共查询到20条相似文献,搜索用时 15 毫秒
1.
Smith ME Cimica V Chinni S Jana S Koba W Yang Z Fine E Zagzag D Montagna C Kalpana GV 《Proceedings of the National Academy of Sciences of the United States of America》2011,108(1):319-324
Rhabdoid tumors (RTs) are rare, highly aggressive pediatric malignancies with poor prognosis and with no standard or effective treatment strategies. RTs are characterized by biallelic inactivation of the INI1 tumor suppressor gene. INI1 directly represses CCND1 and activates cyclin-dependent kinase (cdk) inhibitors p16(Ink4a) and p21(CIP). RTs are exquisitely dependent on cyclin D1 for genesis and survival. To facilitate translation of unique therapeutic strategies, we have used genetically engineered, Ini1(+/-) mice for therapeutic testing. We found that PET can be used to noninvasively and accurately detect primary tumors in Ini1(+/-) mice. In a PET-guided longitudinal study, we found that treating Ini1(+/-) mice bearing primary tumors with the pan-cdk inhibitor flavopiridol resulted in complete and stable regression of some tumors. Other tumors showed resistance to flavopiridol, and one of the resistant tumors overexpressed cyclin D1, more than flavopiridol-sensitive cells. The concentration of flavopiridol used was not sufficient to down-modulate the high level of cyclin D1 and failed to induce cell death in the resistant cells. Furthermore, FISH and PCR analyses indicated that there is aneuploidy and increased CCND1 copy number in resistant cells. These studies indicate that resistance to flavopiridol may be correlated to elevated cyclin D1 levels. Our studies also indicate that Ini1(+/-) mice are valuable tools for testing unique therapeutic strategies and for understanding mechanisms of drug resistance in tumors that arise owing to loss of Ini1, which is essential for developing effective treatment strategies against these aggressive tumors. 相似文献
2.
Francis Impens Lilliana Radoshevich Pascale Cossart David Ribet 《Proceedings of the National Academy of Sciences of the United States of America》2014,111(34):12432-12437
SUMOylation is an essential ubiquitin-like modification involved in important biological processes in eukaryotic cells. Identification of small ubiquitin-related modifier (SUMO)-conjugated residues in proteins is critical for understanding the role of SUMOylation but remains experimentally challenging. We have set up a powerful and high-throughput method combining quantitative proteomics and peptide immunocapture to map SUMOylation sites and have analyzed changes in SUMOylation in response to stimuli. With this technique we identified 295 SUMO1 and 167 SUMO2 sites on endogenous substrates of human cells. We further used this strategy to characterize changes in SUMOylation induced by listeriolysin O, a bacterial toxin that impairs the host cell SUMOylation machinery, and identified several classes of host proteins specifically deSUMOylated in response to this toxin. Our approach constitutes an unprecedented tool, broadly applicable to various SUMO-regulated cellular processes in health and disease.Posttranslational modifications (PTMs) are key mechanisms used by both prokaryotes and eukaryotes to regulate protein activity specifically, locally, and temporally. Ubiquitin and ubiquitin-like proteins (UBLs) constitute a specific class of small protein modifiers that can be covalently attached to a target protein via the formation of an isopeptide bond in a reversible manner. Small ubiquitin-related modifier (SUMO), one of these UBLs, is an essential PTM in eukaryotic cells that is involved in various cellular functions including gene expression regulation, DNA repair, intracellular transport, and response to viral and bacterial infections (1–5). The human genome encodes three different functional SUMO isoforms (SUMO1, SUMO2, and SUMO3) that are conjugated to distinct but overlapping sets of target proteins (1, 2, 6). Conjugation of SUMO to its targets in humans requires an E1-activating enzyme (the SAE1/SAE2 heterodimer), an E2-conjugating enzyme (Ubc9), and several E3 SUMO enzymes. Once conjugated to its target, SUMO can be deconjugated by several different SUMO isopeptidases that tightly regulate the SUMOylation levels of proteins (7).Since the discovery of SUMO two decades ago, much effort has been dedicated to the identification of SUMO-conjugated proteins in different organisms including yeast, plants, and mammals (8). However, isolation of SUMOylated proteins has proven to be challenging. Indeed, for most SUMO substrates, only a small proportion of the total amount of protein is SUMO-modified. In addition, the high activity of SUMO isopeptidases in cell lysates results in the rapid loss of SUMO conjugation in the absence of appropriate inhibitors. Thus, the most common approach used to isolate SUMOylated proteins is based on the expression of His-tagged versions of SUMO allowing the purification of SUMO-conjugated proteins by nickel chromatography under denaturing conditions (8, 9). Denaturing conditions inactivate SUMO isopeptidases and also prevent contamination by proteins interacting noncovalently with SUMO via specific domains such as SUMO-interacting motifs (SIMs) (2). Once SUMOylated proteins have been isolated, their analysis by mass spectrometry (MS) has been widely used to identify SUMO-modified proteins and, albeit less successfully, SUMO-conjugation sites.Mapping the exact lysine residue to which SUMO is attached in modified proteins is a critical step to get further insight into the function of SUMOylation. Indeed, the identification of SUMO sites allows the generation of non-SUMOylatable mutants and the study of associated phenotypes. Identification of SUMO sites by MS is not straightforward (8). Unlike ubiquitin, which leaves a small diglycine (GG) signature tag on the modified lysine residue after trypsin digestion, SUMO leaves a larger signature that severely hampers the identification of modified peptides.In addition to the identification of the SUMO site per se, a comparison of the SUMOylation status of sites in different cell-growth conditions is critical for better characterizing the biological implications of SUMOylation. For example, analysis of SUMOylation changes induced after heat shock, arsenic treatment, inhibition of the proteasome, or during the cell cycle has led to numerous insights into the role of SUMOylation in cell physiology (refs. 10–14 and reviewed in ref. 2). Here, we devised a performant approach which combines the use of SUMO variants, peptide immunocapture, and quantitative proteomics for high-throughput identification of SUMO sites. We then show that our approach is able to characterize global changes in the cell SUMOylome in response to a given stimulus, such as exposure to a bacterial toxin, listeriolysin O (LLO). 相似文献
3.
Zambon RA Nandakumar M Vakharia VN Wu LP 《Proceedings of the National Academy of Sciences of the United States of America》2005,102(20):7257-7262
The innate immune response of Drosophila melanogaster is governed by a complex set of signaling pathways that trigger antimicrobial peptide (AMP) production, phagocytosis, melanization, and encapsulation. Although immune responses against both bacteria and fungi have been demonstrated in Drosophila, identification of an antiviral response has yet to be found. To investigate what responses Drosophila mounts against a viral infection, we have developed an in vivo Drosophila X virus (DXV)-based screening system that identifies altered sensitivity to viral infection by using DXV's anoxia-induced death pathology. Using this system to screen flies with mutations in genes with known or suggested immune activity, we identified the Toll pathway as a vital part of the Drosophila antiviral response. Inactivation of this pathway instigated a rapid onset of anoxia induced death in infected flies and increases in viral titers compared to those in WT flies. Although constitutive activation of the pathway resulted in similar rapid onset of anoxia sensitivity, it also resulted in decreased viral titer. Additionally, AMP genes were induced in response to viral infection similar to levels observed during Escherichia coli infection. However, enhanced expression of single AMPs did not alter resistance to viral infection or viral titer levels, suggesting that the main antiviral response is cellular rather than humoral. Our results show that the Toll pathway is required for efficient inhibition of DXV replication in Drosophila. Additionally, our results demonstrate the validity of using a genetic approach to identify genes and pathways used in viral innate immune responses in Drosophila. 相似文献
4.
Plavicki J Mader S Pueschel E Peebles P Boekhoff-Falk G 《Proceedings of the National Academy of Sciences of the United States of America》2012,109(5):1578-1583
Vertebrate Dlx genes have been implicated in the differentiation of multiple neuronal subtypes, including cortical GABAergic interneurons, and mutations in Dlx genes have been linked to clinical conditions such as epilepsy and autism. Here we show that the single Drosophila Dlx homolog, distal-less, is required both to specify chemosensory neurons and to regulate the morphologies of their axons and dendrites. We establish that distal-less is necessary for development of the mushroom body, a brain region that processes olfactory information. These are important examples of distal-less function in an invertebrate nervous system and demonstrate that the Drosophila larval olfactory system is a powerful model in which to understand distal-less functions during neurogenesis. 相似文献
5.
Hara Y Kanagawa M Kunz S Yoshida-Moriguchi T Satz JS Kobayashi YM Zhu Z Burden SJ Oldstone MB Campbell KP 《Proceedings of the National Academy of Sciences of the United States of America》2011,108(42):17426-17431
α-dystroglycan is a highly O-glycosylated extracellular matrix receptor that is required for anchoring of the basement membrane to the cell surface and for the entry of Old World arenaviruses into cells. Like-acetylglucosaminyltransferase (LARGE) is a key molecule that binds to the N-terminal domain of α-dystroglycan and attaches ligand-binding moieties to phosphorylated O-mannose on α-dystroglycan. Here we show that the LARGE modification required for laminin- and virus-binding occurs on specific Thr residues located at the extreme N terminus of the mucin-like domain of α-dystroglycan. Deletion and mutation analyses demonstrate that the ligand-binding activity of α-dystroglycan is conferred primarily by LARGE modification at Thr-317 and -319, within the highly conserved first 18 amino acids of the mucin-like domain. The importance of these paired residues in laminin-binding and clustering activity on myoblasts and in arenavirus cell entry is confirmed by mutational analysis with full-length dystroglycan. We further demonstrate that a sequence of five amino acids, Thr(317)ProThr(319)ProVal, contains phosphorylated O-glycosylation and, when modified by LARGE is sufficient for laminin-binding. Because the N-terminal region adjacent to the paired Thr residues is removed during posttranslational maturation of dystroglycan, our results demonstrate that the ligand-binding activity resides at the extreme N terminus of mature α-dystroglycan and is crucial for α-dystroglycan to coordinate the assembly of extracellular matrix proteins and to bind arenaviruses on the cell surface. 相似文献
6.
Ji-Won Huh Takuma Shibata Misun Hwang Eun-Hye Kwon Min Seong Jang Ryutaro Fukui Atsuo Kanno Da-Jung Jung Myoung Ho Jang Kensuke Miyake You-Me Kim 《Proceedings of the National Academy of Sciences of the United States of America》2014,111(19):7072-7077
The proper trafficking and localization of Toll-like receptors (TLRs) are important for specific ligand recognition and efficient signal transduction. The TLRs sensing bacterial membrane components are expressed on the cell surface and recruit signaling adaptors to the plasma membrane upon stimulation. On the contrary, the nucleotide-sensing TLRs are mostly found inside cells and signal from the endolysosomes in an acidic pH-dependent manner. Trafficking of the nucleotide-sensing TLRs from the endoplasmic reticulum to the endolysosomes strictly depends on UNC93B1, and their signaling is completely abolished in the 3d mutant mice bearing the H412R mutation of UNC93B1. In contrast, UNC93B1 was considered to have no role for the cell surface-localized TLRs and signaling via TLR1, TLR2, TLR4, and TLR6 is normal in the 3d mice. Unexpectedly, we discovered that TLR5, a cell surface receptor for bacterial protein flagellin, also requires UNC93B1 for plasma membrane localization and signaling. TLR5 physically interacts with UNC93B1, and the cells from the 3d or UNC93B1-deficient mice not only lack TLR5 at the plasma membrane but also fail to secret cytokines and to up-regulate costimulatory molecules upon flagellin stimulation, demonstrating the essential role of UNC93B1 in TLR5 signaling. Our study reveals that the role of UNC93B1 is not limited to the TLRs signaling from the endolysosomes and compels the further probing of the mechanisms underlying the UNC93B1-assisted differential targeting of TLRs.Toll-like receptors (TLRs) sense unique microbial structures or host-derived molecules released from stressed or dying cells to initiate the innate immune responses (1). TLRs are composed of three domains: the leucine-rich repeat (LRR) domain responsible for ligand binding, a single transmembrane domain, and the cytoplasmic Toll/IL-1 receptor homology domain by which TLRs recruit adaptor molecules for downstream signal transduction. Activated TLRs stimulate the NF-κB, MAPK, and IFN regulatory factor pathways, leading to the expression of diverse inflammatory cytokines, chemokines, and type I interferons. TLRs also activate antigen presenting cells to induce costimulatory molecules and coordinate various aspects of adaptive immune responses (2).The members of the TLR family can be classified into two groups based on their subcellular localization patterns (3–5). TLR1, TLR2, TLR4, and TLR6, which mainly recognize the components of bacterial cell membrane, are located on the cell surface and initiate signaling thereat. In contrast, the nucleotide-sensing TLRs such as TLR3, TLR7, TLR8, TLR9, and TLR13 are largely found in endolysosomes and require an acidic environment for their efficient signaling. Additionally, TLR11 and TLR12, the sensors for Toxoplasma protein profilin, are also expressed inside cells and transmit signals in an acidic pH-dependent manner (6–8). All the intracellular TLRs commonly bind to a multispanning membrane protein UNC93B1, which is required for their proper localization and signaling (6–13). One missense mutation (H412R) of UNC93B1, found in a chemically mutagenized mouse strain called 3d, hinders binding of UNC93B1 with TLRs and prevents their exit from the endoplasmic reticulum (ER) (9–11). Consequently, signaling by all endosomal TLRs is abolished in the cells from 3d mice. In contrast, trafficking and signaling of the cell surface-localized TLRs such as TLR2 and TLR4 are not affected by the UNC93B1 mutation (9, 11).The proper localization of TLRs is critical not only for efficient signaling but also for preventing undesirable receptor hyperactivation (14, 15). Especially, sequestration of the nucleotide-sensing TLRs in endolysosomes significantly contributes to attenuating the immune stimulation by host-derived nucleotides abundant in the extracellular spaces (14). Structural discrimination of microbial vs. mammalian nucleotides is not straightforward, and a mutant TLR9 protein, engineered to artificially localize at the plasma membrane, responds to mammalian DNA as well as the CpG oligonucleotides mimicking bacterial DNA. As a result, mice expressing such mutant TLR9 succumb to systemic autoinflammation and die prematurely (15). Therefore, regulatory mechanisms for localization and trafficking of TLRs need to be tightly controlled.TLR5 recognizes flagellin, the major protein subunit of bacterial flagellum, and functions as a critical innate sensor for flagellated bacteria in all mucous organs (16–18). TLR5 plays an important role in intestinal homeostasis mediating the immune adaptation to symbiotic microflora as well as defense against pathogenic bacterial infection (19–21). In addition, systemic injection of flagellin confers protection against ionizing radiation in a TLR5-dependent manner, implying that TLR5 agonism might be clinically used for radioprotection (22). TLR5 overexpressed in the intestinal epithelial cells was exclusively found on the basolateral surface, accounting for the selective induction of proinflammatory cytokine by basolateral but not by apical flagellin (17). Also, we recently demonstrated that endogenous TLR5 is expressed at the cell surface of mouse neutrophils, monocytes, and dendritic cells (DCs) in a TLR-specific chaperone PRAT4A-dependnet manner (23). However, other regulatory mechanisms for the localization of TLR5 at the plasma membrane are unknown. Here, we show that UNC93B1 binds to TLR5, travels to the plasma membrane with the receptor, and is required for flagellin-induced signaling at the cell surface. 相似文献
7.
8.
Clostridium difficile TcdB harbors a glucosyltransferase that targets host Rho GTPases. However, the role of the enzyme activity in the induction of host intestinal disease has not been demonstrated. In this study, we established a mouse acute intestinal disease model by cecum injection of wild type and glucosyltransferase-deficient TcdB and a chronic model by delivering toxin intraluminally via engineered surrogate host Bacillus megaterium. We demonstrated, for the first time, that the glucosyltransferase activity of TcdB is essential for inducing disease symptoms and intestinal pathological responses that resemble human disease, highlighting the importance of targeting toxin glucosyltransferase activity for future therapy. 相似文献
9.
A redox-sensitive peroxiredoxin that is important for longevity has tissue- and stress-specific roles in stress resistance 下载免费PDF全文
Monika Olhov Sarah R. Taylor Siavash Khazaipoul Jinling Wang Brian A. Morgan Kunihiro Matsumoto T. Keith Blackwell Elizabeth A. Veal 《Proceedings of the National Academy of Sciences of the United States of America》2008,105(50):19839-19844
Oxidative damage caused by reactive oxygen species (ROS) is implicated in many diseases and in aging. Removal of ROS by antioxidant enzymes plays an important part in limiting this damage. For instance, peroxiredoxins (Prx) are conserved, abundant, thioredoxin peroxidase enzymes that function as tumor suppressors. In addition to detoxifying peroxides, studies in single-cell systems have revealed that Prx act as chaperones and redox sensors. However, it is unknown in what manner the different activities of Prx influence stress resistance or longevity in the context of whole animals. Here, we reveal three distinct roles for the 2-Cys Prx, PRDX-2, in the stress resistance of the nematode worm Caenorhabditis elegans. (i) The thioredoxin peroxidase activity of PRDX-2 protects against hydrogen peroxide. (ii) Consistent with a chaperone activity for hyperoxidized PRDX-2, peroxide-induced oxidation of PRDX-2 increases resistance to heat stress. (iii) Unexpectedly, loss of PRDX-2 increases the resistance of C. elegans to some oxidative stress-causing agents, such as arsenite, apparently through a signaling mechanism that increases the levels of other antioxidants and phase II detoxification enzymes. Despite their increased resistance to some forms of oxidative stress, prdx-2 mutants are short-lived. Moreover, intestinal expression of PRDX-2 accounts for its role in detoxification of exogenous peroxide, but not its influence on either arsenite resistance or longevity, suggesting that PRDX-2 may promote longevity and protect against environmental stress through different mechanisms. Together the data reveal that in metazoans Prx act through multiple biochemical activities, and have tissue-specific functions in stress resistance and longevity. 相似文献
10.
Pfeiffer A Nagel MK Popp C Wüst F Bindics J Viczián A Hiltbrunner A Nagy F Kunkel T Schäfer E 《Proceedings of the National Academy of Sciences of the United States of America》2012,109(15):5892-5897
Phytochromes (phy) are red/far-red-absorbing photoreceptors that regulate the adaption of plant growth and development to changes in ambient light conditions. The nuclear transport of the phytochromes upon light activation is regarded as a key step in phytochrome signaling. Although nuclear import of phyA is regulated by the transport facilitators far red elongated hypocotyl 1 (FHY1) and fhy1-like, an intrinsic nuclear localization signal was proposed to be involved in the nuclear accumulation of phyB. We recently showed that nuclear import of phytochromes can be analyzed in a cell-free system consisting of isolated nuclei of the unicellular green algae Acetabularia acetabulum. We now show that this system is also versatile to elucidate the mechanism of the nuclear transport of phyB. We tested the nuclear transport characteristics of full-length phyB as well as N- and C-terminal phyB fragments in vitro and showed that the nuclear import of phyB can be facilitated by phytochrome-interacting factor 3 (PIF3). In vivo measurements of phyB nuclear accumulation in the absence of PIF1, -3, -4, and -5 indicate that these PIFs are the major transport facilitators during the first hours of deetiolation. Under prolonged irradiations additional factors might be responsible for phyB nuclear transport in the plant. 相似文献
11.
12.
Ranji Hayashi Tomomitsu Tahara Tsukasa Yamaaki Takashi Saito Kazuhiro Matsunaga Nobuhiko Hayashi Atsushi Fukumura Kazuaki Ozaki Masakatsu Nakamura Hisakazu Shiroeda Mikihiro Tsutsumi Tomoyuki Shibata Tomiyasu Arisawa 《World journal of gastroenterology : WJG》2012,18(47):6981-6986
AIM: To clarify the association between a polymorphism -449 C>G (rs72696119) in 5’-UTR of NFKB1 with ulcerative colitis (UC).METHODS: The studied population comprised 639 subjects, including patients with UC (UC cases, n = 174) and subjects without UC (controls, n = 465). We employed polymerase chain reaction-single strand conformation polymorphism to detect the gene polymorphism.RESULTS: The rs72696119 G allele frequencies in controls and UC cases were 33.4% and 38.5%, respectively (P = 0.10). Genotype frequency of the GG homozygote in UC cases was significantly higher than that in controls (P = 0.017), and the GG homozygote was significantly associated with susceptibility to UC [odds ratio (OR), 1.88; 95%CI, 1.13-3.14]. In male subjects, the GG homozygote was associated with an increased risk for UC (OR, 3.10; 95%CI, 1.47-6.54; P = 0.0053), whereas this association was not found in female subjects. In addition, the GG homozygote was significantly associated with the risk of non-continuous disease (OR, 2.06; 95%CI, 1.12-3.79; P = 0.029), not having total colitis (OR, 2.40; 95%CI, 1.09-3.80, P = 0.040), disease which developed before 20 years of age (OR, 2.80; 95%CI, 1.07-7.32, P = 0.041), no hospitalization (OR, 2.28; 95%CI, 1.29-4.05; P = 0.0090) and with a maximum of 8 or less on the UCDAI score (OR, 2.45; 95%CI, 1.23-4.93; P = 0.022).CONCLUSION: Our results provide evidence that NFKB1 polymorphism rs72696119 was significantly associated with the development of UC. This polymorphism influences the susceptibility to and pathophysiological features of UC. 相似文献
13.
14.
Ejby M Sørensen MA Pedersen S 《Proceedings of the National Academy of Sciences of the United States of America》2007,104(49):19410-19415
Escherichia coli strains with inactivated rluD genes were previously found to lack the conserved pseudouridines in helix 69 of 23S ribosomal RNA and to grow slowly. A suppressor mutant was isolated with a near normal growth rate that had changed the conserved Glu-172 codon to a Lys codon in prfB, encoding translation termination factor RF2. When nonsense suppression in strains with all combinations of prfB(+)/prfB(E172K) and rluD(+)/rluD::cat was analyzed, misreading of all three stop codons as sense codons was found to be increased by rluD inactivation: Nonsense suppression was increased 2-fold at UAG codons, 9-fold at UAA, and 14-fold at UGA. The increased read-through at UGA corresponds to reading UGA as a sense codon in 30% of the cases. In contrast, the accuracy of reading sense codons appeared unaffected by loss of rluD. When the inactivated rluD gene was combined with the altered prfB, wild-type levels of termination were restored at UAA codons and termination was more efficient than wild type at UGA. These results strongly suggest that at least one of the helix 69 pseudouridines has a function in translation termination. To our knowledge, this is the first described function for a ribosomal RNA pseudouridine modification. 相似文献
15.
Prudic KL Oliver JC Sperling FA 《Proceedings of the National Academy of Sciences of the United States of America》2007,104(49):19381-19386
Aposematic coloration, or warning coloration, is a visual signal that acts to minimize contact between predator and unprofitable prey. The conditions favoring the evolution of aposematic coloration remain largely unidentified. Recent work suggests that diet specialization and resultant toxicity may play a role in facilitating the evolution and persistence of warning coloration. Using a phylogenetic approach, we investigated the evolution of larval warning coloration in the genus Papilio (Lepidoptera: Papilionidae). Our results indicate that there are at least four independent origins of aposematic larval coloration within Papilio. Controlling for phylogenetic relatedness among Papilio taxa, we found no evidence supporting the hypothesis that either diet specialization or chemical specialization facilitated the origin of aposematic larvae. However, there was a significant relationship between the signal environment and the evolution of aposematic larvae. Specifically, Papilio lineages feeding on herbaceous or narrow-leaved plants, regardless of the plants' taxonomic affiliation, were more likely to evolve aposematic larvae than were lineages feeding only on trees/shrubs or broad-leaved plants. These results demonstrate that factors other than diet specialization, such as the signal environment of predator-prey interactions, may play a large role in the initial evolution and persistence of aposematic coloration. 相似文献
16.
Alexander Sheh Chung Wei Lee Kenichi Masumura Barry H. Rickman Takehiko Nohmi Gerald N. Wogan James G. Fox David B. Schauer 《Proceedings of the National Academy of Sciences of the United States of America》2010,107(34):15217-15222
Helicobacter pylori is a human carcinogen, but the mechanisms evoked in carcinogenesis during this chronic inflammatory disease remain incompletely characterized. We determined whether chronic H. pylori infection induced mutations in the gastric mucosa of male and female gpt delta C57BL/6 mice infected for 6 or 12 mo. Point mutations were increased in females infected for 12 mo. The mutation frequency in this group was 1.6-fold higher than in uninfected mice of both sexes (P < 0.05). A:T-to-G:C transitions and G:C-to-T:A transversions were 3.8 and 2.0 times, respectively, more frequent in this group than in controls. Both mutations are consistent with DNA damage induced by oxidative stress. No increase in the frequency of deletions was observed. Females had more severe gastric lesions than males at 6 mo postinfection (MPI; P < 0.05), but this difference was absent at 12 MPI. In all mice, infection significantly increased expression of IFNγ, IL-17, TNFα, and iNOS at 6 and 12 mo, as well as H. pylori–specific IgG1 levels at 12 MPI (P < 0.05) and IgG2c levels at 6 and 12 MPI (P < 0.01 and P < 0.001). At 12 MPI, IgG2c levels in infected females were higher than at 6 MPI (P < 0.05) and also than those in infected males at 12 MPI (P < 0.05). Intensity of responses was mediated by sex and duration of infection. Lower H. pylori colonization indicated a more robust host response in females than in males. Earlier onset of severe gastric lesions and proinflammatory, Th1-biased responses in female C57BL/6 mice may have promoted mutagenesis by exposing the stomach to prolonged oxidative stress. 相似文献
17.
Tbx2b is required for ultraviolet photoreceptor cell specification during zebrafish retinal development 下载免费PDF全文
Karen Alvarez-Delfin Ann C. Morris Corey D. Snelson Joshua T. Gamse Tripti Gupta Florence L. Marlow Mary C. Mullins Harold A. Burgess Michael Granato James M. Fadool 《Proceedings of the National Academy of Sciences of the United States of America》2009,106(6):2023-2028
18.
Linda Henneman Martine H. van Miltenburg Ewa M. Michalak Tanya M. Braumuller Janneke E. Jaspers Anne Paulien Drenth Renske de Korte-Grimmerink Ewa Gogola Karoly Szuhai Andreas Schlicker Rahmen Bin Ali Colin Pritchard Ivo J. Huijbers Anton Berns Sven Rottenberg Jos Jonkers 《Proceedings of the National Academy of Sciences of the United States of America》2015,112(27):8409-8414
Metaplastic breast carcinoma (MBC) is a rare histological breast cancer subtype characterized by mesenchymal elements and poor clinical outcome. A large fraction of MBCs harbor defects in breast cancer 1 (BRCA1). As BRCA1 deficiency sensitizes tumors to DNA cross-linking agents and poly(ADP-ribose) polymerase (PARP) inhibitors, we sought to investigate the response of BRCA1-deficient MBCs to the PARP inhibitor olaparib. To this end, we established a genetically engineered mouse model (GEMM) for BRCA1-deficient MBC by introducing the MET proto-oncogene into a BRCA1-associated breast cancer model, using our novel female GEMM ES cell (ESC) pipeline. In contrast to carcinomas, BRCA1-deficient mouse carcinosarcomas resembling MBC show intrinsic resistance to olaparib caused by increased P-glycoprotein (Pgp) drug efflux transporter expression. Indeed, resistance could be circumvented by using another PARP inhibitor, AZD2461, which is a poor Pgp substrate. These preclinical findings suggest that patients with BRCA1-associated MBC may show poor response to olaparib and illustrate the value of GEMM-ESC models of human cancer for evaluation of novel therapeutics.Poly(ADP-ribose) polymerase (PARP) inhibition provides a promising therapeutic strategy for targeting homologous recombination (HR)-deficient tumors, such as breast cancer 1 (BRCA1)-mutated cancers (1). Indeed, clinical phase I and phase II trials have shown potent anticancer activity of small molecule inhibitors of PARP, such as olaparib, in patients with BRCA1-associated breast cancer (2, 3). However, it remains to be established whether different breast cancer subtypes in BRCA1 mutation carriers respond equally to PARP inhibition. Reduced sensitivity of breast cancers to anticancer drugs has frequently been associated with an epithelial-to-mesenchymal transition (EMT) (4–7). Metaplastic breast carcinomas (MBCs) are a subset of triple-negative breast cancers (TNBCs) characterized by a claudin-low and EMT-like phenotype (8) and a poor prognosis compared with other TNBCs (9). More than 60% of MBCs have BRCA1 promoter methylation, raising the question whether these tumors can be effectively targeted by using PARP inhibitors (10). To address this issue in an experimentally controlled setting, we set out to generate a genetically engineered mouse model (GEMM) of BRCA1-deficient MBC by inducing EMT via MET overexpression in a previously established GEMM of BRCA1-mutated breast cancer. We report that EMT is associated with olaparib resistance and can be effectively bypassed by administration of AZD2461, a PARP inhibitor with low affinity for the P-glycoprotein (Pgp) drug efflux transporter. 相似文献
19.