首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundBilateral subthalamic nucleus (STN) deep brain stimulation (DBS) improves motor function in patients with medically intractable Parkinson’s disease (PD), but the effects of STN DBS on fatigue are unknown. The purpose of this study was to examine the effects of STN DBS on fatigue scores in patients with PD.MethodsTwenty PD patients underwent bilateral STN DBS surgery at our institution from 2007 to 2009. Only data from the 17 patients who completed the Parkinson Fatigue Scale (PFS) and Unified PD Rating Scale (UPDRS) before and approximately 6 months after surgery were analyzed. Other evaluations included the Geriatric Depression Scale (GDS), Apathy Evaluation Scale (AES), and Epworth Sleepiness Scale (ESS).ResultsWhen the cohort was analyzed as a whole, there was no significant change in the mean or binary PFS score from baseline to the 6 month evaluation. However, the fatigue response of individual subjects was variable. Six of 12 subjects with fatigue before surgery were not fatigued post-operatively, while 3/5 subjects without fatigue before surgery became fatigued after DBS surgery. Fatigue in 8 subjects remained unchanged. Change in fatigue scores correlated significantly with change in the motor UPDRS, GDS and AES. Improvement in PFS also correlated with a higher PFS baseline score and higher baseline UPDRS motor off score.ConclusionsChanges in fatigue severity were not observed in our cohort as a whole, but there were changes in fatigue on an individual level. These changes appear to be related to the effects of STN DBS on motor improvement and mood.  相似文献   

2.
《Brain stimulation》2014,7(5):701-708
BackgroundDeep brain stimulation of the subthalamic nucleus (STN DBS) reduces Parkinson disease (PD) motor symptoms but has unexplained, variable effects on mood.ObjectiveThe study tested the hypothesis that pre-existing mood and/or anxiety disorders or increased symptom severity negatively affects mood response to STN DBS.MethodsThirty-eight PD participants with bilateral STN DBS and on PD medications were interviewed with Structured Clinical Interview for DSM-IV-TR Axis I Disorders (SCID) and completed Beck Depression Inventory (BDI) and Spielberger State Anxiety Inventory (SSAI) self-reports. Subsequently, during OFF and optimal ON (clinical settings) STN DBS conditions and while off PD medications, motor function was assessed with the United Parkinson Disease Rating Scale (UPDRS, part III), and participants rated their mood with Visual Analogue Scales (VAS), and again completed SSAI. VAS mood variables included anxiety, apathy, valence and emotional arousal.ResultsSTN DBS improved UPDRS scores and mood. Unexpectedly, PD participants diagnosed with current anxiety or mood disorders experienced greater STN DBS-induced improvement in mood than those diagnosed with remitted disorders or who were deemed as having never met threshold criteria for diagnosis. BDI and SSAI scores did not modulate mood response to STN DBS, indicating that clinical categorical diagnosis better differentiates mood response to STN DBS than self-rated symptom severity. SCID diagnosis, BDI and SSAI scores did not modulate motor response to STN DBS.ConclusionsPD participants diagnosed with current mood or anxiety disorders are more sensitive to STN DBS-induced effects on mood, possibly indicating altered basal ganglia circuitry in this group.  相似文献   

3.
Bilateral subthalamic nucleus deep brain stimulation (STN DBS) can reduce working memory while improving motor function in Parkinson disease (PD), but findings are variable. One possible explanation for this variability is that the effects of bilateral STN DBS on working memory function depend in part on functional or disease asymmetry. The goal of this study was to determine the relative contributions of unilateral DBS to the effects seen with bilateral DBS. Motor (Unified Parkinson Disease Rating Scale Part III, UPDRS) and working memory function (Spatial Delayed Response, SDR) were measured in 49 PD patients with bilateral STN DBS while stimulators were Both-off, Left-on, Right-on and Both-on in a randomized, double-blind manner. Patients were off PD medications overnight. Effects of unilateral DBS were compared to effects of bilateral STN DBS. Mean UPDRS and SDR responses to Left-on vs. Right-on conditions did not differ (p>.20). However, improvement in contralateral UPDRS was greater and SDR performance was more impaired by unilateral DBS in the more affected side of the brain than in the less affected side of the brain (p=.008). The effect of unilateral DBS on the more affected side on contralateral UPDRS and SDR responses was equivalent to that of bilateral DBS. These results suggest that motor and working memory function respond to unilateral STN DBS differentially depending on the asymmetry of motor symptoms.  相似文献   

4.
Evidente VGH, Premkumar AP, Adler CH, Caviness JN, Driver‐Dunckley E, Lyons MK. Medication dose reductions after pallidal versus subthalamic stimulation in patients with Parkinson’s disease.
Acta Neurol Scand: 2011: 124: 211–214.
© 2010 John Wiley & Sons A/S. Objective – To compare the medication dose reduction between deep brain stimulation (DBS) of the globus pallidus interna (GPi) vs subthalamic nucleus (STN) in matched patients with Parkinson’s disease (PD). Materials and methods – Records of 12 patients with PD who underwent GPi‐DBS at our institution from 2002 to 2008 were matched by pre‐operative PD medication doses and pre‐operative motor Unified Parkinson’s Disease Rating Scale (UPDRS) scores to 12 cases of STN‐DBS. PD medication doses were converted to levodopa equivalent doses (LEDs). Results – GPi and STN groups had similar mean pre‐operative LEDs and motor UPDRS scores. At 6 months post‐DBS, there was no significant difference in percent reduction in LEDs between the GPi (47.95%) and STN (37.47%) groups (P = 0.52). The mean post‐operative ‘medication off/stimulation on’ motor UPDRS scores did not differ significantly between GPi (15.33) and STN (16.25) groups (P = 0.74). The mean percent reduction in motor UPDRS scores was also similar between GPi (58.44%) and STN (58.98%) patients (P = 0.94). Conclusions – We conclude that in disease‐matched patients with PD undergoing DBS, both GPi and STN may result in similar reduction in PD medication doses.  相似文献   

5.
R Kumar  A M Lozano  E Sime  E Halket  A E Lang 《Neurology》1999,53(3):561-566
OBJECTIVE: To compare the effects of unilateral subthalamic nucleus (STN) deep brain stimulation (DBS) with bilateral STN DBS in advanced PD. METHODS: Our initial 10 consecutive patients with medication-refractory motor fluctuations and levodopa-induced dyskinesias undergoing chronic bilateral STN DBS underwent a standardized evaluation of unilateral and bilateral STN DBS in the medication-off state 6 to 18 months after electrode implantation. RESULTS: Bilateral STN DBS improved the mean total Unified Parkinson's Disease Rating Scale motor score by 54%, whereas unilateral stimulation improved motor scores only 23%. Unilateral STN DBS improved postural stability and gait 14%, other axial motor features 19%, and overall parkinsonism in limbs contralateral to stimulation by 46%, including an 86% improvement in contralateral tremor. However, bilateral STN DBS resulted in greater improvement in each of these domains, including limb function, i.e., the reduction in scores from the limbs on one side was greater with bilateral than with unilateral stimulation of the contralateral STN. CONCLUSIONS: Bilateral STN DBS improves parkinsonism considerably more than unilateral STN DBS; bilateral simultaneous electrode implantation may be the most appropriate surgical option for patients with significant bilateral disability. Unilateral STN DBS results in moderate improvement in all aspects of off-period parkinsonism and improves tremor as much as is typically reported with DBS of the ventral intermedius nucleus of the thalamus (Vim). For this reason, STN DBS may be a more appropriate choice than Vim DBS or thalamotomy for parkinsonian tremor. Some patients with highly asymmetric tremor-dominant PD might be appropriately treated with unilateral instead of bilateral STN DBS.  相似文献   

6.
Deep brain stimulation (DBS) of the ventral intermediate (Vim) nucleus of the thalamus has been the target of choice for patients with disabling essential tremor or medication refractory parkinsonian tremor. Recently there is evidence that the subthalamic nucleus (STN) should be the targets for patients with tremor associated with Parkinson's disease (PD). To assess the effects of STN DBS on parkinsonian tremor, eight consecutive patients with PD and disabling tremor were videotaped using a standardized tremor protocol. Evaluations were performed at least 12 h after last dose of medication with the DBS turned off followed by optimal DBS on state. A rater blinded to DBS status evaluated randomized video segments with the tremor components of the Unified Parkinson Disease Rating Scale (UPDRS) and Tremor Rating Scale (TRS). Compared with DBS off state there were significant improvements in mean UPDRS tremor score 79.4% (p = 0.008), total TRS score 69.9% (p = 0.008) and upper extremity 92.5% (p = 0.008) TRS subscore. Functional improvement was noted with pouring liquids. Our findings provide support that STN DBS is an effective treatment of tremor associated with PD.  相似文献   

7.
Deep brain stimulation (DBS) has traditionally been used to target the subthalamic nucleus (STN) or globus pallidus internus (GPi) to treat Parkinson’s disease (PD) and the ventral intermediate thalamic nucleus (VIM) to treat essential tremor (ET). Recent case reports have described targeting both the STN and VIM with a single trajectory and electrode to treat patients with tremor-dominant PD, yet outcome data for this procedure remains sparse. Our objective is to determine the safety and efficacy of combination STN-VIM DBS. We conducted a single-center retrospective case series of all patients who underwent combined STN-VIM DBS. Demographic, perioperative, and outcome data, including Unified Parkinson Disease Rating Scale-III (UPDRS) and tremor scores (OFF-medication), and levodopa equivalent daily dose (LEDD), were collected and analyzed. Nineteen patients underwent this procedure. Patients were 89% male and 11% female, with a mean age of 63.6 years. Mean preoperative UPDRS was 24.1, and LEDD was 811.8. At a mean follow-up of 33.8 months, UPDRS and LEDD decreased by an average of 9.2 (38.2%) and 326.3 (40.2%), respectively. Tremor scores decreased by 4.9 (59.0%), and 58% were able to decrease total medication burden. One patient developed transient left-sided weakness, yielding a complication rate of 5.3%. Combined targeting of STN and VIM thalamus via a single frontal trajectory for tremor-dominant Parkinson’s Disease results in similar UPDRS outcomes to STN DBS and improved control of tremor symptoms. Larger multicenter studies are necessary to validate this as the optimal DBS target for tremor-dominant PD.  相似文献   

8.
《Brain stimulation》2020,13(6):1765-1773
BackgroundDeep Brain Stimulation (DBS) targeting the subthalamic nucleus (STN) and globus pallidus interna (GPi) is an effective treatment for cardinal motor symptoms and motor complications in Parkinson’s Disease (PD). However, malpositioned DBS electrodes can result in suboptimal therapeutic response.ObjectiveWe explored whether recovery of the H-reflex—an easily measured electrophysiological analogue of the stretch reflex, known to be altered in PD—could serve as an adjunct biomarker of suboptimal versus optimal electrode position during STN- or GPi-DBS implantation.MethodsChanges in soleus H-reflex recovery were investigated intraoperatively throughout awake DBS target refinement across 26 nuclei (14 STN). H-reflex recovery was evaluated during microelectrode recording (MER) and macrostimulation at multiple locations within and outside target nuclei, at varying stimulus intensities.ResultsFollowing MER, H-reflex recovery normalized (i.e., became less Parkinsonian) in 21/26 nuclei, and correlated with on-table motor improvement consistent with an insertional effect. During macrostimulation, H-reflex recovery was maximally normalized in 23/26 nuclei when current was applied at the location within the nucleus producing optimal motor benefit. At these optimal sites, H-reflex normalization was greatest at stimulation intensities generating maximum motor benefit free of stimulation-induced side effects, with subthreshold or suprathreshold intensities generating less dramatic normalization.ConclusionH-reflex recovery is modulated by stimulation of the STN or GPi in patients with PD and varies depending on the location and intensity of stimulation within the target nucleus. H-reflex recovery shows potential as an easily-measured, objective, patient-specific, adjunct biomarker of suboptimal versus optimal electrode position during DBS surgery for PD.  相似文献   

9.
Although bilateral subthalamic deep brain stimulation (STN DBS) provides greater relief from the symptoms of Parkinson's disease (PD) than unilateral STN DBS, it has been suggested that unilateral STN DBS may be a reasonable treatment option in selected patients, especially those with highly asymmetric PD. In previous studies on the effect of unilateral STN DBS, the asymmetry of PD symptoms was not prominent and the mean follow‐up durations were only 3 to 12 months. In this study, we report our findings in a series of 8 patients with highly asymmetric PD who were treated with unilateral STN DBS and were followed for 24 months. Serial changes in Unified Parkinson's Disease Rating Scale (UPDRS) motor score and subscores in the ipsilateral, contralateral, and axial body parts were analyzed. Unilateral STN DBS improved the UPDRS motor score and the contralateral subscore in the on‐medication state for 5 nonfluctuating patients and in the off‐medication state for 3 fluctuating patients. However, the ipsilateral subscore progressively worsened and reversed asymmetry became difficult to manage, which led to compromised medication and stimulator adjustment. At 24 months, all the patients were considering the second‐side surgery. Our results suggest that bilateral STN DBS should be considered even in highly asymmetric PD. © 2008 Movement Disorder Society  相似文献   

10.
Background and purposeThe objective of the study was to assess bilateral subthalamic nucleus (STN) deep brain stimulation (DBS) for patients with advanced Parkinson disease (PD).Material and methodsThe study population included 5 patients with bilateral STN DBS who completed a 5-year postoperative follow-up period. In all patients electrodes (Model 3387 or 3389) were stereotactically bilaterally inserted into the STN using a Leksell stereotactic G frame. The clinical rating tests included Unified Parkinson's Disease Rating Scale (UPDRS) and two motor-timed tests derived from CAPIT (rapid movements between two points and stand-walk-sit test). All patients were assessed in off and on condition before implantation and 1, 3 and 5 years in medication on and off condition and stimulation on condition and stimulation off condition. To compare preoperative to postoperative UPDRS scores, only mean values and standard deviations are presented because of the small study population.ResultsThe stimulation effect was noted in the off state, resulting in a 59% improvement in motor scores of UPDRS at 5-year follow-up, when compared to preoperative scores. In the on state the stimulation improved motor scores by 17%. At 5-year follow-up, reduction of daily levodopa dose was 50%.ConclusionsBilateral STN DBS is an effective and safe treatment for patients with advanced PD. Bilateral STN DBS contributes to improvement of parkinsonian symptoms in the off state and levodopa-induced dyskinesia. This can be correlated with a 50% reduction of daily levodopa dose 5 years postoperatively.  相似文献   

11.
BackgroundSleep disturbances are common in Parkinson’s disease (PD). Bilateral subthalamic nucleus (STN) deep brain stimulation (DBS) is superior to best medical therapy in the treatment of motor symptoms in advanced PD, and observational studies suggest that bilateral STN DBS improves sleep in these patients as well. Unilateral STN DBS also improves motor function in PD, but its effects on sleep have not been extensively investigated.MethodsWe report the effects of unilateral STN DBS on subjective sleep quality as measured by the Pittsburgh Sleep Quality Index (PSQI) in 53 consecutive PD patients. These subjects completed the PSQI prior to surgery and at 3 and 6 months post-operatively. The primary outcome measure was the change in the global PSQI at 6 months post-operatively versus the pre-operative baseline, measured with repeated measures analysis of variance (ANOVA).ResultsPatients with PD who underwent unilateral STN DBS had a significant improvement in PSQI at 6 months post-operatively (baseline 9.30 ± 0.56 (mean ± SEM), 6 months: 7.93 ± 0.56, p = 0.013). Supplemental analyses showed that subjects selected for STN DBS placed on the right had worse baseline subjective sleep quality and more improvement in PSQI at 6 months compared to patients who received left STN DBS.ConclusionThis prospective case series study provides evidence that unilateral STN DBS improves subjective sleep quality in patients with PD at up to 6 months post-operatively as measured by the PSQI.  相似文献   

12.
《Brain stimulation》2021,14(5):1109-1117
BackgroundThe need for imaging-guided optimization of Deep Brain Stimulation (DBS) parameters is increasing with recent developments of sophisticated lead designs offering highly individualized, but time-consuming and complex programming.ObjectiveThe objective of this study was to compare changes in motor symptoms of Parkinson's Disease (PD) and the corresponding volume of the electrostatic field (VEsF) achieved by DBS programming using GUIDE XT™, a commercially available software for visualization of DBS leads within the patient-specific anatomy from fusions of preoperative magnetic resonance imaging (MRI) and postoperative computed tomography (CT) scans, versus standard-of-care clinical programming.MethodsClinical evaluation was performed to identify the optimal set of parameters based on clinical effects in 29 patients with PD and bilateral directional leads for Subthalamic Nucleus (STN) DBS. A second DBS program was generated in GUIDE XT™ based on a VEsF optimally located within the dorsolateral STN. Reduction of motor symptoms (Movement Disorders Society Unified Parkinson's Disease Rating Scale, MDS-UPDRS) and the overlap of the corresponding VEsF of both programs were compared.ResultsClinical and imaging-guided programming resulted in a significant reduction in the MDS-UPDRS scores compared to off-state. Motor symptom control with GUIDE XT™-derived DBS program was non-inferior to standard clinical programming. The overlap of the two VEsF did not correlate with the difference in motor symptom reduction by the programs.ConclusionsImaging-guided programming of directional DBS leads using GUIDE XT™ is possible without computational background and leads to non-inferior motor symptom control compared with clinical programming. DBS programs based on patient-specific imaging data may thus serve as starting point for clinical testing and may promote more efficient DBS programming.  相似文献   

13.
《Neuromodulation》2023,26(2):451-458
ObjectiveThe deep brain stimulation (DBS) in early-stage Parkinson's disease (PD) pilot clinical trial randomized 30 patients (Hoehn & Yahr II off; medication duration 0.5–4 years; without dyskinesia/motor fluctuations) to optimal drug therapy (ODT) (early ODT) or bilateral subthalamic nucleus (STN) DBS plus ODT (early DBS+ODT). This study aims to report the 11-year outcomes of patients who completed the DBS in early-stage PD pilot clinical trial.Materials and MethodsAttempts were made to contact all 29 subjects who completed the two-year trial to participate in an 11-year follow-up study. Mixed-effects models compared overall trend in outcomes for randomization groups (fixed-effects: assigned treatment, year, their interaction; random-effect: subject) to account for repeated measures.ResultsTwelve subjects participated in this 11-year follow-up study (n = 8 early ODT, n = 4 early DBS+ODT). Participating subjects were 70.0 ± 4.8 years old with a PD medication duration of 13.7 ± 1.7 years (early DBS duration 11.5 ± 1.3 years, n = 4). Three early ODT subjects received STN-DBS as standard of care (DBS duration 6.5 ± 2.0 years). Early ODT subjects had worse motor complications (Unified Parkinson’s Disease Rating Scale [UPDRS]–IV) than early DBS+ODT subjects over the 11-year follow-up period (between-group difference = 3.5 points; pinteraction = 0.03). Early DBS+ODT was well-tolerated after 11 years and showed comparable outcomes to early ODT for other UPDRS domains, Parkinson Disease Questionnaire–39 (PDQ-39), and levodopa equivalent daily dose (LEDD).ConclusionsEleven years after randomization, early DBS+ODT subjects had fewer motor complications than early ODT subjects. These results should be interpreted with caution because only 40% of pilot trial subjects participated in this 11-year follow-up study. The Food and Drug Administration has approved the conduct of a pivotal clinical trial evaluating DBS in early-stage PD (IDEG050016).Clinical Trial RegistrationThe Clinicaltrials.gov registration number for the study is NCT00282152.  相似文献   

14.
《Brain stimulation》2020,13(6):1706-1718
BackgroundDeep brain stimulation (DBS) is an effective therapy for reducing the motor symptoms of Parkinson’s disease, but the mechanisms of action of DBS and neural correlates of symptoms remain unknown.ObjectiveTo use the neural response to DBS to reveal connectivity of neural circuits and interactions between groups of neurons as potential mechanisms for DBS.MethodsWe recorded activity evoked by DBS of the subthalamic nucleus (STN) in humans with Parkinson’s disease. In follow up experiments we also simultaneously recorded activity in the contralateral STN or the ipsilateral globus pallidus from both internal (GPi) and external (GPe) segments.ResultsDBS local evoked potentials (DLEPs) were stereotyped across subjects, and a biophysical model of reciprocal connections between the STN and the GPe recreated DLEPs. Simultaneous STN and GP recordings during STN DBS demonstrate that DBS evoked potentials were present throughout the basal ganglia and confirmed that DLEPs arose from the reciprocal connections between the STN and GPe. The shape and amplitude of the DLEPs were dependent on the frequency and duration of DBS and were correlated with resting beta band oscillations. In the frequency domain, DLEPs appeared as a 350 Hz high frequency oscillation (HFO) independent of the frequency of DBS.ConclusionsDBS evoked potentials suggest that the intrinsic dynamics of the STN and GP are highly interlinked and may provide a promising new biomarker for adaptive DBS.  相似文献   

15.
BACKGROUND: Deep brain stimulation (DBS) of the globus pallidus interna (GPi) and subthalamic nucleus (STN) has been reported to relieve motor symptoms and levodopa-induced dyskinesia in patients with advanced Parkinson disease (PD). Although it has been suggested that stimulation of the STN may be superior to stimulation of the GPi, comparative trials are limited. OBJECTIVE: To extend our randomized, blinded pilot comparison of the safety and efficacy of STN and GPi stimulation in patients with advanced PD. DESIGN: This study represents the combined results from our previously published, randomized, blinded, parallel-group pilot study and additional patients enrolled in our single-center extension study. SETTING: Oregon Health and Science University in Portland.Patients Twenty-three patients with idiopathic PD, levodopa-induced dyskinesia, and response fluctuations were randomized to implantation of bilateral GPi or STN stimulators. Patients and evaluating clinicians were blinded to stimulation site. All patients were tested preoperatively while taking and not taking medications and after 3, 6, and 12 months of DBS. MAIN OUTCOME MEASURES: Postoperatively, response of symptoms to DBS, medication, and combined medication and DBS was evaluated. Twenty patients (10 in the GPi group and 10 in the STN group) completed 12-month follow-up. RESULTS: Off-medication Unified Parkinson's Disease Rating Scale motor scores were improved after 12 months of both GPi and STN stimulation (39% vs 48%). Bradykinesia tended to improve more with STN than GPi stimulation. No improvement in on-medication function was observed in either group. Levodopa dose was reduced by 38% in STN stimulation patients compared with 3% in GPi stimulation patients (P = .08). Dyskinesia was reduced by stimulation at both GPi and STN (89% vs 62%). Cognitive and behavioral complications were observed only in combination with STN stimulation. CONCLUSION: Stimulation of either the GPi or STN improves many features of advanced PD. It is premature to exclude GPi as an appropriate target for DBS in patients with advanced disease.  相似文献   

16.
BackgroundHeterogeneity of Parkinson's Disease (PD) phenotype may influence deep brain stimulation (DBS) outcome. However, DBS response in the malignant end of the PD spectrum has been poorly investigated.ObjectiveTo evaluate and compare DBS outcomes in malignant and benign PD patients, defined according to motor and non-motor symptom presentation at the presurgical selection.MethodsWe categorized a cohort of 154 parkinsonian patients fulfilling criteria for subthalamic nucleus (STN)-DBS into malignant, benign, and intermediate subtypes, according to a recently validated clinical PD classification. DBS efficacy on daily living independence (Schwab and England –S&E-score ≥70%), motor symptoms, and motor fluctuations (Unified Parkinson's Disease Rating Scale -UPDRS- part-III and -IV, and Ambulatory Capacity Measure) were compared between malignant and benign patients, using corrected binary logistic regressions and repeated measure general linear model.ResultsOne year after surgery, the probability of losing daily life independence was 16-fold higher in malignant patients, even after adjusting for age at PD onset, PD duration, and percentage of motor improvement after STN-DBS (OR: 16.233; p: 0.035). Conversely, malignant and benign patients showed a similar extent of improvement after STN-DBS (p > 0.05) in motor symptoms, motor fluctuations, and ambulatory capacity, both in medication-ON and medication-OFF conditions.ConclusionDBS candidates in the malignant end of the PD spectrum may profit from a similar improvement of motor symptoms and fluctuations after STN-DBS when compared to benign PD. However, patients of the malignant group have a lower probability of maintaining independence in daily life early after surgery.  相似文献   

17.
ObjectivesTo compare subthalamic nucleus (STN) to globus pallidus internus (GPi) deep brain stimulation (DBS) for control of motor fluctuations and for potential dyskinesia-suppressing qualities.MethodsWe conducted a retrospective database review of all patients who underwent GPi or STN DBS for idiopathic Parkinson's disease. Direct dyskinesia suppression (dDS) was defined as improvement in dyskinesia subscore of the Unified Parkinson's Disease Rating Scale (UPDRS) part IV (items 32–34), despite lack of reduction in dopaminergic medication dosage. We analyzed the data using methods appropriate for a case–control study.ResultsA total of 133 patients were evaluated. At the last evaluation Dyskinesia scores and motor fluctuations significantly improved in both the GPi (p < 0.0001) and STN groups (p < 0.0001). The GPi group was more likely than the STN group to experience dDS (odds ratio = 1.95, 95% CI = 0.556, 3.21). However, the association between DBS target and dDS was not statistically significant (Pearson chi-square = 2.286, p = 0.131).ConclusionsThe overall clinical outcome of STN and GPi DBS for control of dyskinesia and motor fluctuations was similar. STN and GPi DBS both had some direct dyskinesia suppression effects.  相似文献   

18.
《Clinical neurophysiology》2021,132(2):469-479
ObjectiveTo evaluate motor fluctuations in patients with advanced Parkinson’s disease (PD) using a small-sized wearable device for surface electromyography (EMG) with accelerometry (ACC) for 24 hours.MethodsSeven PD patients with medication were measured once, and nine patients with directional deep brain stimulation (dDBS) twice: before and after the dDBS reprogramming. EMG and ACC parameters were compared with clinical rating scores and patients’ home diaries.ResultsThe combination of EMG and ACC parameters (first principal component PC1) correlated significantly with patient’s condition as quantified by the motor score of Unified Parkinson’s Disease Rating Scale and it changed significantly with dDBS reprogramming in line with decreased PD symptoms. Monitoring data detected in comparison with the home diaries: 91 % concordance with tremor, 76 % with rigidity, and 74 % with dyskinesia. In the DBS group, the wake-up time with abnormal neuromuscular function was reduced with reprogramming in all except one patient based on measurements.ConclusionsA wearable device measuring simultaneously both muscle activity and motion can provide continuous and dynamic information about patient’s condition and motor fluctuations at home.SignificanceThe present method may help to modify pharmacologic management and DBS treatment in advanced PD.  相似文献   

19.
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has shown clinical potential for relieving the motor symptoms of advanced Parkinson's disease. While accurate localization of the STN is critical for consistent across‐patients effective DBS, clear visualization of the STN under standard clinical MR protocols is still challenging. Therefore, intraoperative microelectrode recordings (MER) are incorporated to accurately localize the STN. However, MER require significant neurosurgical expertise and lengthen the surgery time. Recent advances in 7 T MR technology facilitate the ability to clearly visualize the STN. The vast majority of centers, however, still do not have 7 T MRI systems, and fewer have the ability to collect and analyze the data. This work introduces an automatic STN localization framework based on standard clinical MRIs without additional cost in the current DBS planning protocol. Our approach benefits from a large database of 7 T MRI and its clinical MRI pairs. We first model in the 7 T database, using efficient machine learning algorithms, the spatial and geometric dependency between the STN and its adjacent structures (predictors). Given a standard clinical MRI, our method automatically computes the predictors and uses the learned information to predict the patient‐specific STN. We validate our proposed method on clinical T2W MRI of 80 subjects, comparing with experts‐segmented STNs from the corresponding 7 T MRI pairs. The experimental results show that our framework provides more accurate and robust patient‐specific STN localization than using state‐of‐the‐art atlases. We also demonstrate the clinical feasibility of the proposed technique assessing the post‐operative electrode active contact locations.  相似文献   

20.
IntroductionThe primary goal of subthalamic nucleus (STN) deep brain stimulation (DBS) for Parkinson's disease (PD) is to improve motor function. Dispositional optimism has been associated with better physical outcomes following a rehabilitation program in PD but has not been investigated in relation to STN-DBS. This study investigated the influence of dispositional optimism on motor outcomes following STN-DBS in individuals with PD.MethodsA retrospective data analysis of 33 individuals with PD who underwent STN-DBS was conducted. Linear regression was used to determine whether dispositional optimism, measured by the Life Orientation Test-Revised questionnaire, predicted change in motor symptoms following DBS surgery, as assessed by the Movement Disorder Society-sponsored revision of the Unified PD Rating Scale, Part III. Self-reported levels of depressive and anxiety symptoms were included as co-variates.ResultsHigher pre-operative dispositional optimism combined with less self-reported depressive symptoms predicted greater post-operative improvement in motor symptoms from the baseline OFF-medication to post-operative ON-medication/ON-stimulation state, accounting for 38.8% of the variance in post-operative change.ConclusionThe large percentage of variance in post-STN-DBS motor change predicted by pre-operative dispositional optimism and depressive symptoms suggests that assessment of these variables prior to surgery may provide valuable information for clinicians regarding the surgery's ultimate initial motor benefit for individuals with PD. If modifiable, these variables may provide cost-effective targets to improve motor outcomes of STN-DBS in PD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号