinocytes. Topical treatment of mouse skin with TPA led to an influx of PMNs into the skin beginning several hours after application. Myeloperoxidase activity, a marker for neutrophils, increased 15-fold in the skin by 16 hr after TPA treatment. Dual applications of TPA at both 16 hr before and concurrently with administration of [3H]BP 7,8-dihydrodiol led to a 50% enhancement of the level of carcinogen that was covalently bound to epidermal DNA. However, a single application of TPA, either 16 hr before or concurrently with BP 7,8-dihydrodiol administration, had no enhancing effect, suggesting that both initial recruitment of PMNs into the skin and subsequent stimulation of oxidant production by the PMNs were required to enhance carcinogen binding. By contrast, no enhancement of benzo[a]pyrene binding was observed by TPA treatments in vivo. However, TPA-stimulated neutrophils did not activate this procarcinogen to a chemiluminescent metabolite in vitro. These results suggest that oxidants generated by metabolically stimulated PMNs can activate penultimate polycyclic aromatic hydrocarbons, such as BP 7,8-dihydrodiol, to potentially genotoxic metabolites in vivo and further define a role for inflammation in carcinogenesis.  相似文献   

17.
Skin appendages are often envisaged as channels that bypass the stratum corneum barrier and are generally thought to facilitate the dermal absorption of topical agents. However, the significance of this transappendageal pathway in percutaneous absorption remains to be assessed experimentally. With the use of a skin organ culture penetration chamber system, the influence of skin appendages on the in vitro permeation of topically applied benzo[a]pyrene and testosterone (5 micrograms/2 cm2) was examined in skin preparations from both haired and hairless mice. Haired mice examined included the C57BL6, C3H, DBA2, Balbc, and Sencar strains and the hairless mice were the HRS and SKH. In all mouse strains examined, the overall permeation of testosterone (greater than 65% of applied dose) 16 hr following in vitro topical application was greater than that of benzo[a]pyrene (less than 10%). No strain differences were observed with respect to the percutaneous permeation of testosterone; however, percutaneous permeation of benzo[a]pyrene in the haired mice (7-10% of applied dose) was higher than that in the hairless mice (2%). In an in-house derived mouse strain which showed three phenotypic variants due to hair densities, the permeability to both compounds was highest in the skin of the haired phenotype (testosterone 67%, benzo[a]pyrene 7%), lowest in the hairless phenotype (35 and 1%, respectively) and intermediate in the fuzzy-haired animal (57 and 3%, respectively). Examination by fluorescence microscopy of cryosections of skin, prepared 1 hr after topical benzo[a]pyrene, showed areas of intense fluorescence deep within the nonfluorescing dermis of skin from the haired phenotype. These fluorescent areas were correlated with follicular ducts and sebaceous glands. In contrast, skin from the hairless phenotype showed no evidence of fluorescence in the dermis and intermediate was the fluorescence observed in the skin from the fuzzy-haired animal. These observations showed that transappendageal penetration could contribute significantly to the overall skin absorption of topical agents. They also suggest that regional distribution of skin appendages could influence the percutaneous fate of topically applied chemicals.  相似文献   

18.
1. The metabolism of benzo[a]pyrene (BP) by gerbil hepatic microsomes is increased following induction by phenobarbital (PB), chlordecone, mirex and 3-methylcholanthrene (3-MC). 2. By several criteria including the influence of alpha-naphthoflavone (alpha-NF) on BP-hydroxylase activity and BP-metabolite profiles, the cytochromes P-450 responsible for benzo[a]pyrene metabolism appear to be similar in microsomes isolated from PB-, chlordecone-, or mirex-treated gerbils. The cytochromes P-450 present in microsomes isolated from control animals and those treated with 3-MC are different from each other and from those present in PB, chlordecone, or mirex microsomes by the same criteria. 3. Of the inducers used, only PB induced microsomal epoxide hydrolase activity.  相似文献   

19.
The interrelationship between adrenal steroidogenesis and polycyclic aromatic hydrocarbon metabolism has been examined in cultured bovine adrenal cortical (BAC) cells. Adrenocorticotropin (ACTH) selectively induced steroidogenic cytochrome P-450-dependent enzyme activities from BAC cell cultures. In the presence of 10(-7) M ACTH, steroid production requiring 17 alpha-hydroxylation (cortisol + androgens) was increased 5-fold over the formation of 17- deoxysteroids (corticosterone). The effect of 10 microns benz[a]anthracene on steroidogenesis was characterized by suppression of both steroid 17 alpha-hydroxylation (90%) and total steroidogenesis (50%), with a concomitant rise in 17- deoxysteroid formation. The order of stimulation of steroidogenic enzyme activities by ACTH (17 alpha-hydroxylase greater than side chain cleavage greater than 21-hydroxylase) paralleled the order of suppression by benz[a]anthracene. BAC cell cultures incubated with Su-10603, a specific 17 alpha-hydroxylase inhibitor, exhibited similar changes in the pattern of steroidogenesis, as did benz[a]anthracene-treated cells, suggesting that benz[a] anthracene also inhibits steroidogenesis as an inhibitor of 17 alpha-hydroxylase. In addition, benz[a]anthracene induced benzo[a]pyrene metabolism 4- to 6-fold over control levels in these cells. The profile of benzo[a]pyrene metabolites revealed predominantly water-soluble products (nonhydrolyzable greater than sulfates greater than glucuronides), 9,10- monooxygenation products, and 3-phenol. ACTH (10(-7) M) and 0.5 mM cyclic AMP each decreased benzo[a]pyrene metabolism by more than 50%. Both benz[a]anthracene-induced and uninduced benzo[a]- pyrene metabolism were equally reduced in response to ACTH and cyclic AMP. In the presence of 0.2 mM aminoglutethimide, which completely inhibited steroidogenesis, ACTH decreased benz[a]anthracene induction of benzo[a]pyrene metabolism to the same extent as ACTH treatment alone. It is concluded that the suppression of benzo[a]pyrene metabolism by ACTH is mediated by cyclic AMP and does not involve steroids generated in response to ACTH. These studies demonstrate that cytochrome P-450 isozymes involved in steroidogenesis and polycyclic aromatic hydrocarbon metabolism are regulated, in opposing directions, by ACTH.  相似文献   

20.
Tobacco smoke and polluted air are risk factors for lung cancer and contain many kinds of polycyclic aromatic hydrocarbons (PAHs) including benzo[a]pyrene (B[a]P) and benz[a]anthracene (BA). BA, as well as B[a]P, is assessed as probably carcinogenic to humans (IARC group 2A). BA is metabolized to several dihydrodiols. Dihydrodiol dehydrogenase (DD), a member of the aldo-keto reductase superfamily, catalyzes NAD(P)+-linked oxidation of dihydrodiols of aromatic hydrocarbons to corresponding catechols. To clarify the role of DD on PAH carcinogenesis, we examined oxidative DNA damage induced by trans-dihydrodiols of BA and B[a]P treated with DD using 32P-5'-end-labeled DNA fragments obtained from the human p53 tumor suppressor gene. In addition, we investigated the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), an indicator of oxidative DNA damage, in calf thymus DNA by using HPLC with an electrochemical detector. DD-catalyzed BA-1,2-dihydrodiol caused Cu(II)-mediated DNA damage including 8-oxodG formation in the presence of NAD+. BA-1,2-dihydrodiol induced a Fpg sensitive and piperidine labile G lesion at the 5'-ACG-3' sequence complementary to codon 273 of the human p53 tumor suppressor gene, which is known as a hotspot. DNA damage was inhibited by catalase and bathocuproine, suggesting the involvement of H2O2 and Cu(I). The observation of NADH production by UV-visible spectroscopy suggested that DD catalyzed BA-1,2-dihydrodiol most efficiently to the corresponding catechol among the PAH-dihydrodiols tested. A time-of-flight mass spectroscopic study showed that the catechol form of BA-1,2-dihydrodiol formed after DD treatment. In conclusion, BA-1,2-dihydrodiol can induce DNA damage more efficiently than B[a]P-7,8-dihydrodiol and other BA-dihydrodiols in the presence of DD. The reaction mechanism on oxidative DNA damage may be explained by theoretical calculations with an enthalpy change of dihydrodiols and oxidation potential of their catechol forms. DD may play an important role in BA carcinogenesis via oxidative DNA damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号