首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Neuromodulation》2023,26(2):320-332
BackgroundDeep brain stimulation (DBS) programming of multicontact DBS leads relies on a very time-consuming manual screening procedure, and strategies to speed up this process are needed. Beta activity in subthalamic nucleus (STN) local field potentials (LFP) has been suggested as a promising marker to index optimal stimulation contacts in patients with Parkinson disease.ObjectiveIn this study, we investigate the advantage of algorithmic selection and combination of multiple resting and movement state features from STN LFPs and imaging markers to predict three relevant clinical DBS parameters (clinical efficacy, therapeutic window, side-effect threshold).Materials and MethodsSTN LFPs were recorded at rest and during voluntary movements from multicontact DBS leads in 27 hemispheres. Resting- and movement-state features from multiple frequency bands (alpha, low beta, high beta, gamma, fast gamma, high frequency oscillations [HFO]) were used to predict the clinical outcome parameters. Subanalyses included an anatomical stimulation sweet spot as an additional feature.ResultsBoth resting- and movement-state features contributed to the prediction, with resting (fast) gamma activity, resting/movement-modulated beta activity, and movement-modulated HFO being most predictive. With the proposed algorithm, the best stimulation contact for the three clinical outcome parameters can be identified with a probability of almost 90% after considering half of the DBS lead contacts, and it outperforms the use of beta activity as single marker. The combination of electrophysiological and imaging markers can further improve the prediction.ConclusionLFP-guided DBS programming based on algorithmic selection and combination of multiple electrophysiological and imaging markers can be an efficient approach to improve the clinical routine and outcome of DBS patients.  相似文献   

2.
Studies describing subthalamic (STN) local field potentials (LFPs) recorded during deep brain stimulation (DBS) in patients with Parkinson's disease (PD), within the first month after DBS electrode implant, show that DBS modulates specific STN oscillations: whereas low-frequency (LF) oscillations (2-7Hz) increase, beta oscillations (8-30Hz) variably decrease. No data show whether LFPs remain stable for longer than one month after DBS surgery. Having long-term information is essential especially for use as a long-term feedback control signal for adaptive DBS systems. To evaluate how STN activity behaves years after prolonged chronic stimulation in PD we studied STN LFPs at rest without DBS and during ongoing DBS, in 11 parkinsonian patients 7years (7.54±1.04) after STN electrode implantation for DBS (hyperchronic group) and in 16 patients 3days after STN electrode implantation (acute group). STN LF and beta-band LFPs recorded at rest at 7years contained almost the same information as those recorded at 3days. STN recordings showed similar LFP responses to DBS in the acute and hyperchronic stages: whereas during ongoing DBS the LF power band increased for the whole population, beta activity decreased only in nuclei with significant beta activity at baseline. The LF/beta power ratio in all nuclei changed in both study groups, suggesting that this variable might be an even more informative marker of PD than the single LF and beta bands. Because STN LFP activity patterns and STN LFP responses to DBS stay almost unchanged for years after DBS electrode implantation they should provide a consistent feedback control signal for adaptive DBS.  相似文献   

3.
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) can be a highly effective treatment for Parkinson's disease (PD). However, therapeutic efficacy is limited by difficulties in consistently and correctly targeting this nucleus. Increasing evidence suggests that there is abnormal synchronization of beta frequency band activity (approximately 20 Hz) in the STN of PD patients, as reflected in the oscillatory nature of the local field potential (LFP). We hypothesized that an increase in the power of the LFP beta activity may provide intra-operative confirmation of STN targeting in patients undergoing STN implantation for the treatment of advanced PD. Accordingly, we recorded LFPs from the four contacts of DBS electrodes as the latter were advanced in 2 mm steps from a point 4-6 mm above the intended surgical target point in the STN, to a point 4 mm below this. Contacts were configured to give three bipolar recordings of LFPs. These were analyzed on 16 sides in 9 patients. The power in the 13-35 Hz band recorded at the lowest contact pair underwent a steep but focal increase during electrode descent. The depth of the peak beta activity showed excellent agreement with the level of the intra-operative clinical stun effect (k coefficient = 0.792). The depth of peak beta activity also showed 100% specificity and 100% sensitivity for placement within STN in comparison to pre- and Post-operative stereotactic MRI. Functional physiological localization of STN by the on-line spectral analysis of LFPs is quick to perform and may provide information directly relevant to the position of the electrode contact actually used for DBS.  相似文献   

4.
This study aimed to assess whether changes in the patterns of local field potential (LFP) oscillations of the subthalamic nucleus (STN) underlie to the clinical improvement within 60 s after turning off subthalamic DBS. We studied by spectral analysis the STN LFPs recorded in 13 nuclei from 7 patients with Parkinson's disease before and immediately after unilateral high-frequency (130 Hz) stimulation of the same nucleus, when the clinical benefit of DBS was unchanged. The results were compared with LFP data previously reported [A. Priori, G. Foffani, A. Pesenti, F. Tamma, A.M. Bianchi, M. Pellegrini et al., Rhythm-specific pharmacological modulation of subthalamic activity in Parkinson's disease. Exp. Neurol. 189 (2004) 369-379]--namely 13 STN from 9 parkinsonian patients recorded before and after levodopa administration--which were used as a control. Before DBS, in the 'off' clinical state after overnight withdrawal of dopaminergic therapy, the STN spectrum did not significantly differ from the control nuclei, showing prominent activity at beta frequencies (13-20 and 20-35 Hz). After DBS (10-15 min) of the STN, the recorded nuclei significantly differed from the control, failing to show significant changes either in the beta bands or at higher frequencies (60-90 and 250-350 Hz). The patterns of subthalamic LFP oscillations after DBS therefore differ from those after dopaminergic medication. These results suggest (1) that subthalamic LFP modulations are not the epiphenomenon of peripheral motor improvement and (2) that the transitory clinical efficacy maintained after discontinuation of subthalamic DBS is not associated with local modulation of LFP activity at beta or higher frequencies within the STN.  相似文献   

5.
Strong synchronization of neuronal activity occurs in the 8-35 Hz band in the subthalamic nucleus (STN) of patients with Parkinson's disease (PD) and is evident as oscillatory local field potential (LFP) activity. To test whether such synchronization may contribute to bradykinesia and rigidity, we sought correlations between the suppression of synchronization at 8-35 Hz in STN and the reduction in Parkinsonism with levodopa. LFPs were recorded on and off medication from STN deep-brain stimulation electrodes in nine PD patients. LFP power was calculated over the frequencies of the most prominent spectral peak within the 8-35 Hz frequency band on each of 17 sides (off medication), and over the frequencies of any peak in the 60-90 Hz band, if present (seven sides, on medication). Levodopa-induced reduction of LFP power over these two frequency ranges was then correlated with improvement in motor impairment as assessed by the Unified Parkinson's Disease Rating Scale (UPDRS). The reduction in peak activity in the 8-35 Hz band with levodopa positively correlated with the improvement in the contralateral hemibody motor UPDRS score with levodopa (r = 0.811, P < 0.001) as well as with hemibody subscores of akinesia-rigidity (r = 0.835, P < 0.001), but not tremor. A trend for negative correlations was found between peak 60-90 Hz LFP power and UPDRS hemibody score, suggesting that positive correlations were relatively frequency-specific. Our results support a link between levodopa-induced improvements in bradykinesia and rigidity and reductions in population synchrony at frequencies < 35 Hz in the region of the STN in patients with PD.  相似文献   

6.
ObjectivesNeurodegeneration with Brain Iron Accumulation type I (NBIA-I) is a rare hereditary neurodegenerative disorder with pallidal degeneration leading to disabling generalized dystonia and parkinsonism. Pallidal or subthalamic deep brain stimulation can partially alleviate motor symptoms. Disease-specific patterns of abnormally enhanced oscillatory neuronal activity recorded from the basal ganglia have been described in patients with movement disorders undergoing deep brain stimulation (DBS). Here we studied oscillatory activity recorded from the internal globus pallidus (GPi) and the subthalamic nucleus (STN) to characterize neuronal activity patterns in NBIA-I.MethodsWe recorded local field potentials (LFP) from DBS electrodes in 6 juvenile patients with NBIA-I who underwent functional neurosurgery. Four patients were implanted in the STN and two patients in the GPi. Recordings were performed during wakeful rest. An FFT-based approach was used to analyze the power spectrum in the target area.ResultsIn all patients we found distinct peaks in the low frequency (7–12 Hz) and in 5 out 6 also in the beta frequency range (15–30 Hz) with the largest beta peak in the patient that presented with the most prominent bradykinesia. No distinct peaks occurred in the gamma frequency range (35–100 Hz). The oscillatory pattern did not differ between STN and GPi.ConclusionsHere we show for the first time the oscillatory activity pattern in the STN and the GPi in juvenile patients with dystonia plus syndrome due to NBIA-I. The low frequency peak we found is in line with previous studies in patients with isolated idiopathic dystonia. In our cohort, the pallidal beta band activity may be related to more severe motor slowing in dystonia plus syndrome such as NBIA-I.SignificanceOur results further support the link between hyperkinetic motor symptoms such as dystonia and enhanced basal ganglia low frequency activity irrespective of the underlying etiology of dystonia.  相似文献   

7.
Parkinson's disease is treated pharmacologically with dopamine replacement medication and, more recently, by stimulating basal-ganglia nuclei such as the subthalamic nucleus (STN). Depth recordings after this procedure have revealed excessive activity at frequencies between 8 and 35 Hz ([Brown et al., 2001], [Kuhn et al., 2004] and [Priori et al., 2004]) that are reduced by dopamine therapy in tandem with improvements in bradykinesia/rigidity, but not tremor (Kuhn et al., 2006). It has also been shown that improvements in motor symptoms after dopamine correlate with single unit activity in the beta range (Weinberger et al., 2006). We recorded local field potentials (LFPs) from the subthalamic nucleus of patients with Parkinson's disease (PD) after surgery to implant deep brain stimulating electrodes while they were on and off dopaminergic medication. As well as replicating Kuhn et al., using the same patients we were able to extend Weinberger et al. to show that LFP beta oscillatory activity correlated with the degree of improvement in bradykinesia/rigidity, but not tremor, after dopamine medication. We also found that the power of beta oscillatory activity uniquely predicted improvements in bradykinesia/rigidity, but again not tremor, after stimulation of the STN in a regression analysis. However improvements after STN stimulation related inversely to beta power, possibly reflecting the accuracy of the electrode placement and/or the limits of STN stimulation in patients with the greatest levels of beta oscillatory activity.  相似文献   

8.
We investigated the functional role of oscillatory activity in the local field potential (LFP) of the subthalamic nucleus (STN) in the pathophysiology of Parkinson’s disease (PD). It has been postulated that beta (15–30 Hz) oscillatory activity in the basal ganglia induces PD motor symptoms. To assess this hypothesis, an LFP showing significant power in the beta frequency range (23 Hz) was used as a stimulus both in vitro and in vivo. We first demonstrated in rat brain slices that STN neuronal activity was driven by the LFP stimulation. We then applied beta stimulation to the STN of 16 rats and two monkeys while quantifying motor behaviour. Although stimulation‐induced behavioural effects were observed, stimulation of the STN at 23 Hz induced no significant decrease in motor performance in either rodents or primates. This study is the first to show LFP‐induced behaviour in both rats and primates, and highlights the complex relationship between beta power and parkinsonian symptoms.  相似文献   

9.
Depth recordings in patients with Parkinson's disease (PD) have demonstrated prominent oscillatory activity in the beta frequency (13-35 Hz) band in local field potentials (LFPs) recorded from the region of the subthalamic nucleus (STN). Although this activity has been hypothesized to contribute to bradykinesia, it is unclear to what extent the LFP oscillations arise in the STN and are synchronous with local neuronal discharge. We therefore recorded both LFPs and multi-neuronal activity from microelectrodes inserted into STN in six PD patients (8 sides) during functional neurosurgery. As microelectrodes passed from above STN into STN, there was a pronounced increase in beta frequency band LFP activity. Furthermore, spike-triggered averages of LFP activity suggested that the discharges of neurons in STN were locked to beta oscillations in the LFP. The LFP is therefore likely to represent synchronous activity in populations of neurons in the STN of patients with PD.  相似文献   

10.
Producing accurate movements may rely on the functional independence of sensorimotor circuits within basal ganglia nuclei. In parkinsonism there is abnormal synchrony of electrical activity within these circuits that results in a loss of independence across motor channels. Local field potential (LFP) recordings reflect the summation of local electrical fields and an increase in LFP power reflects increased synchrony in local neuronal networks. We recorded LFPs from the subthalamic nucleus (STN) deep brain stimulation (DBS) lead in the operating room in 22 cases from 16 subjects with Parkinson's disease (PD) who were off medication. There was elevated LFP power at beta frequencies (13-35 Hz) at rest. The LFP spectral profile was consistent across several periods of rest that were separated by movement and/or DBS, and appeared to be a relatively stationary phenomenon. The spectral profile and frequencies of the beta-band peak(s) varied among subjects but were similar between the right and left STNs within certain individuals. These results suggest that the LFP spectrum at rest may characterize a “signature” rhythm for an individual with PD. Beta-band power was attenuated after intra-operative STN DBS (p < 0.05). The attenuation lasted for 10 s after short periods (30 s) and for up to 50 s after longer periods (5 min) of DBS. The finding that longer periods of DBS attenuated beta power for a longer time suggests that there may be long-acting functional changes to networks in the STN in PD after chronic DBS.  相似文献   

11.
Depth recordings in patients with Parkinson's disease (PD) have demonstrated oscillatory activity in the gamma frequency (60-100 Hz) band in local field potentials (LFPs) recorded from the region of the subthalamic nucleus (STN). Although this activity has been hypothesised to contribute to movement preparation, it is unclear to what extent these LFP oscillations arise in the STN and are synchronous with local neuronal discharge. We therefore recorded LFPs and neuronal activity from microelectrodes inserted into the STN in PD patients during functional neurosurgery. Eight sides in seven patients out of 15 sides in 12 patients were identified that had peaks in the gamma band in spectra of LFPs. As microelectrodes descended towards STN, there was a pronounced increase in gamma frequency band LFP activity 1 mm above the line joining the anterior and posterior commissures and 2 mm above the microelectrode defined dorsal border of the STN. Gamma activity dropped again 3 mm below the microelectrode defined dorsal border of the STN. Spike-triggered averages of LFP activity suggested that the discharges of neurons in this region were locked to gamma oscillations in the LFP. Gamma band oscillations in the LFP are therefore likely to represent synchronous activity in populations of neurons in the upper STN and bordering zona incerta of patients with PD.  相似文献   

12.
The objective of this study was to investigate the possible existence of gender-related neurophysiological differences in the oscillatory activity of the human subthalamic area. To this end, we recorded local field potentials (LFPs) after neurosurgical procedures for deep brain stimulation (DBS) in 24 patients (12 males and 12 females) with Parkinson's disease. LFP recordings at rest before levodopa medication (19 nuclei from 11 female patients and 16 nuclei from ten male patients) showed significantly higher power in the alpha/low-beta band (8-12 Hz, P<0.01; 13-20 Hz, P=0.03) in females than in males. After levodopa medication (ten nuclei from six female patients and 11 nuclei from seven male patients), the power in the high-gamma band (60-90 Hz) and of the 300 Hz rhythm was significantly higher in females than in males (high-gamma, P=0.007; 300 Hz, P=0.002). These findings show that functional gender-related differences in the central nervous system involve the human subthalamic area (STN) and its response to levodopa in Parkinson's disease. Gender-related neurophysiological differences may be important for understanding gender-specific features of neurodegenerative disorders and should be considered when interpreting LFP data from the human basal ganglia.  相似文献   

13.
Power spectra from local field potentials (LFPs) recorded post-operatively from the deep brain stimulation (DBS) macroelectrode show prominence of the beta rhythm (11-30 Hz) in untreated Parkinson's disease (PD). Dopaminergic medication and movement attenuate this beta band in PD. In this pilot study of six sides in four patients, we recorded LFPs from the DBS electrode in untreated PD patients in the operating room. In all cases, there was a peak in the time-frequency spectrogram in the beta frequency range when the patients were at rest, which was associated with attenuation in the same range with movement. The actual frequency range and the strength of the beta peak varied among cases. In two patients, intra-operative constraints permitted recording of LFPs at rest, before and immediately after subthalamic nucleus (STN) DBS. In both patients we documented that STN DBS caused a significant attenuation in power in the beta band at rest that persisted for 15-25 s after DBS had been turned off (P < 0.01). From one case, our data suggest that the beta rhythm attenuation was most prominent within the STN itself. This study shows for the first time that STN DBS attenuates the power in the prominent beta band recorded in the STN of patients with PD. These pilot findings raise the interesting possibility of using this biomarker for closed loop DBS or neuromodulation.  相似文献   

14.
《Brain stimulation》2020,13(6):1706-1718
BackgroundDeep brain stimulation (DBS) is an effective therapy for reducing the motor symptoms of Parkinson’s disease, but the mechanisms of action of DBS and neural correlates of symptoms remain unknown.ObjectiveTo use the neural response to DBS to reveal connectivity of neural circuits and interactions between groups of neurons as potential mechanisms for DBS.MethodsWe recorded activity evoked by DBS of the subthalamic nucleus (STN) in humans with Parkinson’s disease. In follow up experiments we also simultaneously recorded activity in the contralateral STN or the ipsilateral globus pallidus from both internal (GPi) and external (GPe) segments.ResultsDBS local evoked potentials (DLEPs) were stereotyped across subjects, and a biophysical model of reciprocal connections between the STN and the GPe recreated DLEPs. Simultaneous STN and GP recordings during STN DBS demonstrate that DBS evoked potentials were present throughout the basal ganglia and confirmed that DLEPs arose from the reciprocal connections between the STN and GPe. The shape and amplitude of the DLEPs were dependent on the frequency and duration of DBS and were correlated with resting beta band oscillations. In the frequency domain, DLEPs appeared as a 350 Hz high frequency oscillation (HFO) independent of the frequency of DBS.ConclusionsDBS evoked potentials suggest that the intrinsic dynamics of the STN and GP are highly interlinked and may provide a promising new biomarker for adaptive DBS.  相似文献   

15.
The subthalamic nucleus (STN) has a key role in the pathophysiology of Parkinson's disease and is the primary target for high-frequency deep brain stimulation (DBS). The STN rest electrical activity in Parkinson's disease, however, is still unclear. Here we tested the hypothesis that pharmacological modulation of STN activity has rhythm-specific effects in the classical range of EEG frequencies, below 50 Hz. We recorded local field potentials (LFPs) through electrodes implanted in the STN of patients with Parkinson's disease (20 nuclei from 13 patients). After overnight withdrawal of antiparkinsonian therapy, LFPs were recorded at rest both before (off) and after (on) acute administration of different antiparkinsonian drugs: levodopa, apomorphine, or orphenadrine. In the off-state, STN LFPs showed clearly defined peaks of oscillatory activity below 50 Hz: at low frequencies (2-7 Hz), in the alpha (7-13 Hz), low-beta (13-20 Hz), and high-beta range (20-30 Hz). In the on-state after levodopa and apomorphine administration, low-beta activity significantly decreased and low-frequency activity increased. In contrast, orphenadrine increased beta activity. Power changes elicited by levodopa and apomorphine at low frequencies and in the beta range were not correlated, whereas changes in the alpha band, which were globally not significant, correlated with the beta rhythm (namely, low beta: 13-20 Hz). In conclusion, in the human STN, there are at least two rhythms below 50 Hz that are separately modulated by antiparkinsonian medication: one at low frequencies and one in the beta range. Multiple rhythms are consistent with the hypothesis of multiple oscillating systems, each possibly correlating with specific aspects of human STN function and dysfunction.  相似文献   

16.
Deep brain stimulation (DBS) of the ventralis oralis (VO) complex of the thalamus improves tics in patients with Tourette syndrome (TS). To neurophysiologically describe the VO complex we recorded, in seven patients with TS undergoing DBS electrode implantation, single‐unit activity during surgery and local field potentials (LFPs) a few days after surgery. Single unit recordings showed that the VO complex is characterized by a localized pattern of bursting neuronal activity. LFP spectra demonstrated that VO of TS patients has a prominent oscillatory activity at low frequencies (2–7 Hz) and in the α‐band (8–13 Hz), and a virtually absent beta activity. In each patient, the main LFP frequency significantly correlated with single‐unit interburst frequency. In conclusion, we observed an oscillatory bursting activity in the VO as target region in patients with severe TS undergoing DBS surgery. © 2010 Movement Disorder Society  相似文献   

17.
《Social neuroscience》2013,8(3):243-256
Although lesional, neuroimaging, and brain stimulation studies have provided an insight into the neural mechanisms of judgement and decision-making, all these works focused on the cerebral cortex, without investigating the role of subcortical structures such as the basal ganglia. Besides being an effective therapeutic tool, deep brain stimulation (DBS) allows local field potential (LFP) recordings through the stimulation electrodes thus providing a physiological “window” on human subcortical structures. In this study we assessed whether subthalamic nucleus LFP oscillations are modulated by processing of moral conflictual, moral nonconflictual, and neutral statements. To do so, in 16 patients with Parkinson's disease (8 men) bilaterally implanted with subthalamic nucleus (STN) electrodes for DBS, we recorded STN LFPs 4 days after surgery during a moral decision task. During the task, recordings from the STN showed changes in LFP oscillations. Whereas the 14–30 Hz band (beta) changed during the movement executed to perform the task, the 5–13 Hz band (low-frequency) changed when subjects evaluated the content of statements. Low-frequency band power increased significantly more during conflictual than during nonconflictual or neutral sentences. We conclude that STN responds specifically to conflictual moral stimuli, and could be involved in conflictual decisions of all kinds, not only those for moral judgment. LFP oscillations provide novel direct evidence that the neural processing of conflictual decision-making spreads beyond the cortex to the basal ganglia and encompasses a specific subcortical conflict-dependent component.  相似文献   

18.
Local field potentials (LFPs) recorded through electrodes implanted in the subthalamic nucleus (STN) for deep brain stimulation (DBS) in patients with Parkinson's disease (PD) show that oscillations in the beta frequency range (8-20 Hz) decrease after levodopa intake. Whether and how DBS influences the beta oscillations and whether levodopa- and DBS-induced changes interact remains unclear. We examined the combined effect of levodopa and DBS on subthalamic beta LFP oscillations, recorded in nine patients with PD under four experimental conditions: without levodopa with DBS turned off; without levodopa with DBS turned on; with levodopa with DBS turned on; and with levodopa with DBS turned off. The analysis of STN-LFP oscillations showed that whereas levodopa abolished beta STN oscillations in all the patients (p = 0.026), DBS significantly decreased the beta oscillation only in five of the nine patients studied (p = 0.043). Another difference was that whereas levodopa completely suppressed beta oscillations, DBS merely decreased them. When we combined levodopa and DBS, the levodopa-induced beta disruption prevailed and combining levodopa and DBS induced no significant additive effect (p = 0.500). Our observations suggest that levodopa and DBS both modulate LFP beta oscillations.  相似文献   

19.
Although lesional, neuroimaging, and brain stimulation studies have provided an insight into the neural mechanisms of judgement and decision-making, all these works focused on the cerebral cortex, without investigating the role of subcortical structures such as the basal ganglia. Besides being an effective therapeutic tool, deep brain stimulation (DBS) allows local field potential (LFP) recordings through the stimulation electrodes thus providing a physiological "window" on human subcortical structures. In this study we assessed whether subthalamic nucleus LFP oscillations are modulated by processing of moral conflictual, moral nonconflictual, and neutral statements. To do so, in 16 patients with Parkinson's disease (8 men) bilaterally implanted with subthalamic nucleus (STN) electrodes for DBS, we recorded STN LFPs 4 days after surgery during a moral decision task. During the task, recordings from the STN showed changes in LFP oscillations. Whereas the 14--30 Hz band (beta) changed during the movement executed to perform the task, the 5--13 Hz band (low-frequency) changed when subjects evaluated the content of statements. Low-frequency band power increased significantly more during conflictual than during nonconflictual or neutral sentences. We conclude that STN responds specifically to conflictual moral stimuli, and could be involved in conflictual decisions of all kinds, not only those for moral judgment. LFP oscillations provide novel direct evidence that the neural processing of conflictual decision-making spreads beyond the cortex to the basal ganglia and encompasses a specific subcortical conflict-dependent component.  相似文献   

20.
Deep brain stimulation (DBS) of the pedunculopontine nucleus (PPN) area has been introduced as a novel surgical therapy for dopamine refractory gait problems, freezing and postural instability in the late stage of Parkinson's disease (PD). Lesions of the pedunculopontine tegmental (PPTg) nucleus, the equivalent of the PPN in rodents, were shown to reduce the elevated discharge rate of the subthalamic nucleus (STN) in the 6-hydroxydopamine (6-OHDA) rat model of PD. In order to further elucidate the modulatory effect of the PPTg on the STN we examined the effect of 25 Hz low frequency PPTg stimulation on neuronal single unit activity and oscillatory local field potentials (LFPs) of the STN, and on the electrocorticogram (ECoG) of the primary motor cortex region in rats with unilateral 6-OHDA induced nigrostriatal lesions. Stimulation of the PPTg reduced the enhanced firing rate in the STN, without affecting the firing pattern or approximate entropy (ApEn). It also reduced the activity in the beta band (15-30 Hz) of the STN, which is elevated in 6-OHDA lesioned rats, without affecting beta activity in the motor cortex. We showed a modulatory effect of PPTg stimulation on altered neuronal STN activity in the PD 6-OHDA rat model, indicating that PPTg DBS may alter activity of the basal ganglia circuitry at least partially. It remains unclear, however, how these changes are exactly mediated and whether they are relevant with regard to the descending PPTg projections in the lower brainstem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号