首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasmodium knowlesi causes severe and fatal malaria in Malaysia. Microscopic misdiagnosis is common and may delay appropriate treatment. P. knowlesi can cross-react with “species-specific” parasite lactate dehydrogenase (pLDH) monoclonal antibodies used in rapid diagnostic tests (RDTs) to detect P. falciparum and P. vivax. At one tertiary-care hospital and two district hospitals in Sabah, we prospectively evaluated two combination RDTs for malaria diagnosis by using both a pan-Plasmodium-pLDH (pan-pLDH)/P. falciparum-specific-pLDH (Pf-pLDH) RDT (OptiMAL-IT) and a non-P. falciparum VOM-pLDH/Pf-HRP2 RDT (CareStart). Differential cross-reactivity among these combinations was hypothesized to differentiate P. knowlesi from other Plasmodium monoinfections. Among 323 patients with PCR-confirmed P. knowlesi (n = 193), P. falciparum (n = 93), and P. vivax (n = 37) monoinfections, the VOM-pLDH individual component had the highest sensitivity for nonsevere (35%; 95% confidence interval [CI], 27 to 43%) and severe (92%; CI, 81 to 100%) P. knowlesi malaria. CareStart demonstrated a P. knowlesi sensitivity of 42% (CI, 34 to 49%) and specificity of 74% (CI, 65 to 82%), a P. vivax sensitivity of 83% (CI, 66 to 93%) and specificity of 71% (CI, 65 to 76%), and a P. falciparum sensitivity of 97% (CI, 90 to 99%) and specificity of 99% (CI, 97 to 100%). OptiMAL-IT demonstrated a P. knowlesi sensitivity of 32% (CI, 25 to 39%) and specificity of 21% (CI, 15 to 29%), a P. vivax sensitivity of 60% (CI, 42 to 75%) and specificity of 97% (CI, 94 to 99%), and a P. falciparum sensitivity of 82% (CI, 72 to 89%) and specificity of 39% (CI, 33 to 46%). The combination of CareStart plus OptiMAL-IT for P. knowlesi using predefined criteria gave a sensitivity of 25% (CI, 19 to 32%) and specificity of 97% (CI, 92 to 99%). Combining two RDT combinations was highly specific for P. knowlesi malaria diagnosis; however, sensitivity was poor. The specificity of pLDH RDTs was decreased for P. vivax and P. falciparum because of P. knowlesi cross-reactivity and cautions against their use alone in areas where P. knowlesi malaria is endemic. Sensitive P. knowlesi-specific RDTs and/or alternative molecular diagnostic tools are needed in areas where P. knowlesi malaria is endemic.  相似文献   

2.
Malaria is the leading identifiable cause of fever in returning travelers. Accurate Plasmodium species identification has therapy implications for P. vivax and P. ovale, which have dormant liver stages requiring primaquine. Compared to microscopy, nucleic acid tests have improved specificity for species identification and higher sensitivity for mixed infections. Here, we describe a SYBR green-based real-time PCR assay for Plasmodium species identification from whole blood, which uses a panel of reactions to detect species-specific non-18S rRNA gene targets. A pan-Plasmodium 18S rRNA target is also amplified to allow species identification or confirmation by sequencing if necessary. An evaluation of assay accuracy, performed on 76 clinical samples (56 positives using thin smear microscopy as the reference method and 20 negatives), demonstrated clinical sensitivities of 95.2% for P. falciparum (20/21 positives detected) and 100% for the Plasmodium genus (52/52), P. vivax (20/20), P. ovale (9/9), and P. malariae (6/6). The sensitivity of the P. knowlesi-specific PCR was evaluated using spiked whole blood samples (100% [10/10 detected]). The specificities of the real-time PCR primers were 94.2% for P. vivax (49/52) and 100% for P. falciparum (51/51), P. ovale (62/62), P. malariae (69/69), and P. knowlesi (52/52). Thirty-three specimens were used to test species identification by sequencing the pan-Plasmodium 18S rRNA PCR product, with correct identification in all cases. The real-time PCR assay also identified two samples with mixed P. falciparum and P. ovale infection, which was confirmed by sequencing. The assay described here can be integrated into a malaria testing algorithm in low-prevalence areas, allowing definitive Plasmodium species identification shortly after malaria diagnosis by microscopy.  相似文献   

3.
4.
Declining malaria transmission and known difficulties with current diagnostic tools for malaria, such as microscopy and rapid diagnostic tests (RDTs) in particular at low parasite densities, still warrant the search for sensitive diagnostic tests. Molecular tests need substantial simplification before implementation in clinical settings in countries where malaria is endemic. Direct blood PCR (db-PCR), circumventing DNA extraction, to detect Plasmodium was developed and adapted to be visualized by nucleic acid lateral flow immunoassay (NALFIA). The assay was evaluated in the laboratory against samples from confirmed Sudanese patients (n = 51), returning travelers (n = 214), samples from the Dutch Blood Bank (n = 100), and in the field in Burkina Faso (n = 283) and Thailand (n = 381) on suspected malaria cases and compared to RDT and microscopy. The sensitivity and specificity of db-PCR-NALFIA compared to the initial diagnosis in the laboratory were 94.4% (95% confidence interval [CI] = 0.909 to 0.969) and 97.4% (95% CI = 0.909 to 0.969), respectively. In Burkina Faso, the sensitivity was 94.8% (95% CI = 0.88.7 to 97.9%), and the specificity was 82.4% (95% CI = 75.4 to 87.7%) compared to microscopy and 93.3% (95% CI = 87.4 to 96.7%) and 91.4% (95% CI = 85.2 to 95.3%) compared to RDT. In Thailand, the sensitivity and specificity were 93.4% (CI = 86.4 to 97.1%) and 90.9 (95% CI = 86.7 to 93.9%), respectively, compared to microscopy and 95.6% (95% CI = 88.5 to 98.6%) and 87.1% (95% CI = 82.5 to 90.6) compared to RDT. db-PCR-NALFIA is highly sensitive and specific for easy and rapid detection of Plasmodium parasites and can be easily used in countries where malaria is endemic. The inability of the device to discriminate Plasmodium species requires further investigation.  相似文献   

5.
Molecular diagnosis of malaria offers many potential advantages over microscopy, including identification of malaria to the species level in an era with few experienced microscopists. We developed high-throughput multiplex 5′ nuclease quantitative PCR (qPCR) assays, with the potential to support large studies, to specifically identify Plasmodium falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi. We compared qPCR to microscopy and confirmed discordant results with an alternative target PCR assay. The assays specifically detected 1 to 6 parasites/μl of blood. The clinical sensitivities (95% confidence intervals [CIs]) of the 4-plex assay to detect microscopically confirmed malaria were 95.8% (88.3 to 99.1%) for P. falciparum, 89.5% (75.2 to 97.1%) for P. vivax, 94.1% (71.3 to 99.9%) for P. ovale, and 100% (66.4 to 100%) for P. malariae. The specificities (95% CIs) were 98.6% (92.4 to 100%) for P. falciparum, 99% (84.8 to 100%) for P. vivax, 98.4% (94.4 to 99.8%) for P. ovale, and 99.3% (95.9 to 100%) for P. malariae. The clinical specificity for samples without malaria was 100%. The clinical sensitivity of the 5-plex assay for confirmed P. knowlesi malaria was 100% (95% CI, 69.2 to 100%), and the clinical specificity was 100% (95% CI, 87.2 to 100%). Coded retesting and testing with an alternative target PCR assay showed improved sensitivity and specificity of multiplex qPCR versus microscopy. Additionally, 91.7% (11/12) of the samples with uncertain species by microscopy were identified to the species level identically by both our multiplex qPCR assay and the alternative target PCR assay, including 9 P. falciparum infections. Multiplex qPCR can rapidly and simultaneously identify all 5 Plasmodium species known to cause malaria in humans, and it offers an alternative or adjunct to microscopy for clinical diagnosis as well as a needed high-throughput tool for research.  相似文献   

6.
ObjectivesMalaria is one of most common tropical diseases encountered in travellers and migrants. It requires an urgent and reliable diagnosis considering its potential severity. In this study, performance of five diagnostic assays were evaluated in a nonendemic region and compared prospectively to quantitative PCR (qPCR).MethodsA prospective study was conducted at Toulouse Hospital from August 2017 to January 2018 and included all patients with initial Plasmodium screening. Thin and thick blood smears (TnS, TkS), quantitative buffy coat (QBC), rapid diagnostic tests (RDTs) and commercial loop-mediated isothermal amplification (LAMP) were independently performed on each blood sample and compared to our qPCR reference standard.ResultsThe study encompassed 331 patients, mainly returning from Africa. qPCR detected 73 Plasmodium-positive samples (including 58 falciparum). Individually, LAMP had a 97.3% (71/73) sensitivity, far ahead of TnS (84.9%, 62/73), TkS (86.3%, 63/73), QBC (86.3%, 63/73) and RDT (86.3%, 63/73). RDT demonstrated a high sensitivity for falciparum (98.3%, 57/58) but missed all ovale, malariae and knowlesi infections. Specificity was excellent for all techniques (99.6–100%). The most sensitive diagnosis strategies were TnS + RDT (95.9%, 70/73), TnS + LAMP (97.3%, 71/73) and TnS + RDT + LAMP (100%, 73/73), about 10% higher than strategies using exclusively microscopy, TkS + TnS (87.7%, 64/73) or QBC + TnS (87.7%, 64/73). TnS remains necessary for Plasmodium species identification and quantification. Adding sequentially TnS only on LAMP-positive samples did not decrease TnS + LAMP strategy sensitivity.ConclusionsIn nonendemic countries, the currently recommended microscopy-based strategies seem unsatisfactory for malaria diagnosis considering RDT and LAMP performance, two rapid and sensitive assays that require limited training.  相似文献   

7.
The development of rapid and specific diagnostic tests to identify individuals infected with malaria is of paramount importance in efforts to control the severe public health impact of this disease. This study evaluated the ability of a newly developed rapid malaria diagnostic test, OptiMAL (Flow Inc., Portland, Oreg.), to detect Plasmodium vivax and Plasmodium falciparum malaria during an outbreak in Honduras. OptiMAL is a rapid (10-min) malaria detection test which utilizes a dipstick coated with monoclonal antibodies against the intracellular metabolic enzyme parasite lactate dehydrogenase (pLDH). Differentiation of malaria parasites is based on antigenic differences between the pLDH isoforms. Since pLDH is produced only by live Plasmodium parasites, this test has the ability to differentiate live from dead organisms. Results from the OptiMAL test were compared to those obtained by reading 100 fields of traditional Giemsa-stained thick-smear blood films. Whole-blood samples were obtained from 202 patients suspected of having malaria. A total of 96 samples (48%) were positive by blood films, while 91 (45%) were positive by the OptiMAL test. The blood films indicated that 82% (79 of 96) of the patients were positive for P. vivax and 18% (17 of 96) were infected with P. falciparum. The OptiMAL test showed that 81% (74 of 91) were positive for P. vivax and 19% (17 of 91) were positive for P. falciparum. These results demonstrated that the OptiMAL test had sensitivities of 94 and 88% and specificities of 100 and 99%, respectively, when compared to traditional blood films for the detection of P. vivax and P. falciparum malaria. Blood samples not identified by OptiMAL as malaria positive normally contained parasites at concentrations of less than 100/μl of blood. Samples found to contain P. falciparum were further tested by two other commercially available rapid malaria diagnostic tests, ParaSight-F (Becton Dickinson, Cockeysville, Md.) and ICT Malaria P.f. (ICT Diagnostics, Sydney, Australia), both of which detect only P. falciparum. Only 11 of the 17 (65%) P. falciparum-positive blood samples were identified by the ICT and ParaSight-F tests. Thus, OptiMAL correctly identified P. falciparum malaria parasites in patient blood samples more often than did the other two commercially available diagnostic tests and showed an excellent correlation with traditional blood films in the identification of both P. vivax malaria and P. falciparum malaria. We conclude that the OptiMAL test is an effective tool for the rapid diagnosis of malaria.  相似文献   

8.
Performance of the malaria Rapid Diagnostic Test (RDT) OptiMal-IT® was evaluated in Mauritania where malaria is low and dependent on a short transmission season. Slide microscopy was considered as the reference method of diagnosis. Febrile patients with suspected malaria were recruited from six health facilities, 3 urban and 3 rural, during two periods (December 2011 to February 2012, and August 2012 to March 2013). Overall, 780 patients were sampled, with RDT and thick blood film microscopy results being obtained for 759 of them. Out of 774 slides examined, of which 200 were positive, P. falciparum and P. vivax mono-infections were detected in 63.5% (127) and 29.5% (59), while P. falciparum/P. vivax coinfections were detected in 7% (14). Both species were observed in all study sites, although in significantly different proportions. The proportions of thick blood film and OptiMal-IT® RDT positive individuals was 26.3% and 30.3% respectively. Sensitivity and specificity of OptiMal-IT® RDT were 89% [95% CI, 84.7-93.3] and 91.1% [88.6-93.4]. Positives and negative predictive values were 78.1% [72.2-83.7] and 95.9% [94.1-97.5]. These diagnostic values are similar to those generally reported elsewhere, and support the use of RDTs as the main diagnostic tool for malaria in Mauritanian health facilities. In the future, choice of RDTs to be used must take account of thermostability in a hot, dry environment and their ability to detect P. falciparum and P. vivax.  相似文献   

9.
Prompt and accurate diagnosis is necessary to start adequate treatment for different affecting species including P. falciparum and P. vivax. Here we described the Wondfo Rapid diagnostic Kit (Pf-HRP2/PAN-pLDH) for the detection of P. falciparum and pan-plasmodium in patient specimen by using a nano-gold immunochromatographic assay. Our rapid assay adapted nano-gold labeling techniques and the monoclonal antibodies (mAbs) against both histidine rich protein-2 (Pf HRP-2) of P. falciparum and pan plasmodium-specific pLDH (pan pLDH). The established two-antibody sandwich immunochromatographic assay could detect P. falciparum and pan-plasmodium. The sensitivity and specificity of Wondfo rapid diagnostic kit were determined by comparing with the “gold standard” of microscopic examination of blood smears. In this study1023 blood samples were collected from outpatient clinics in China and Burma, and detected by both Wondfo kit and microscopic examination. The detection sensitivity and specificity of Wondfo rapid diagnostic kit were 96.46% and 99.67% for P. falciparum (HRP2), 95.03% and 99.24% for pLDH, 96.83% and 99.74% for non-falciparum species, 96.70% and 99.74% for P. vivax, respectively. These results indicate that Wondfo rapid diagnostic assay may be useful for detecting P. falciparum and non-P. falciparum (especially P.v.) in patient specimen.  相似文献   

10.
Plasmodium knowlesi is now regarded as the fifth malaria parasite causing human malaria as it is widely distributed in South-East Asian countries especially east Malaysia where two Malaysian states namely Sabah and Sarawak are situated. In 2004, Polymerase Chain Reaction (PCR) was applied for diagnosing knowlesi malaria in the Kapit Division of Sarawak, Malaysia, so that human P. knowlesi infections could be detected correctly while blood film microscopy diagnosed incorrectly as Plasmodium malariae. This parasite is transmitted from simian hosts to humans via Anopheles vectors. Indonesia is the another country in South East Asia where knowlesi malaria is moderately prevalent. In the last decade, Sarawak and Sabah, the two states of east Malaysia became the target of P. knowlesi research due to prevalence of cases with occasional fatal infections. The host species of P. knowlesi are three macaque species namely Macaca fascicularis, Macaca nemestrina and Macaca leonina while the vector species are the Leucosphyrus Complex and the Dirus Complex of the Leucophyrus Group of Anopheles mosquitoes. Rapid diagnostic tests (RDT) are non-existent for knowlesi malaria although timely treatment is necessary for preventing complications, fatality and drug resistance. Development of RDT is essential in dealing with P. knowlesi infections in poor rural healthcare services. Genetic studies of the parasite on possibility of human-to-human transmission of P. knowlesi were recommended for further studies.  相似文献   

11.
Malaria is a serious condition in the non-immune traveller, and prognosis depends on timely diagnosis. Although microscopy remains the cornerstone of diagnosis, malaria rapid diagnostic tests (RDTs) are increasingly used in non-endemic settings. They are easy to use, provide results rapidly and require no specific training and equipment. Reported sensitivities vary between different RDT products but are generally good for Plasmodium falciparum, with RDTs detecting the P. falciparum antigen histidine-rich protein-2 (PfHRP2) scoring slightly better than P. falciparumlactate dehydrogenase (Pf-pLDH)-detecting RDTs. Sensitivity is lower for Plasmodium vivax (66.0 – 88.0%) and poor for Plasmodium ovale (5.5 – 86.7%) and Plasmodium malariae (21.4 – 45.2%). Rapid diagnostic tests have several other limitations, including persistence of the PfHRP2 antigen, cross-reactions of P. falciparum with the non-falciparum test line and vice versa and (rare) false-positive reactions due to other infectious agents or immunological factors. False-negative results occur in the case of low parasite densities, prozone effect or pfhrp2 gene deletions. In addition, errors in interpretation occur, partly due to inadequacies in the instructions for use. Finally, RDTs do not give information about parasite density. In the diagnostic laboratory, RDTs are a valuable adjunct to (but not a replacement for) microscopy for the diagnosis of malaria in the returned traveller.In malaria endemic settings, special groups of travellers (those travelling for long periods, expatriates and short-stay frequent travellers) who are remote from qualified medical services may benefit from self-diagnosis by RDTs, provided they use correctly stored RDT products of proven accuracy, with comprehensive instructions for use and appropriate hands-on training.  相似文献   

12.
Although the prevalence of malaria remains high in parts of Bangladesh, there continues to be a substantial shortage of information regarding the less common malaria parasites such as Plasmodium malariae or Plasmodium knowlesi. Recent studies indicate that P. malariae may be extremely rare, and so far, there are no data on the presence (or absence) of P. knowlesi in southeastern Bangladesh. Genus- and species-specific nested polymerase chain reaction (PCR) analysis of the small subunit ribosomal RNA gene was performed to assess the presence and prevalence of P. malariae and P. knowlesi in 2,246 samples originating from asymptomatic and febrile participants of a cross-sectional and a febrile illnesses study in the Chittagong Hill Tracts in southeastern Bangladesh. P. malariae was detected in 60 samples (2.7 %) corresponding to 8 % of the 746 samples giving positive PCR results for Plasmodium sp., mainly because of the high prevalence (9.5 %) among asymptomatic study participants testing positive for malaria. Symptomatic cases were more common (4.3 % of all symptomatic malaria cases) during the dry season. Parasitemias were low (1,120–2,560/μl in symptomatic and 120–520/μl in asymptomatic carriers). Symptomatic patients presented mild to moderate symptoms like fever, chills, headache, dizziness, fatigue and myalgia. Although both the intermediate as well as the definite host are known to be endemic in southeastern Bangladesh, no evidence for the presence of P. knowlesi was found. We conclude that the role of P. malariae is highly underestimated in rural Bangladesh with major implications for malaria control and elimination strategies.  相似文献   

13.
Simple sequence repeats (SSRs) are known to be responsible for genetic complexities and play major roles in gene and genome evolution. To this respect, malaria parasites are known to have rapidly evolving and complex genomes with complicated and differential pathogenic behaviors. Hence, by studying the whole genome comparative SSRs patterns, one can understand genomic complexities and differential evolutionary patterns of these species. We herein utilized the whole genome sequence information of three Plasmodium species, Plasmodium falciparum, Plasmodium vivax, and Plasmodium knowlesi, to comparatively analyze genome-wide distribution of SSRs. The study revealed that despite having the smallest genome size, P. falciparum bears the highest SSR content among the three Plasmodium species. Furthermore, distribution patterns of different SSRs types (e.g., mono, di, tri, tetra, penta, and hexa) in term of relative abundance and relative density provide evidences for greater accumulation of di-repeats and marked decrease of mono-repeats in P. falciparum in comparison to other two species. Overall, the types and distribution of SSRs in P. falciparum genome was found to be different than that of P. vivax and P. knowlesi. The latter two species have quite similar SSR organizations in many aspects of the data. The results were discussed in terms of comparative SSR patterns among the three Plasmodium species, uniqueness of P. falciparum in SSR organization and general pattern of evolution of SSRs in Plasmodium.  相似文献   

14.
Although microscopy remains the reference standard for malaria diagnosis, molecular tools are attracting increasing interest. To improve the detection of mixed infections, we developed a four-primer real-time PCR with four Plasmodium species-specific forward primers, based on the pan-primer design with universal Plasmodium primers as described previously. After validation for analytical sensitivity, specificity and reproducibility, the four-primer PCR was evaluated on 351 blood samples from patients presenting at the outpatient clinic of the Institute of Tropical Medicine (Belgium). With the four-primer PCR, we identified 188 Plasmodium falciparum (Pf), 54 Plasmodium vivax (Pv), 52 Plasmodium ovale (Po) and 13 Plasmodium malariae (Pm) single infections, 27 mixed infections (14 Pf + Pm; 12 Pf + Po; one Pv + Pm) and 17 negative specimens. We found lower cycle threshold values than with the pan-primer PCR, with a mean difference of 2.23, a higher analytical sensitivity (in asexual parasites/µL: Pf/Pv, 0.02; Po, 0.004; Pm, 0.006) and 15 extra mixed infections. As compared with microscopy, 17 extra mixed infections were detected and Plasmodium species were identified in four microscopy-positive samples in which species identification was not possible. Additionally, the PCR corrected 13 species mismatches between Po and Pv, and in 11 cases detected Pf as a second species that was not identified by microscopy and in five of them was not detected by rapid diagnostic tests (RDTs). PCR confirmed the presence of Pf in 30/46 histidine-rich protein-2-positive samples that were microscopy-negative. We conclude that the presently developed four-primer real-time PCR is complementary to standard malaria diagnostic tests in clinical laboratories, with an added value for simultaneous identification of the four Plasmodium species and the detection of mixed infections.  相似文献   

15.
Malaria and schistosomiasis are the world''s two most important parasitic infections in terms of distribution, morbidity, and mortality. In areas where Plasmodium and Schistosoma species are both endemic, coinfections are commonplace. Mouse models demonstrate that schistosomiasis worsens a malaria infection; however, just as mice and humans differ greatly, the murine-infecting Plasmodium species differ as much from those that infect humans. Research into human coinfections (Schistosoma haematobium-Plasmodium falciparum versus Schistosoma mansoni-P. falciparum) has produced conflicting results. The rhesus macaque model provides a helpful tool for understanding the role of S. mansoni on malaria parasitemia and antimalarial immune responses using Plasmodium coatneyi, a malaria species that closely resembles P. falciparum infection in humans. Eight rhesus macaques were exposed to S. mansoni cercariae. Eight weeks later, these animals plus 8 additional macaques were exposed to malaria either through bites of infected mosquitos or intravenous inoculation. When malaria infection was initiated from mosquito bites, coinfected animals displayed increased malaria parasitemia, decreased hematocrit levels, and suppressed malaria-specific antibody responses compared to those of malaria infection alone. However, macaques infected by intravenous inoculation with erythrocytic-stage parasites did not display these same differences in parasitemia, hematocrit, or antibody responses between the two groups. Use of the macaque model provides information that begins to unravel differences in pathological and immunological outcomes observed between humans with P. falciparum that are coinfected with S. mansoni or S. haematobium. Our results suggest that migration of malaria parasites through livers harboring schistosome eggs may alter host immune responses and infection outcomes.  相似文献   

16.
The transmission of malaria by blood transfusion was one of the first transfusion-transmitted infections recorded in the world. Transfusion-transmitted malaria may lead to serious problems because infection with Plasmodium falciparum may cause rapidly fatal death. This study aimed to compare real-time polymerase chain reaction (real-time PCR) with rapid diagnostic test (RDT) and light microscopy for the detection of Plasmodium spp. in blood transfusion, both in endemic and non-endemic areas of malaria disease in Iran. Two sets of 50 blood samples were randomly collected. One set was taken from blood samples donated in blood bank of Bandar Abbas, a city located in a malarious-endemic area, and the other set from Tehran, a non-endemic one. Light microscopic examination on both thin and thick smears, RDTs, and real-time PCR were performed on the blood samples and the results were compared. Thin and thick light microscopic examinations of all samples as well as RDT results were negative for Plasmodium spp. Two blood samples from endemic area were positive only with real-time PCR. It seems that real-time PCR as a highly sensitive method can be helpful for the confirmation of malaria infection in different units of blood transfusion organization especially in malaria-endemic areas where the majority of donors may be potentially infected with malaria parasites.  相似文献   

17.
Background and Objectives: The study aimed to evaluate the diagnostic performance of malaria through microscopy and rapid diagnostic test (RDT) analysis performed locally and the accuracy evaluated by nested polymerase chain reaction (PCR) for diagnosis of Plasmodium falciparum from hotspot regions of North East (NE) India. Materials and Methods: One thousand one hundred and seventy-three blood samples were collected for identification of P. falciparum infection using microscopy and RDT analysis. DNA was extracted from whole blood using QIAamp DNA blood mini kit, and nested PCR was performed to confirm P. falciparum for evaluating sensitivity and specificity from various epidemiological surveys and geographical areas of NE India. Results: Of 1173 symptomatic malaria suspected patients, 15.6% (183/1173) patients were diagnosed as malaria positive by RDT and 67.94% cases (53/78) with microscopy. Of 183 malaria-positive patients, 42.62% (78/183) were diagnosed with P. falciparum and 84.61% (66/78) further confirmed to be P. falciparum positive by nested PCR. High sensitivity (97.9%) and low specificity (2.03%) of the RDT and high sensitivity (99.1%) and low specificity (0.9%) in microscopy against nested PCR results was statistically significant (P < 0.05). Epidemiological comparisons expressed highest incidences in Manipur (51.11%) followed by Meghalaya (48.93%) and Assam (35.16%). Overall incidence rate among the genders was observed to be higher in males than in females. Conclusions: Our findings suggest that PCR, RDT and microscopy can potentially determine hotspots at moderate transmission intensities, but PCR testing has a diagnostic advantage as transmission intensity falls. Therefore, malaria control programs should consider PCR testing when the prevalence of infection is low.  相似文献   

18.
The rapid diagnostic tests (RDTs) whose main interest lies in their implementation without special equipment by unskilled personnel have grown significantly over the past fifteen years to diagnose malaria. They rely on the detection of specific Plasmodium proteins, PfHRP2, pLDH and aldolase. If the detection of PfHRP2 has very good sensitivity for the diagnosis of Plasmodium falciparum malaria, the detection of pLDH or aldolase is less efficient for other species, leaving its place to the reference microscopic diagnosis. RDT could not generally be used to monitor therapeutic efficacy because they can remain positive after clinical and parasitological cure. Furthermore, the development of the use of these tests has highlighted the need for quality assurance programs to monitor their production as their use.  相似文献   

19.
Clinical illness with Plasmodium falciparum or Plasmodium vivax compromises the function of dendritic cells (DC) and expands regulatory T (Treg) cells. Individuals with asymptomatic parasitemia have clinical immunity, restricting parasite expansion and preventing clinical disease. The role of DC and Treg cells during asymptomatic Plasmodium infection is unclear. During a cross-sectional household survey in Papua, Indonesia, we examined the number and activation of blood plasmacytoid DC (pDC), CD141+, and CD1c+ myeloid DC (mDC) subsets and Treg cells using flow cytometry in 168 afebrile children (of whom 15 had P. falciparum and 36 had P. vivax infections) and 162 afebrile adults (of whom 20 had P. falciparum and 20 had P. vivax infections), alongside samples from 16 patients hospitalized with uncomplicated malaria. Unlike DC from malaria patients, DC from children and adults with asymptomatic, microscopy-positive P. vivax or P. falciparum infection increased or retained HLA-DR expression. Treg cells in asymptomatic adults and children exhibited reduced activation, suggesting increased immune responsiveness. The pDC and mDC subsets varied according to clinical immunity (asymptomatic or symptomatic Plasmodium infection) and, in asymptomatic infection, according to host age and parasite species. In conclusion, active control of asymptomatic infection was associated with and likely contingent upon functional DC and reduced Treg cell activation.  相似文献   

20.
A panel of 129 Giemsa-stained thick blood spots (TBS) confirmed for Plasmodium falciparum infection having different levels of parasite density were collected from a malaria endemic area. DNA was extracted and nested polymerase chain reaction (PCR) assay was performed to amplify P. falciparum DNA. Nested PCR assay successfully amplified P. falciparum DNA at a very low parasitaemia of ~10 parasites/μl of blood. Current PCR assay is very simple and can be used retrospectively to monitor the invasion and prevalence of different Plasmodium species in endemic areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号