首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background:

Combined targeting of MAPK and PI3K signalling pathways may be necessary for optimal therapeutic activity in cancer. This study evaluated the MEK inhibitors AZD6244 and PD0325901, alone and in combination with the dual mTOR/PI3K inhibitor NVP-BEZ235 or the PI3K inhibitor GDC-0941, in three colorectal cancer cell lines.

Methods:

Growth inhibition, survival and signal transduction were measured using the Sulforhodamine B assay, clonogenicity and western blotting, respectively, in HCT116, HT29 and DLD1 cell lines.

Results:

All MEK/PI3K inhibitor combinations exhibited marked synergistic growth inhibition; however, GDC-0941 displayed greater synergy in combination with either MEK inhibitor. NVP-BEZ235 exhibited stronger inhibition of 4EBP1 phosphorylation, and similar inhibition of S6 and AKT phosphorylation, compared with GDC-0941. Both PD0325901 and AZD6244 inhibited ERK phosphorylation, and with MEK/PI3K inhibitor combinations inhibition of S6 phosphorylation was increased. The reduced synergy exhibited by NVP-BEZ235 in combination with MEK inhibitors, compared with GDC-0941, may be due to inhibition of mTOR, and the addition of the mTORC1/2 inhibitor KU0063794 compromised the synergy of GDC-0941:PD0325901 combinations.

Conclusion:

These studies confirm that dual targeting of PI3K and MEK can induce synergistic growth inhibition; however, the combination of specific PI3K inhibitors, rather than dual mTOR/PI3K inhibitors, with MEK inhibitors results in greater synergy.  相似文献   

2.

Background

Treatment with anti-estrogens or aromatase inhibitors is commonly used for patients with estrogen receptor-positive (ER+) breast cancers; however resistant disease develops almost inevitably, requiring a choice of secondary therapy. One possibility is to use inhibitors of the PI3K/mTOR pathway and several candidate drugs are in development. We examined the in vitro effects of two inhibitors of the PI3K/mTOR pathway on resistant MCF-7 cells.

Results

The derived sub-lines showed increased resistance to tamoxifen but none exhibited concomitantly increased sensitivity to the PI3K inhibitors. NVP-BEZ235 and GSK2126458 acted mainly by induction of cell cycle arrest, particularly in G1-phase, rather than by induction of apoptosis. The lines varied considerably in their utilization of the AKT, p70S6K and ERK pathways. NVP-BEZ235 and GSK2126458 inhibited AKT signaling but NVP-BEZ235 showed greater effects than GSK2126458 on p70S6K and rpS6 signaling with effects resembling those of rapamycin.

Methods

We cultured MCF-7 cells for prolonged periods either in the presence of the anti-estrogen tamoxifen (three sub-lines) or in estrogen free medium (two sub-lines) to mimic the effects of clinical treatment. We then analyzed the effects of two dual PI3K/mTOR phosphoinositide-3-kinase inhibitors, NVP-BEZ235 and GSK2126458, on the growth and signaling pathways of these MCF-7 sub-lines. The functional status of the PI3K, mTOR and ERK pathways was analyzed by measuring phosphorylation of AKT, p70S6K, rpS6 and ERK.

Conclusion

Increased resistance to tamoxifen in these MCF-7 sub-lines is not associated with hypersensitivity to PI3K inhibitors. While both drugs inhibited AKT signaling, NVP-BEZ235 resembled rapamycin in inhibiting the mTOR pathway.Key words: breast cancer, PI3K, mTOR, BEZ235, GSK2126458, estrogen receptor, MCF-7  相似文献   

3.
Resistance against first and second generation (irreversible) ErbB inhibitors is an unsolved problem in clinical oncology. The purpose of this study was to examine the effects of the irreversible ErbB inhibitors pelitinib and canertinib on growth of breast and ovarian cancer cells. Although in vitro growth-inhibitory effects of both drugs exceeded by far the effects of all reversible ErbB blockers tested (lapatinib, erlotinib, and gefitinib), complete growth inhibition was usually not reached. To define the mechanism of resistance, we examined downstream signaling pathways in drug-exposed cells by Western blot analysis. Although ErbB phosphorylation was reduced by pelitinib and canertinib, activation of the AKT/mTOR pathway remained essentially unaltered in drug-resistant cells. Correspondingly, transfection of tumor cells with constitutively activated AKT was found to promote resistance against all ErbB inhibitors tested, whereas dominant negative AKT reinstalled sensitivity in drug-resistant cells. In a next step, we applied PI3K/AKT/mTOR blockers including the dual PI3K/mTOR kinase inhibitor NVP-BEZ235. These agents were found to cooperate with pelitinib and canertinib in producing in vitro growth inhibition in cancer cells resistant against ErbB-targeting drugs. In conclusion, our data show that ErbB drug-refractory activation of the PI3K/AKT/mTOR pathway plays a crucial role in resistance against classical and second-generation irreversible ErbB inhibitors, and NVP-BEZ235 can override this form of resistance against pelitinib and canertinib.  相似文献   

4.
Phosphatidylinositol-3-kinase (PI3K) pathway deregulation is a common event in human cancer, either through inactivation of the tumor suppressor phosphatase and tensin homologue deleted from chromosome 10 or activating mutations of p110-alpha. These hotspot mutations result in oncogenic activity of the enzyme and contribute to therapeutic resistance to the anti-HER2 antibody trastuzumab. The PI3K pathway is, therefore, an attractive target for cancer therapy. We have studied NVP-BEZ235, a dual inhibitor of the PI3K and the downstream mammalian target of rapamycin (mTOR). NVP-BEZ235 inhibited the activation of the downstream effectors Akt, S6 ribosomal protein, and 4EBP1 in breast cancer cells. The antiproliferative activity of NVP-BEZ235 was superior to the allosteric selective mTOR complex inhibitor everolimus in a panel of 21 cancer cell lines of different origin and mutation status. The described Akt activation due to mTOR inhibition was prevented by higher doses of NVP-BEZ235. NVP-BEZ235 reversed the hyperactivation of the PI3K/mTOR pathway caused by the oncogenic mutations of p110-alpha, E545K, and H1047R, and inhibited the proliferation of HER2-amplified BT474 cells exogenously expressing these mutations that render them resistant to trastuzumab. In trastuzumab-resistant BT474 H1047R breast cancer xenografts, NVP-BEZ235 inhibited PI3K signaling and had potent antitumor activity. In treated animals, there was complete inhibition of PI3K signaling in the skin at pharmacologically active doses, suggesting that skin may serve as surrogate tissue for pharmacodynamic studies. In summary, NVP-BEZ235 inhibits the PI3K/mTOR axis and results in antiproliferative and antitumoral activity in cancer cells with both wild-type and mutated p110-alpha.  相似文献   

5.
Women with type 2 diabetes mellitus (T2DM) are at a greater risk of developing and dying from breast cancer than women without T2DM. Insulin resistance and hyperinsulinemia underlie the pathogenesis of T2DM. In the MKR mouse model of insulin resistance, we have previously shown increased activation of the phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR pathway in association with accelerated mammary tumor growth. In this study, we demonstrate that inhibiting PI3K with the oral pan-class I PI3K inhibitor, NVP-BKM120 reduced the growth of Met-1 and MCNeuA mammary tumor orthografts in the MKR mouse. NVP-BKM120 treatment decreased phosphorylation of Akt and S6 ribosomal protein (S6rp); no change in Erk1/2 phosphorylation was seen. Hyperglycemia, hypertriglyceridemia and greater hyperinsulinemia developed in the MKR mice treated with NVP-BKM120. We previously reported reduced tumor growth using intraperitoneal rapamycin in the MKR mouse, with the development of hyperglycemia and hypertriglyceridemia. Therefore, we examined whether the oral PI3K/mTOR inhibitor NVP-BEZ235 augmented the tumor suppressing effects of PI3K inhibition. We also investigated the effect of targeted PI3K/mTOR inhibition on PI3K/Akt/mTOR and Erk1/2 signaling, and the potential effects on glycemia. NVP-BEZ235 suppressed the growth of Met-1 and MCNeuA tumor orthografts, and decreased Akt and S6rp phosphorylation, despite increased Erk1/2 phosphorylation in Met-1 orthografts of MKR mice. Less marked hyperglycemia and hyperinsulinemia developed with NVP-BEZ235 than NVP-BKM120. Overall, the results of this study demonstrated that inhibiting PI3K/Akt/mTOR signaling with the oral agents NVP-BKM120 and NVP-BEZ235 decreased mammary tumor growth in the hyperinsulinemic MKR mouse. Inhibiting PI3K alone led to more severe metabolic derangement than inhibiting both PI3K and mTOR. Therefore, PI3K may be an important target for the treatment of breast cancer in women with insulin resistance. Monitoring for hyperglycemia and dyslipidemia should be considered when using these agents in humans, given the metabolic changes detected in this study.  相似文献   

6.
The PI3K/Akt/mTOR pathway is overactivated and heat shock protein (HSP) 90 is overexpressed in common cancers. We hypothesized that targeting both pathways can kill intrahepatic cholangiocarcinoma (CCA) cells. HSP90 and PTEN protein expression was evaluated by immunohistochemical staining of samples from 78 patients with intrahepatic CCA. CCA cell lines and a thioacetamide (TAA)-induced CCA animal model were treated with NVP-AUY922 (an HSP90 inhibitor) and NVP-BEZ235 (a PI3K/mTOR inhibitor) alone or in combination.Both HSP90 overexpression and loss of PTEN were poor prognostic factors in patients with intrahepatic CCA. The combination of the HSP90 inhibitor NVP-AUY922 and the PI3K/mTOR inhibitor NVP-BEZ235 was synergistic in inducing cell death in CCA cells. A combination of NVP-AUY922 and NVP-BEZ235 caused tumor regression in CCA rat animal model. This combination not only inhibited the PI3K/Akt/mTOR pathway but also induced ROS, which may exacerbate the vicious cycle of ER stress. Our data suggest simultaneous targeting of the PI3K/mTOR and HSP pathways for CCA treatment.  相似文献   

7.
Phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway activation contributes to mantle cell lymphoma (MCL) pathogenesis and drug resistance. Antitumor activity has been observed with mTOR inhibitors. However, they have shown limited clinical efficacy in relation to drug activation of feedback loops. Selective PI3K inhibition or dual PI3K/mTOR catalytic inhibition are different therapeutic approaches developed to achieve effective pathway blockage. Here, we have performed a comparative analysis of the mTOR inhibitor everolimus, the pan-PI3K inhibitor NVP-BKM120 and the dual PI3K/mTOR inhibitor NVP-BEZ235 in primary MCL cells. We found NVP-BEZ235 to be more powerful than everolimus or NVP-BKM120 in PI3K/Akt/mTOR signaling inhibition, indicating that targeting the PI3K/Akt/mTOR pathway at multiple levels is likely to be a more effective strategy for the treatment of MCL than single inhibition of these kinases. Among the three drugs, NVP-BEZ235 induced the highest change in gene expression profile. Functional validation demonstrated that NVP-BEZ235 inhibited angiogenesis, migration and tumor invasiveness in MCL cells. NVP-BEZ235 was the only drug able to block IL4 and IL6/STAT3 signaling which compromise the therapeutic effect of chemotherapy in MCL. Our findings support the use of the dual PI3K/mTOR inhibitor NVP-BEZ235 as a promising approach to interfere with the microenvironment-related processes in MCL.  相似文献   

8.

Background

The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is activated in tumor cells and promotes tumor cell survival after radiation-induced DNA damage. Because the pathway may not be completely inhibited after blockade of PI3K itself, due to feedback through mammalian target of rapamycin (mTOR), more effective inhibition might be expected by targeting both PI3K and mTOR inhibition.

Materials and methods

We investigated the effect of two dual PI3K/mTOR (both mTORC1 and mTORC2) inhibitors, NVP-BEZ235 and NVP-BGT226, on SQ20B laryngeal and FaDu hypopharyngeal cancer cells characterised by EGFR overexpression, on T24 bladder tumor cell lines with H-Ras mutation and on endothelial cells. Analysis of target protein phosphorylation, clonogenic survival, number of residual ??H2AX foci, cell cycle and apoptosis after radiation was performed in both tumor and endothelial cells. In vitro angiogenesis assays were conducted as well.

Results

Both compounds effectively inhibited phosphorylation of Akt, mTOR and S6 target proteins and reduced clonogenic survival in irradiated tumor cells. Persistence of DNA damage, as evidenced by increased number of ??H2AX foci, was detected after irradiation in the presence of PI3K/mTOR inhibition, together with enhanced G2 cell cycle delay. Treatment with one of the inhibitors, NVP-BEZ235, also resulted in decreased clonogenicity after irradiation of tumor cells under hypoxic conditions. In addition, NVP-BEZ235 blocked VEGF- and IR-induced Akt phosphorylation and increased radiation killing in human umbilical venous endothelial cells (HUVEC) and human dermal microvascular dermal cells (HDMVC). NVP-BEZ235 inhibited VEGF-induced cell migration and capillary tube formation in vitro and enhanced the antivascular effect of irradiation. Treatment with NVP-BEZ235 moderately increased apoptosis in SQ20B and HUVEC cells but not in FaDu cells, and increased necrosis in both tumor and endothelial all cells tumor.

Conclusions

The results of this study demonstrate that PI3K/mTOR inhibitors can enhance radiation-induced killing in tumor and endothelial cells and may be of benefit when combined with radiotherapy.  相似文献   

9.
Recent studies have identified that constitutively active phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling is an important feature of osteosarcoma, where it promotes cell proliferation, survival, and chemo-resistance. Here, we studied the therapeutic potential of NVP-BEZ235, a novel dual PI3K/mTOR dual inhibitor, on osteosarcoma cells in vivo and in vitro. NVP-BEZ235 was cytotoxic and cytostatic to a panel of osteosarcoma lines (MG-63, U2OS and SaOs-2), where it induce apoptosis and cell-cycle arrest. At the molecular level, NVP-BEZ235 inhibited PI3K-AKT-mTORC1 activation and downregulated cyclin D1/cyclin B1 expressions, while increasing MEK/Erk phosphorylation in osteosarcoma cells. MEK/Erk inhibitors PD98059 and MEK-162 increased NVP-BEZ235 activity on osteosarcoma cells. In vivo, oral NVP-BEZ235 inhibited U2OS xenograft in SCID mice, and its anti-tumor efficiency was further enhanced by MEK-162 co-administration. Taken together, our findings indicate that dual inhibition of PI3K and mTOR with NVP-BEZ235, either alone or in combination with MEK/Erk inhibitors, may be an efficient treatment for osteosarcoma.  相似文献   

10.
Several studies have established a link between aberrant PI(3)K–Akt–mTOR- and Ras–Raf–MEK–Erk1/2 signaling and neuroendocrine tumor disease. In this study, we comparatively investigate the antitumor potential of novel small-molecule inhibitors targeting mTOR (RAD001), mTOR/PI(3)K (NVP-BEZ235) and Raf (Raf265) on human NET cell lines of heterogeneous origin. All inhibitors induced potent antitumor effects which involved the induction of apoptosis and G0/G1 arrest. However, the dual mTOR/PI(3)K inhibitor NVP-BEZ235 was more efficient compared to the single mTOR inhibitor RAD001. Consistently, NVP-BEZ235 prevented the negative feedback activation of Akt as observed after treatment with RAD001. Raf265 inhibited Erk1/2 phosphorylation but strongly induced Akt phosphorylation and VEGF secretion, suggesting the existence of a compensatory feedback loop on PI3K-Akt signaling. Finally, combined treatment with RAD001 or NVP-BEZ235 and Raf265 was more efficient than single treatment with either kinase inhibitor. Together, our data provide a rationale for dual targeting of PI(3)K–Akt–mTOR- and Ras–Raf–MEK–Erk1/2 signaling in NET disease.  相似文献   

11.
NVP-BEZ235是一种新型磷脂酰肌醇3-激酶(PI3K)和哺乳动物雷帕霉素靶蛋白(mTOR)双重抑制剂,已有的研究结果证实NVP-BEZ235在肺癌治疗中联合其他药物有着较为理想的效果.对于EGFR突变肺癌亚型、KRAS突变肺癌亚型,NVP-BEZ235的治疗可能有潜在应用价值.  相似文献   

12.
Inhibitors of PI3K/Akt signaling are being actively developed for tumor therapy owing to the frequent mutational activation of the PI3K-Akt-mTORC1 pathway in many cancers, including glioblastomas (GBMs). NVP-BEZ235 is a novel and potent dual PI3K/mTOR inhibitor that is currently in phase 1/2 clinical trials for advanced solid tumors. Here, we show that NVP-BEZ235 also potently inhibits ATM and DNA-PKcs, the two major kinases responding to ionizing radiation (IR)-induced DNA double-strand breaks (DSBs). Consequently, NVP-BEZ235 blocks both nonhomologous end joining and homologous recombination DNA repair pathways resulting in significant attenuation of DSB repair. In addition, phosphorylation of ATMtargets and implementation of the G2/M cell cycle checkpoint are also attenuated by this drug. As a result, NVP-BEZ235 confers an extreme degree of radiosensitization and impairs DSB repair in a panel of GBM cell lines irrespective of their Akt activation status. NVP-BEZ235 also significantly impairs DSB repair in a mouse tumor model thereby validating the efficacy of this drug as a DNA repair inhibitor in vivo. Our results, showing that NVP-BEZ235 is a potent and novel inhibitor of ATM and DNA-PKcs, have important implications for the informed and rational design of clinical trials involving this drug and also reveal the potential utility of NVP-BEZ235 as an effective radiosensitizer for GBMs in the clinic.  相似文献   

13.
Dysregulated angiogenesis and high tumor vasculature permeability, two vascular endothelial growth factor (VEGF)-mediated processes and hallmarks of human tumors, are in part phosphatidylinositol 3-kinase (PI3K) dependent. NVP-BEZ235, a dual PI3K/mammalian target of rapamycin (mTOR) inhibitor, was found to potently inhibit VEGF-induced cell proliferation and survival in vitro and VEGF-induced angiogenesis in vivo as shown with s.c. VEGF-impregnated agar chambers. Moreover, the compound strongly inhibited microvessel permeability both in normal tissue and in BN472 mammary carcinoma grown orthotopically in syngeneic rats. Similarly, tumor interstitial fluid pressure, a phenomenon that is also dependent of tumor permeability, was significantly reduced by NVP-BEZ235 in a dose-dependent manner on p.o. administration. Because RAD001, a specific mTOR allosteric inhibitor, was ineffective in the preceding experiments, we concluded that the effects observed for NVP-BEZ235 are in part driven by PI3K target modulation. Hence, tumor vasculature reduction was correlated with full blockade of endothelial nitric oxide (NO) synthase, a PI3K/Akt-dependent but mTORC1-independent effector involved in tumor permeability through NO production. In the BN472 tumor model, early reduction of permeability, as detected by K(trans) quantification using the dynamic contrast-enhanced magnetic resonance imaging contrasting agent P792 (Vistarem), was found to be a predictive marker for late-stage antitumor activity by NVP-BEZ235.  相似文献   

14.
The aberrant vascular architecture of solid tumors results in hypoxia that limits the efficacy of radiotherapy. Vascular normalization using antiangiogenic agents has been proposed as a means to improve radiation therapy by enhancing tumor oxygenation, but only short-lived effects for this strategy have been reported so far. Here, we show that NVP-BEZ235, a dual inhibitor of phosphoinositide-3-kinase (PI3K) and mTOR, can improve tumor oxygenation and vascular structure over a prolonged period that achieves the aim of effective vascular normalization. Because PI3K inhibition can radiosensitize tumor cells themselves, our experimental design explicitly distinguished effects on the blood vasculature versus tumor cells. Drug administration coincident with radiation enhanced the delay in tumor growth without changing tumor oxygenation, establishing that radiosensitization is a component of the response. However, the enhanced growth delay was substantially greater after induction of vascular normalization, meaning that this treatment enhanced the tumoral radioresponse. Importantly, changes in vascular morphology persisted throughout the entire course of the experiment. Our findings indicated that targeting the PI3K/mTOR pathway can modulate the tumor microenvironment to induce a prolonged normalization of blood vessels. The substantial therapeutic gain observed after combination of NVP-BEZ235 with irradiation has conceptual implications for cancer therapy and could be of broad translational importance.  相似文献   

15.
Despite recent improvements in chemotherapy and surgery, the problem of non-response osteosarcoma to chemotherapy remains, and is a parameter that is critical for prognosis. The present work investigated the therapeutic value of NVP-BEZ235, a dual class I PI3K/mTOR inhibitor. NVP-BEZ235 inhibited osteosarcoma cell proliferation by inducing G0/G1 cell cycle arrest with no caspase activation. In murine pre-clinical models, NVP-BEZ235 significantly slowed down tumor progression and ectopic tumor bone formation with decreased numbers of Ki67+ cells and reduced tumor vasculature. Finally, NVP-BEZ235 considerably improved the survival rate of mice with osteosarcoma. Taken together, the results of the present work show that NVP-BEZ235 exhibits therapeutic interest in osteosarcoma and may be a promising adjuvant drug for bone sarcomas.  相似文献   

16.
Aberrant epidermal growth factor receptor (EGFR) and ErbB2 expression are associated with advanced disease and poor patient prognosis in many tumor types (breast, lung, ovarian, prostate, glioma, gastric, and squamous carcinoma of head and neck). In addition, a constitutively active EGFR type III deletion mutant has been identified in non-small cell lung cancer, glioblastomas, and breast tumors. Hence, members of the EGFR family are viewed as promising therapeutic targets in the fight against cancer. In a similar vein, vascular endothelial growth factor (VEGF) receptor kinases are also promising targets in terms of an antiangiogenic treatment strategy. AEE788, obtained by optimization of the 7H-pyrrolo[2,3-d]pyrimidine lead scaffold, is a potent combined inhibitor of both epidermal growth factor (EGF) and VEGF receptor tyrosine kinase family members on the isolated enzyme level and in cellular systems. At the enzyme level, AEE788 inhibited EGFR and VEGF receptor tyrosine kinases in the nm range (IC(50)s: EGFR 2 nm, ErbB2 6 nm, KDR 77 nm, and Flt-1 59 nm). In cells, growth factor-induced EGFR and ErbB2 phosphorylation was also efficiently inhibited (IC(50)s: 11 and 220 nm, respectively). AEE788 demonstrated antiproliferative activity against a range of EGFR and ErbB2-overexpressing cell lines (including EGFRvIII-dependent lines) and inhibited the proliferation of epidermal growth factor- and VEGF-stimulated human umbilical vein endothelial cells. These properties, combined with a favorable pharmacokinetic profile, were associated with a potent antitumor activity in a number of animal models of cancer, including tumors that overexpress EGFR and or ErbB2. Oral administration of AEE788 to tumor-bearing mice resulted in high and persistent compound levels in tumor tissue. Moreover, AEE788 efficiently inhibited growth factor-induced EGFR and ErbB2 phosphorylation in tumors for >72 h, a phenomenon correlating with the antitumor efficacy of intermittent treatment schedules. Strikingly, AEE788 also inhibited VEGF-induced angiogenesis in a murine implant model. Antiangiogenic activity was also apparent by measurement of tumor vascular permeability and interstitial leakage space using dynamic contrast enhanced magnetic resonance imaging methodology. Taken together, these data indicate that AEE788 has potential as an anticancer agent targeting deregulated tumor cell proliferation as well as angiogenic parameters. Consequently, AEE788 is currently in Phase I clinical trials in oncology.  相似文献   

17.
Therapies targeting the ERBB2 receptor, including the kinase inhibitor lapatinib (Tykerb, GlaxoSmithKline), have improved clinical outcome for women with ERBB2-amplified breast cancer. However, acquired resistance to lapatinib remains a significant clinical problem, and the mechanisms governing resistance remain poorly understood. We sought to define molecular alterations that confer an acquired lapatinib resistance phenotype in ER?/ERBB2+ human breast cancer cells. ERBB2-amplified SKBR3 breast cancer cells were rendered resistant to lapatinib via culture in increasing concentrations of the drug, and molecular changes associated with a resistant phenotype were interrogated using a collaborative enzyme-enhanced immunoassay platform and immunoblotting techniques for detection of phosphorylated signaling cascade proteins. Interestingly, despite apparent inactivation of the PI3K/AKT signaling pathway, resistant cells exhibited constitutive activation of mammalian target of rapamycin complex 1 (mTORC1) and were highly sensitive to mTOR inhibition with rapamycin and the dual PI3K/mTOR inhibitor NVP-BEZ235. These data demonstrate a role for downstream activation of mTORC1 in the absence of molecular alterations leading to PI3K/AKT hyperactivation as a potential mechanism of lapatinib resistance in this model of ERBB2+ breast cancer and support the rationale of combination or sequential therapy using ERBB2 and mTOR-targeting molecules to prevent or target resistance to lapatinib. Moreover, our data suggest that assessment of mTOR substrate phosphorylation (i.e., S6) may serve as a more robust biomarker to predict sensitivity to mTOR inhibitors in the context of lapatinib resistance than PI3K mutations, loss of PTEN and p-AKT levels.  相似文献   

18.

Purpose

Although the EGF receptor tyrosine kinase inhibitors (EGFR-TKI) gefitinib have shown dramatic effects against EGFR mutant lung cancer, patients become resistant by various mechanisms, including gatekeeper EGFR-T790M mutation, MET amplification, and KRAS mutation, thereafter relapsing. AZD6244 is a potent, selective, and orally available MEK1/2 inhibitor. In this study, we evaluated the therapeutic efficacy of AZD6244 alone or with BEZ235, an orally available potent inhibitor of phosphatidylinositol 3–kinase (PI3K) and mammalian target of rapamycin (mTOR), in gefitinib-resistant non-small cell lung carcinoma (NSCLC) models.

Experimental design

NCI-H1975 with EGFR-T790M mutation, NCI-H1993 with MET amplification and NCI-H460 with KRAS/PIK3CA mutation human NSCLC cells were subcutaneous injected into the athymic nude mice respectively. Mice were randomly assigned to treatment with AZD6244, BEZ235, AZD6244 plus BEZ235, or control for 3 weeks, then all mice were sacrificed and tumor tissues were subjected to western blot analyses and immunohistochemical staining.

Results

AZD6244 could inhibit the tumor growth of NCI-H1993, but slightly inhibit the tumor growth of NCI-1975 and NCI-H460. Combining AZD6244 with BEZ235 markedly enhanced their antitumor effects and without any marked adverse events. Western blot analysis and immunohistochemical staining revealed that AZD6244 alone reduced ERK1/2 phosphorylation, angiogenesis, and tumor cell proliferation. Moreover, MEK1/2 inhibition resulted in decreased AKT phosphorylation in NCI-H1993 tumor model. BEZ235 also inhibited AKT phosphorylation as well as their downstream molecules in all three tumor models. The antiangiogenic effects were substantially enhanced when the agents were combined, which may due to the reduced expression of matrix metallopeptidase-9 in tumor tissues (MMP-9).

Conclusions

In this study, we evaluated therapy directed against MEK and PI3K/mTOR in distinct gefitinib-resistant NSCLC xenograft models. Combining AZD6244 with BEZ235 enhanced their antitumor and antiangiogenic effects. We concluded that the combination of a selective MEK inhibitor and a PI3K/mTOR inhibitor was effective in suppressing the growth of gefitinib-resistant tumors caused by EGFR T790M mutation, MET amplification, and KRAS/PIK3CA mutation. This new therapeutic strategy may be a practical approach in the treatment of these patients.  相似文献   

19.
The phosphatidylinositol-3-kinase (PI3K)/Akt signalling pathway is frequently deregulated in pancreatic cancers, and is believed to be an important determinant of their biological aggression and drug resistance. NVP-BEZ235 is a novel, dual class I PI3K/mammalian target of rapamycin (mTor) inhibitor undergoing phase I human clinical trials. To simulate clinical testing, the effects of NVP-BEZ235 were studied in five early passage primary pancreatic cancer xenografts, grown orthotopically. These tumours showed activated PKB/Akt, and increased levels of at least one of the receptor tyrosine kinases that are commonly activated in pancreatic cancers. Pharmacodynamic effects were measured following acute single doses, and anticancer effects were determined in separate groups following chronic drug exposure. Acute oral dosing with NVP-BEZ235 strongly suppressed the phosphorylation of PKB/Akt, followed by recovery over 24 h. There was also inhibition of Ser235/236 S6 ribosomal protein and Thr37/46 4E-BP1, consistent with the effects of NVP-BEZ235 as a dual PI3K/mTor inhibitor. Chronic dosing with 45 mg kg−1 of NVP-BEZ235 was well tolerated, and produced significant tumour growth inhibition in three models. These results predict that agents targeting the PI3K/Akt/mTor pathway might have anticancer activity in pancreatic cancer patients, and support the testing of combination studies involving chemotherapy or other molecular targeted agents.  相似文献   

20.
Salivary gland tumor (SGT) is one of the least studied cancers due to its rarity and heterogeneous histological types. Here, we reported that loss of PTEN expression was most frequently found in the poorly differentiated, high grade solid adenoid cystic carcinomas. Loss of PTEN expression correlated with activation of mTOR by increased phosphorylated S6 ribosome protein. We further functionally studied the role of PTEN in a pair of human SACC cell lines, SACC-83 and SACC-LM. Reduced PTEN level was correlated with the metastasis potential. When we knocked down PTEN in the SACC-83 cell line, we observed increased proliferation and enhanced migration/invasion in vitro, and increased tumor size in vivo. We further tested the therapeutical effect by applying a PI3K/mTOR inhibitor NVP-BEZ235 to both SACC cell lines. Decreased cell proliferation, increased apoptosis, as well as reduced cell migration/invasion were observed in both cell lines upon the NVP-BEZ235 treatment. Moreover, the NVP-BEZ235 treatment in a SGT xenograft mouse model significantly reduced primary tumor size and lung metastasis. Taken together, our results demonstrated that PTEN is a potent tumor suppressor in human SGTs, and targeting PI3K/mTOR pathway may be effective in the targeted therapy for human SGT patients with loss of PTEN expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号