首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 219 毫秒
1.
2.
Introduction: Distal hereditary motor neuropathy (dHMN) causes distal‐predominant weakness without prominent sensory loss. Myosin heavy chain disorders most commonly result in distal myopathy and cardiomyopathy with or without hearing loss, but a complex phenotype with dHMN, myopathy, hoarseness, and hearing loss was reported in a Korean family with a c.2822G>T mutation in MYH14. In this study we report phenotypic features in a North American family with the c.2822G>T in MYH14. Methods: Clinical and molecular characterization was performed in a large, 6‐generation, Caucasian family with MYH14 dHMN. Results: A total of 11 affected and 7 unaffected individuals were evaluated and showed varying age of onset and severity of weakness. Genotypic concordance was confirmed with molecular analysis. Electrophysiological studies demonstrated distal motor axonal degeneration without myopathy in all affected subjects tested. Conclusion: Mutation of MYH14 can result in a range of neuromuscular phenotypes that includes a dHMN and hearing loss phenotype with variable age of onset. Muscle Nerve 56 : 341–345, 2017  相似文献   

3.
Pathogenic variants in MYH7 cause a wide range of cardiac and skeletal muscle diseases with childhood or adult onset. These include dilated and/or hypertrophic cardiomyopathy, left ventricular non-compaction cardiomyopathy, congenital myopathies with multi-minicores and myofiber type disproportion, myosin storage myopathy, Laing distal myopathy and others (scapulo-peroneal or limb-girdle muscle forms). Here we report the results from molecular genetic analyses (NGS and Sanger sequencing) of 4 patients in two families with variable neuromuscular phenotypes with or without cardiac involvement. Interestingly, variants in MYH7 gene appeared to be the cause in all the cases. A novel nonsense variant c.5746C>T, p.(Gln1916Ter) was found in the patient in Family 1 who deceased at the age of 2 years 4 months with the clinical diagnosis of dilated cardiomyopathy, whose father died before the age of 40 years, due to cardiac failure with clinical diagnosis of suspected limb-girdle muscular dystrophy. A splice acceptor variant c.5560–2A>C in MYH7 was detected in the second proband and her sister, with late onset distal myopathy without cardiac involvement. These different phenotypes (muscular involvement with severe cardiomyopathy and pure late onset neuromuscular phenotype without heart involvement) may result from novel MYH7 variants, which most probably impact the LMM (light meromyosin) domain's function of the mature protein.  相似文献   

4.
5.
BackgroundMutations in the F-box protein 7 (FBXO7) gene result in autosomal recessive parkinsonism. This usually manifests as early-onset parkinsonian-pyramidal syndrome but patients exhibit high phenotypic variability. Here we describe the findings of a Yemeni family with two novel FBXO7 mutations.MethodsClinical data and DNA were available for three siblings with early-onset parkinsonism together with their parents and three unaffected siblings. A targeted next generation sequencing panel was used to screen the proband for mutations in 14 genes known to cause a parkinsonian disorder. In addition, SNCA, PARK2, PINK1, and PARK7 were screened for copy number variants.ResultsThe proband carried two novel compound heterozygous FBXO7 mutations: a missense mutation in exon 1 (p.G39R; c.115G > A) and a frameshift mutation in exon 5 (p.L280fs; c.838del). The mutations segregated with disease in the family with the exception of a potentially pre-symptomatic individual whose age was below the age of onset in two of their three affected siblings. P.G39R occurred at a highly conserved amino acid residue and both mutations were predicted to be deleterious in silico. In contrast to most reported families, the phenotype in this pedigree was consistent with clinically typical Parkinson's disease (PD) with a lack of pyramidal signs and good response to dopaminergic therapy.ConclusionsOur study expands the phenotype associated with FBXO7 to include early-onset PD and broadens the list of causative mutations. These data suggest that FBXO7 should be included in clinical genetic testing panels for PD, particularly in patients with early onset or a recessive inheritance pattern.  相似文献   

6.
Mutations in MYH2 that encodes myosin heavy chain IIa cause both dominant and recessively inherited myopathies. Patients with dominantly inherited MYH2 missense mutations present with ophthalmoplegia and progressive proximal limb weakness. Muscle biopsy reveals rimmed vacuoles and inclusions, prompting this entity to initially be described as hereditary inclusion body myopathy 3. In contrast, patients with recessive MYH2 mutations have early onset, non-progressive, diffuse weakness and ophthalmoplegia. Muscle biopsy reveals near or complete absence of type 2A fibers with no vacuole or inclusion pathology. We describe a patient with childhood onset ophthalmoplegia, progressive proximal muscle weakness beginning in adolescence, and muscle biopsy with myopathic changes and rimmed vacuoles. Although this patient's disease course and histopathology is consistent with dominant MYH2 mutations, whole exome sequencing revealed a c.737 G>A p.Arg246His homozygous MYH2 variant. These findings expand the clinical and pathologic phenotype of recessive MYH2 myopathies.  相似文献   

7.
8.
Myopathies due to recessive MYH7 mutations are exceedingly rare, reported in only two families to date. We describe three patients from two families (from Australia and the UK) with a myopathy caused by recessive mutations in MYH7. The Australian family was homozygous for a c.5134C > T, p.Arg1712Trp mutation, whilst the UK patient was compound heterozygous for a truncating (c.4699C > T; p.Gln1567*) and a missense variant (c.4664A > G; p.Glu1555Gly). All three patients shared key clinical features, including infancy/childhood onset, pronounced axial/proximal weakness, spinal rigidity, severe scoliosis, and normal cardiac function. There was progressive respiratory impairment necessitating non-invasive ventilation despite preserved ambulation, a combination of features often seen in SEPN1- or NEB-related myopathies. On biopsy, the Australian proband showed classical myosin storage myopathy features, while the UK patient showed multi-minicore like areas. To establish pathogenicity of the Arg1712Trp mutation, we expressed mutant MYH7 protein in COS-7 cells, observing abnormal mutant myosin aggregation compared to wild-type. We describe skinned myofiber studies of patient muscle and hypertrophy of type II myofibers, which may be a compensatory mechanism. In summary, we have expanded the phenotype of ultra-rare recessive MYH7 disease, and provide novel insights into associated changes in muscle physiology.  相似文献   

9.
10.
Sheldon-Hall syndrome is the most common type of distal arthrogryposis syndromes, also known as distal arthrogryposis 2B (DA2B). Sheldon-Hall syndrome is caused by mutations in the TPM2, TNNI2, TNNT3 or MYH3 gene and characterized by ulnar deviation, camptodactyly, overlapping fingers and scoliosis from birth. We investigated a Chinese family with multiple members who clinically presented with distal arthrogryposis of the hands. In total, 261 subjects including one proband and ten family members from the non-consanguineous Chinese family and 250 healthy volunteers were included and had their genomic DNA extracted. A novel missense mutation in exon 13 of the MYH3 gene, c.1160A > G (p.Tyr387Cys), was identified in the proband and his father through whole-exome sequencing. The proband and six affected family members were confirmed to carry this mutation by Sanger sequencing, although the mutation was not detected in the four unaffected individuals or 250 volunteers. This is the first report of a novel MYH3 mutation being identified as the cause of DA2B in a Chinese family. Our findings confirm that MYH3 gene mutations can be a pathogenic cause of DA2B in Asian patients. This study increases the mutational spectrum in MYH3 and aids genetic counseling and prenatal diagnosis.  相似文献   

11.
ObjectiveTo investigate potential genetic susceptibility for moyamoya disease (MMD) in an African American family.Materials and methodsNeurovascular imaging and analyses of MMD susceptibility genes RNF213 and/or ACTA2 in a young proband with MMD and two first-degree relatives.ResultsThe proband presented with pseudobulbar affect and chorea, then had a right hemispheric ischaemic stroke and rapidly fatal course. One relative had a mild haemorrhagic thalamic stroke and clinically silent ischaemic infarct. Despite evidence of slowly progressive disease, he remained clinically stable. Another relative was neurologically intact with normal cerebrovascular imaging to date. All three have the rare R4131C (p.Arg4131Cys or p.R4131C, c.12391C>T) variant of the RNF213 gene. They are the first Black people and only the 5th family worldwide known to harbour this variant. MMD was confirmed in both of the patients with neurological events.ConclusionsOur report provides compelling evidence that MMD is a clinically complex, heritable genetic disease. It supports the probable pathogenicity of R4131C. Furthermore, it illustrates the wide phenotypic spectrum of R4131C, from asymptomatic carrier to late presenting, mild disease to catastrophic, rapidly fatal childhood disease. To our knowledge, this is also the first report of heritable MMD in a Black family. Finally, this study highlights the importance of racially and ethnically diverse participants in biomedical research.  相似文献   

12.
Pathogenic variants in the skeletal muscle α-actin 1 gene (ACTA1) cause a spectrum of myopathies with clinical and myopathological diversity. Clinical presentations occur from the prenatal period to adulthood, commonly with proximal-predominant weakness and rarely preferential distal weakness. Myopathological findings are wide-ranging, with nemaline rods being most frequent. Associated cardiomyopathy is rare and conduction defects are not reported. We describe a family with congenital myopathy with prominent finger flexor weakness and cardiomyopathy with cardiac conduction defects. The proband, a 48-year-old Caucasian male, his 73-year-old mother, 41-year-old sister, and 19-year-old nephew presented with prominent finger flexor weakness on a background of neonatal hypotonia and delayed motor milestones. All had progressive cardiomyopathy with systolic dysfunction and/or left ventricular dilation. The proband and sister had intraventricular conduction delay and left anterior fascicular block, respectively. The mother had atrial fibrillation. Muscle biopsy in the proband and sister demonstrated congenital fiber-type disproportion and rare nemaline rods in the proband. A novel dominant variant in ACTA1 (c.81C>A, p.Asp27Glu) segregated within the family. This family expands the genotypic and phenotypic spectrum of ACTA1-related myopathy, highlighting preferential finger flexor involvement with cardiomyopathy and conduction disease. We emphasize early and ongoing cardiac surveillance in ACTA1-related myopathy.  相似文献   

13.
BackgroundMutations in the F-box protein 7 (FBXO7) gene is one of the genetic causes of early-onset Parkinson's disease, which usually presents as autosomal recessive early-onset parkinsonian-pyramidal syndrome (PPS). Herein, we report a Chinese PPS family with a novel FBXO7 homozygous mutation.MethodsClinical data of the proband and his affected sister manifesting as early-onset parkinsonism combined with pyramidal signs were collected. DNAs of the two affected siblings, an unaffected sibling and their unaffected mother were isolated. Whole-exome sequencing (WES) was performed for the proband. After bioinformatic analysis, targeted variants were validated by Sanger sequencing in the family members available for DNAs.ResultsThe proband began to walk unsteadily at 30-year-old and developed mild parkinsonism and stiffness in both lower extremities 4 years later. His older sister also manifested as early-onset parkinsonism with stiffness in both lower limbs and postural instability. Both the proband and his older sister carried a novel homozygous FBXO7 mutation in exon 7 (c.1034G > C, p. R345P). The homozygous mutation co-segregated with disease in this pedigree. The mutation located at a highly conserved amino acid residue in the F-box domain, which was predicted to be damaging in silico.ConclusionsOur study expands the mutational spectrum of autosomal recessive early-onset Parkinson's disease (PARK15) caused by FBXO7 mutations.  相似文献   

14.
IntroductionHemiplegic (or spastic unilateral) cerebral palsy accounts for about 30% of all cases of cerebral palsy. With a population prevalence of 0.6 per 1000 live births, it is the most common type of cerebral palsy among term-born children and the second most common type after diplegia among preterm infants.State of the artMany types of prenatal and perinatal brain injury can lead to congenital hemiplegia and brain MRI is the most useful tool to classify them with accuracy and to provide early prognostic information. Perinatal arterial ischemic stroke thus appears as the leading cause in term infants, whereas encephalopathy of prematurity is the most common cause in premature babies. Other causes include brain malformations, neonatal sinovenous thrombosis, parenchymal hemorrhage (for example due to coagulopathy or alloimmune thrombocytopenia) and the more recently described familial forms of porencephaly associated with mutations in the COL4A1 gene.PerspectivesIn adjunction with pharmacologic treatment (botulinium neurotoxin injection), new evidence-based rehabilitational interventions, such as constraint-induced movement therapy and mirror therapy, are increasingly being used.  相似文献   

15.
《Brain & development》2022,44(2):142-147
IntroductionMutations in QARS1, which encodes human glutaminyl-tRNA synthetase, have been associated with epilepsy, developmental regression, progressive microcephaly and cerebral atrophy. Epilepsy caused by variants in QARS1 is usually drug-resistant and intractable. Childhood onset epilepsy is also reported in various aminoacyl-tRNA synthetase disorders. We describe a case with a milder neurological phenotype than previously reported with QARS1 variants and review the seizure associations with aminoacyl-tRNA synthetase disorders.Case reportThe patient is a 4-year-old girl presenting at 6 weeks of age with orofacial dyskinesia and hand stereotypies. She developed focal seizures at 7 months of age. Serial electroencephalograms showed shifting focality. Her seizures were controlled after introduction of carbamazepine. Progress MRI showed very mild cortical volume loss without myelination abnormalities or cerebellar atrophy. She was found to have novel compound heterozygous variants in QARS1 (NM_005051.2): c.[1132C > T];[1574G > A], p.[(Arg378Cys)];[(Arg525Gln)] originally classified as “variants of uncertain significance” and later upgraded to “likely pathogenic” based on functional testing and updated variant database review. Functional testing showed reduced solubility of the corresponding QARS1 mutants in vitro, but only mild two-fold loss in catalytic efficiency with the c.1132C > T variant and no noted change in tRNAGln aminoacylation with the c.1574G > A variant.ConclusionWe describe two QARS1 variants associated with overall conserved tRNA aminoacylation activity but characterized by significantly reduced QARS protein solubility, resulting in a milder clinical phenotype. 86% of previous patients reported with QARS1 had epilepsy and 79% were pharmaco-resistant. We also summarise literature regarding epilepsy in aminoacyl-tRNA synthetase disorders, which is also often early onset, severe and drug-refractory.  相似文献   

16.
ABSTRACT

Background: IVS5-91G>A (rs3812718) polymorphism of the sodium voltage-gated channel alpha subunit 1 (SCN1A) gene has been associated with inadequate responsiveness to common antiepileptic drugs which act as sodium channel blockers. This study was performed to investigate the effect of IVS5-91G>A (rs3812718) polymorphism on lamotrigine (LTG) efficacy in a cohort of patients with non-lesional focal epilepsy taking LTG as monotherapy.

Methods: A total of 100 of patients with non-lesional focal epilepsy on LTG monotherapy was included in this prospective interventional study. After reaching a stable dose of LTG patients were followed-up for 12 consecutive months. LTG responsiveness was defined as a 75% or more reduction in seizure frequency on a stable dose of LTG. Genotyping was performed at the end of the study using standard procedures and data were correlated with clinical data.

Results: There were no significant differences in the prevalence of responsiveness to LTG between carriers of different genotypes. Average maintenance LTG doses in the responder group differed by genotype in the order AA>GA>GG, but these differences did not reach statistical significance.

Conclusion: Our data suggest lack of association between SCN1A IVS5-91G>A (rs3812718) polymorphism and response to LTG.  相似文献   

17.
PurposeClassic late-infantile neuronal ceroid lipofuscinosis is characterized by progressive intellectual and motor deterioration, seizures, vision loss, and early death. Prominent chorea is an atypical feature and is rarely described in children.MethodsA four-year-old girl with seizures followed by a year-long progressive cognitive decline and a three month history of intermittent chorea leading to rapid motor deterioration. The onset of illness was marked by seizures occurring as generalized tonic–clonic seizures and myoclonic jerks. There was gradual regression of cognitive milestones with increasing forgetfulness and impaired quality and content of speech. Nine months later, she developed chorea. These movements were associated with clumsiness, incoordination, and progressive loss of motor milestones. She was unable to perform manual tasks or maintain antigravity posture resulting in unsteadiness and frequent falls. The movements were aggravated by action or excitement and were absent in sleep.ResultsMagnetic resonance imaging depicted diffuse cerebral and cerebellar atrophy. Sequencing analysis of TPP1 gene showed a novel, homozygous, splice site mutation c.89+1G>A which resulted in nil enzyme activity and a severe phenotype with onset of disease symptoms at an early age of three years.ConclusionsThe presence of chorea in late-infantile neuronal ceroid lipofuscinoses is atypical but does not exclude the diagnosis of late-infantile neuronal ceroid lipofuscinoses, especially in children with psychomotor regression, seizures and diffuse brain atrophy.  相似文献   

18.
BackgroundRecent studies have suggested that two PACS2 pathogenic variants, c.625G > A (p.Glu209Lys) and c.631G > A (p.Glu211Lys), have been causally linked to the characteristic developmental and epileptic encephalopathy, including autistic behaviors, hypotonia, cerebellar dysgenesis and facial dysmorphism. Their seizures appear most difficult to control in neonatal and infant period, but improve after the first year of life. We herein report three patients with the same PACS2 variant, c.625G > A (p.Glu209Lys), showing different characteristics from previous reports.Case reportCase 1, a 2-year-old girl, developed frequent tonic convulsions 2 weeks after birth. Brain magnetic resonance imaging showed a decrease in posterior periventricular white matter volume, an enlargement of the inferior horn of lateral ventricles and old subependymal hemorrhage. Epilepsy is now controlled with antiepileptic drugs. Case 2, a 12-year-old girl, developed generalized tonic convulsions 3 days after birth. Although epilepsy had been controlled since the age of 4, she developed Lennox–Gastaut syndrome at 9 years old. Case 3, a 3-year-old girl, developed tonic convulsions 3 days after birth. She now exhibits normal psychomotor development, and epilepsy is controlled without medicine.ConclusionPACS2-related epileptic syndrome presents variable phenotypes than previously reported. We think that our findings expand the clinical spectrum of this disease, and provide important information about the differential diagnosis of neonatal-onset epileptic syndrome.  相似文献   

19.
IntroductionSusceptibility-weighted imaging of the substantia nigra (SN) both at 7 and 3 Tesla (T) has shown high accuracy in distinguishing patients with Parkinson's disease (PD) and healthy subjects (HS). Patients with rapid eye movement (REM) behavior disorder (RBD) can develop synucleinopathies, and such risk is higher with dopamine transporter single photon emission tomography (123I-FP-CIT SPECT) evidence of nigro-striatal dysfunction. We aimed at evaluating SN 7T magnetic resonance imaging (7T-MRI) in patients with RBD and determining the agreement between MRI and 123I-FP-CIT SPECT.MethodsFifteen patients with idiopathic RBD confirmed by polysomnography and a recent 123I-FP-CIT SPECT underwent a 7T MR by using three-dimensional gradient-recalled-echo multiecho susceptibility-weighted imaging of the SN; the findings were randomly presented with those of 14 HS and 28 patients with PD and blindly evaluated by an expert neuroradiologist, according to recently published criteria. MRI and SPECT results were also compared.ResultsNine subjects with RBD had abnormal SPECT; among them, the findings of 7T-MRI were rated abnormal in eight. Out of six subjects with RBD with normal SPECT, the 7T-MRI findings of five were rated normal. The Cohen's kappa statistic value of agreement was 0.722.ConclusionGradient-recalled-echo multiecho susceptibility-weighted imaging of the SN at 7T is abnormal in 60% of patients with RBD. The 7T-MRI and 123I-FP-CIT SPECT results showed good agreement. 7T-MRI of the SN could represent a safe marker for neurodegenerative disease in patients with RBD, however longitudinal study is warranted.  相似文献   

20.
Central Core Disease (CCD) and Multi-minicore Disease (MmD) (the “core myopathies”) have been mainly associated with mutations in the skeletal muscle ryanodine receptor (RYR1) and the selenoprotein N (SEPN1) gene. A proportion of cases remain unresolved. Mutations in MYH7 encoding the beta myosin heavy chain protein have been implicated in cardiac and, less frequently, skeletal muscle disorders.Here we report four patients from two families with a histopathological diagnosis of MmD, presenting in childhood with slowly progressive muscle weakness, more proximal in Family 1 and more distal in Family 2, and variable degrees of cardiorespiratory impairment evolving later in life. There was also a strong family history of sudden death in the first family. Muscle biopsies obtained in early childhood showed multiple minicores as the most prominent feature. Sequencing of the MYH7 gene revealed heterozygous missense mutations, c.4399C>G; p.Leu1467Val (exon 32) in Family 1 and c.4763G>C; p.Arg1588Pro (exon 34) in Family 2.These findings suggest MYH7 mutations as another cause of a myopathy with multiple cores, in particular if associated with dominant inheritance and cardiac involvement. However, clinical features previously associated with this genetic background, namely a more distal distribution of weakness and an associated cardiomyopathy, may only evolve over time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号