首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to understand the combined effect of two polymers showing drug–polymer interactions on amorphous stabilization and dissolution enhancement of indomethacin (IND) in amorphous ternary solid dispersions. The mechanism responsible for the enhanced stability and dissolution of IND in amorphous ternary systems was studied by exploring the miscibility and intermolecular interactions between IND and polymers through thermal and spectroscopic analysis. Eudragit E100 and PVP K90 at low concentrations (2.5%–40%, w/w) were used to prepare amorphous binary and ternary solid dispersions by solvent evaporation. Stability results showed that amorphous ternary solid dispersions have better stability compared with amorphous binary solid dispersions. The dissolution of IND from the ternary dispersion was substantially higher than the binary dispersions as well as amorphous drug. Melting point depression of physical mixtures reveals that the drug was miscible in both the polymers; however, greater miscibility was observed in ternary physical mixtures. The IR analysis confirmed intermolecular interactions between IND and individual polymers. These interactions were found to be intact in ternary systems. These results suggest that the combination of two polymers showing drug–polymer interaction offers synergistic enhancement in amorphous stability and dissolution in ternary solid dispersions. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:3511–3523, 2014  相似文献   

2.
The effectiveness of different polymers, alone or in combination, in inhibiting the crystallization of celecoxib (CEX) from amorphous solid dispersions (ASDs) exposed to different temperatures and relative humidities was evaluated. It was found that polyvinylpyrrolidone (PVP) and PVP-vinyl acetate formed stronger or more extensive hydrogen bonding with CEX than cellulose-based polymers. This, combined with their better effectiveness in raising the glass transition temperature (Tg) of the dispersions, provided better physical stabilization of amorphous CEX against crystallization in the absence of moisture when compared with dispersions formed with cellulose derivatives. In ternary dispersions containing 2 polymers, the physical stability was minimally impaired by the presence of a cellulose-based polymer when the major polymer present was PVP. On exposure to moisture, stability of the CEX ASDs was strongly affected by both the dispersion hygroscopicity and the strength of the intermolecular interactions. Binary and ternary ASDs containing PVP appeared to undergo partial amorphous–amorphous phase separation when exposed 94% relative humidity, followed by crystallization, whereas other binary ASDs crystallized directly without amorphous–amorphous phase separation.  相似文献   

3.

Purpose

To correlate the polymer’s degree of precipitation inhibition of indomethacin in solution to the amorphous stabilization in solid state.

Methods

Precipitation of indomethacin (IMC) in presence of polymers was continuously monitored by a UV spectrophotometer. Precipitates were characterized by PXRD, IR and SEM. Solid dispersions with different polymer to drug ratios were prepared using solvent evaporation. Crystallization of the solid dispersion was monitored using PXRD. Modulated differential scanning calorimetry (MDSC), IR, Raman and solid state NMR were used to explore the possible interactions between IMC and polymers.

Results

PVP K90, HPMC and Eudragit E100 showed precipitation inhibitory effects in solution whereas Eudragit L100, Eudragit S100 and PEG 8000 showed no effect on IMC precipitation. The rank order of precipitation inhibitory effect on IMC was found to be PVP K90?>?Eudragit E100?>?HPMC. In the solid state, polymers showing precipitation inhibitory effect also exhibited amorphous stabilization of IMC with the same rank order of effectiveness. IR, Raman and solid state NMR studies showed that rank order of crystallization inhibition correlates with strength of molecular interaction between IMC and polymers.

Conclusions

Correlation is observed in the polymers ability to inhibit precipitation in solution and amorphous stabilization in the solid state for IMC and can be explained by the strength of drug polymer interactions.  相似文献   

4.
Amorphous solid dispersions of indomethacin (IMC) and sodium indomethacin (NaIMC) over a range of compositions were prepared by physically mixing amorphous IMC and amorphous NaIMC, as well as by coprecipitation from methanol solution. Measurement of glass transition temperatures, T(g), for the physical mixtures revealed two values indicating, as expected, phase separation. In contrast, all samples of coprecipitated materials exhibited one value of T(g), which was greater than that predicted for ideal miscibility in the formation of a molecular dispersion. Such nonideality suggests a stronger acid-salt interaction in the amorphous state than that between acid-acid and salt-salt. FTIR spectroscopic analysis provides evidence for interactions between NaIMC and IMC through a combination of hydrogen bonding and ion-dipole interactions between the carboxylic group of the acid and the carboxylate anion of the salt. The inhibition of isothermal crystallization of IMC by NaIMC only when in molecular dispersion is believed to result from the interaction between the acid and the salt, which prevents the formation of hydrogen-bonded carboxylic acid dimers for IMC, required for the formation of crystal nuclei and crystallization.  相似文献   

5.
The effects of poly(vinylpyrrolidone) (PVP) molecular weight, composition, and content on the crystallization of a model drug, MK-0591 (Form I), were investigated. Solid dispersions of crystalline MK-0591 with PVP homopolymers of different molecular weights (2500-1 x 10(6) g/mol) and with a copolymer containing poly(vinyl acetate) (PVA), (PVP/VA, 60:40, 5.8 x 10(4) g/mol) were prepared by the solvent method. MK-0591 in the solid dispersions was found to be X-ray amorphous. One glass transition temperature (T(g)) was observed suggesting drug-polymer miscibility. The T(g) values were higher than predicted by the Gordon-Taylor equation, indicating drug-polymer interactions. The extent of crystallization inhibition increased with PVP molecular weight and, for a comparable PVP molecular weight, the homopolymer was more effective in the crystallization inhibition of the drug than the copolymer. The first onset temperature of crystallization (T(c)(obs)) increased with polymer content. The T(c)(obs) values (normalized to polymer content) were a function of the difference between the T(g) of the polymer and drug. For PVP K-90, K-30, and K-17 dispersions, the T(c)(obs) values increased proportionally to the T(g) of the dispersions. However, for PVP K-12 and PVP/VA, the increase in T(c)(obs) values corresponded to a small decrease in the T(g) values of the dispersions. This result suggests that additional factors other than the reduction in mobility affect the crystallization behavior of MK-0591 in the solid dispersions, such as specific interactions. By Fourier transform-infrared spectroscopy, changes in the carbonyl-stretching band of PVP in the solid dispersions were observed. The existence of an ion-dipole interaction between COO(-)Na(+) of the drug and the cyclic amide group of PVP was postulated.  相似文献   

6.
Indomethacin (IMC) and three types of poly-(vinylpyrrolidone) (PVP 12PF, PVP K30 and PVP K90) were studied in the form of solid dispersion, prepared with the solvent evaporation method, by spectroscopic (Raman, FT-IR, X-ray diffraction), thermal (differential scanning calorimetry, thermogravimetry, hot-stage microscopy), fractal and image analysis. Raman and FT-IR micro-spectroscopy indicated the occurrence of drug/polymer interaction and the presence of an amorphous form of IMC, as also resulting from X-ray diffractometry. Hot-stage microscopy suggested that the interaction between IMC and the polymer occurring on heating of a physical mixture, is common to other acidic compounds and causes a depression of the temperature of the appearance of a molten phase. Co-evaporated particles were coated by spray-congealing process with molten stearic acid for gastroprotection, but also for stabilization of the amorphous structure of the drug: the final particles were spherically shaped. Dissolution tests carried out on the final microparticles showed that the coating with stearic acid prevents IMC release at acidic pH and also protects against recovery of the IMC crystallinity, at least after 9 months of aging: the extent and mode of the release, before and after aging, overlap perfectly. The test revealed a notable improvement of the drug release rate from the solid dispersion at suitable pH, with respect to pure IMC. The comparison of the present solid dispersion with IMC/PVP (surface) solid dispersion obtained by freeze-drying of an aqueous suspension, where IMC maintained its crystalline state, revealed that there was no difference concerning the release rate, but suggested a superior quality of this last process as a mean of improving IMC availability for the easiness of preparation and stability, due to the absence of the amorphous state of the drug, as a possible instability source of the system. Finally, the coating with stearic acid is discussed as a determining process for the practical application of solid dispersions.  相似文献   

7.
The effect of ternary complexation of naproxen, a poorly water soluble anti-inflammatory drug, with hydroxypropyl-beta-cyclodextrin and the basic aminoacid L-arginine on the drug dissolution properties has been investigated. Equimolar binary (drug-cyclodextrin or drug-arginine) and ternary (drug-cyclodextrin-arginine) systems were prepared by blending, cogrinding, coevaporation, and characterized by differential scanning calorimetry, thermogravimetric analysis, FT-IR spectroscopy, X-ray diffractometry. The dissolution behavior of naproxen from the different products was evaluated by means of a continuous flow through method. The results of solid state studies indicated the presence of strong interactions between the components in ternary coevaporated and coground systems, which were both of totally amorphous nature. In contrast, the presence of either free drug or free arginine was detected when the third component (cyclodextrin or aminoacid) was physically mixed, respectively, to the drug-arginine binary system (as physical mixture, coevaporate, or coground product) or to the drug-cyclodextrin binary system (as physical mixture, coevaporate, or coground product). All ternary combinations were significantly (P<0.001) more effective than the corresponding binary drug-cyclodextrin and drug-arginine systems in improving the naproxen dissolution rate. The best performance in this respect was given by the ternary coevaporate, with about 15 times increase in terms of both drug relative dissolution rate and dissolution efficiency. The synergistic effect of the simultaneous use of arginine and cyclodextrin on the dissolution rate of naproxen was attributed to the combined effects of inclusion in cyclodextrin and salt formation, as well as to a specific role played by arginine in this interaction.  相似文献   

8.
Indomethacin, lacidipine, nifedipine and tolbutamide are poorly soluble in water and may show dissolution-related low oral bioavailability. This study describes the formulation and characterization of these drugs as glass solutions with the amorphous polymers polyvinylpyrrolidone (PVP) and polyvinylpyrrolidone-co-vinyl acetate by melt extrusion. The extrudates were compared with physical mixtures of drug and polymer. X-ray powder diffraction, thermal analysis, infrared spectroscopy, scanning electron microscopy, HPLC, moisture analysis and dissolution were used to examine the physicochemical properties and chemical stability of the glass solutions prepared by melt extrusion at a 1:1 drug/polymer ratio. Depending on the temperature used, melt extrusion produced amorphous glass solutions, with markedly improved dissolution rates compared with crystalline drug. A significant physico-chemical interaction between drug and polymer was found for all extrudates. This interaction was caused by hydrogen bonding (H-bonding) between the carbonyl group of the pyrrole ring of the polymer and a H-donor group of the drug. Indomethacin also showed evidence of H-bonding when physical mixtures of amorphous drug and PVP were prepared. After storage of the extrudates for 4-8 weeks at 25 degrees C/75% relative humidity (RH) only indomethacin/polymer (1:1) extrudate remained totally amorphous. All extrudates remained amorphous when stored at 25 degrees C/< 10% RH. Differences in the physical stability of drug/polymer extrudates may be due to differences in H-bonding between the components.  相似文献   

9.
Purpose. To investigate the effect of low concentrations of molecularly dispersed poly(vinylpyrrolidone) (PVP) on indomethacin (IMC) crystallization from the amorphous state using particle size effects to identify possible mechanisms of crystallization inhibition. Methods. Different particle sizes of amorphous IMC and 1, 2, and 5% PVP were stored dry at 30°C for 84 days. PXRD was used to calculate the rate and extent of crystallization and the polymorph formed. Results. Crystallization from amorphous IMC and IMC/PVP molecular dispersions yielded the polymorph of IMC. Crystallization rates were reduced at larger particle size and in the presence of 1, 2, and 5%PVP. Crystallization did not reach completion in some IMC/PVP samples, with the quantity of uncrystallized amorphous phase proportional to particle size. Conclusions. Low concentrations of molecularly dispersed PVP affected IMC crystallization from the amorphous state. Formation of -IMC at rates dependent on particle size indicated that surface nucleation predominated in both the absence and presence of PVP. Excellent correlation was seen between the extent of crystallization and simulated depths of crystal penetration, supporting the hypothesis that increasing local PVP concentration inhibits crystal growth from surface nuclei into the amorphous particle.  相似文献   

10.
Purpose. To measure the water vapor absorption behavior of sucrose-poly(vinyl pyrrolidone) (PVP) and sucrose-poly(vinyl pyrrolidone co-vinyl acetate) (PVP/VA) mixtures, prepared as amorphous solid solutions and as physical mixtures, and the effect of absorbed water on the amorphous properties, i.e., crystallization and glass transition temperature, Tg, of these systems. Methods. Mixtures of sucrose and polymer were prepared by co-lyophilization of aqueous sucrose-polymer solutions and by physically mixing amorphous sucrose and polymer. Absorption isotherms for the individual components and their mixtures were determined gravimetrically at 30°C as a function of relative humidity. Following the absorption experiments, mixtures were analyzed for evidence of crystallization using X-ray powder diffraction. For co-lyophilized mixtures showing no evidence of crystalline sucrose, Tg was determined as a function of water content using differential scanning calorimetry. Results. The absorption of water vapor was the same for co-lyophilized and physically mixed samples under the same conditions and equal to the weighted sums of the individual isotherms where no sucrose crystallization was observed. The crystallization of sucrose in the mixtures was reduced relative to sucrose alone only when sucrose was molecularly dispersed (co-lyophilized) with the polymers. In particular, when co-lyophilized with sucrose at a concentration of 50%, PVP was able to maintain sucrose in the amorphous state for up to three months, even when the Tg was reduced well below the storage temperature by the absorbed water. Conclusions. The water vapor absorption isotherms for co-lyophilized and physically mixed amorphous sucrose-PVP and sucrose-PVP/VA mixtures at 30°C are similar despite interactions between sugar and polymer which are formed when the components are molecularly dispersed with one another. In the presence of absorbed water the crystallization of sucrose was reduced only by the formation of a solid-solution, with PVP having a much more pronounced effect than PVP/VA. The effectiveness of PVP in preventing sucrose crystallization when significant levels of absorbed water are present was attributed to the molecular interactions between sucrose, PVP and water.  相似文献   

11.
Amorphous drug dispersions are frequently employed to enhance solubility and dissolution of poorly water-soluble drugs and thereby increase their oral bioavailability. Because these systems are metastable, phase separation of the amorphous components and subsequent drug crystallization may occur during storage. Computational methods to determine the likelihood of these events would be very valuable, if their reliability could be validated. This study investigates amorphous systems of indomethacin (IMC) in poly(vinylpyrrolidone) (PVP) and their molecular interactions by means of molecular dynamics (MD) simulations. IMC and PVP molecules were constructed using X-ray diffraction data, and force-field parameters were assigned by analogy with similar groups in Amber-ff03. Five assemblies varying in PVP and IMC composition were equilibrated in their molten states then cooled at a rate of 0.03 K/ps to generate amorphous glasses. Prolonged aging dynamic runs (100 ns) at 298 K and 1 bar were then carried out, from which solubility parameters, the Flory-Huggins interaction parameter, and associated hydrogen bonding properties were obtained. Calculated glass transition temperature (Tg) values were higher than experimental results because of the faster cooling rates in MD simulations. Molecular mobility as characterized by atomic fluctuations was substantially reduced below the Tg with IMC–PVP systems exhibiting lower mobilities than that found in amorphous IMC, consistent with the antiplasticizing effect of PVP. The number of IMC–IMC hydrogen bonds (HBs) formed per IMC molecule was substantially lower in IMC–PVP mixtures, particularly the fractions of IMC molecules involved in two or three HBs with other IMC molecules that may be potential precursors for crystal growth. The loss of HBs between IMC molecules in the presence of PVP was largely compensated for by the formation of IMC–PVP HBs. The difference (6.5 MPa1/2) between the solubility parameters in amorphous IMC (25.5 MPa1/2) and PVP (19.0 MPa1/2) suggests a small, positive free energy of mixing, although it is close to the criterion for miscibility (< 7 MPa1/2). In contrast to the solubility-parameter method, the calculated Flory-Huggins interaction parameter (? 0.61 ± 0.25), which takes into account the IMC–PVP interaction energy, predicts complete miscibility at all PVP compositions, in agreement with experimental observations. These results from MD simulations were combined with experimental values for the crystalline γ-polymorph of IMC and amorphous IMC to estimate the solubility of IMC in amorphous PVP dispersions and the theoretical enhancement in the aqueous solubility of IMC molecularly dispersed in PVP at various volume fractions. © 2012Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:876–891, 2013  相似文献   

12.
The mechanism of how poly(vinyl alcohol-co-acrylic acid-co-methyl methacrylate) (PVA copolymer) stabilizes an amorphous drug was investigated. Solid dispersions of PVA copolymer, poly(vinyl pyrrolidone) (PVP), and poly(vinyl pyrrolidone-co-vinyl acetate) (PVPVA) with indomethacin (IMC) were prepared. The glass transition temperature (Tg)-proportion profiles were evaluated by differential scanning calorimetry (DSC). General Tg profiles decreasing with the IMC ratio were observed for IMC–PVP and IMC–PVPVA samples. An interesting antiplasticizing effect of IMC on PVA copolymer was observed; Tg increased up to 20% IMC ratio. Further addition of IMC caused moderate reduction with positive deviation from theoretical values. Specific hydrophilic and hydrophobic interactions between IMC and PVA copolymer were revealed by infrared spectra. The indole amide of IMC played an important role in hydrogen bonding with PVA copolymer, but not with PVP and PVPVA. X-ray diffraction findings and the endotherm on DSC profiles suggested that PVA copolymer could form a semicrystalline structure and a possibility of correlation of the crystallographic nature with its low hygroscopicity was suggested. PVA copolymer was able to prevent crystallization of amorphous IMC through both low hygroscopicity and the formation of a specific intermolecular interaction compared with that with PVP and PVPVA.  相似文献   

13.
The overall crystallization rates and mean relaxation times of amorphous nifedipine and phenobarbital in the presence of poly(vinylpyrrolidone) (PVP) were determined at various temperatures to gain further insight into the effect of molecular mobility on the crystallization rates of amorphous drugs and the possibility of predicting stability from their molecular mobility. Nifedipine-PVP (9:1 w/w) and phenobarbital-PVP (95:5 w/w) solid dispersions were prepared by melting and rapidly cooling mixtures of each drug and PVP. The amount of amorphous nifedipine remaining in the solid dispersion was calculated from the heat of crystallization,which was obtained by differential scanning calorimetry. The amount of amorphous phenobarbital remaining in the solid dispersion was estimated from the change in the heat capacity at its glass transition temperature (T(g)). The time required for the amount of amorphous drug remaining to fall to 90% (t(90)) was calculated from the profile of time versus the amount of amorphous drug remaining. The t(90) values for the solid dispersions studied were 100-1000 times longer than those of pure amorphous drugs when compared at the same temperature. Enthalpy relaxation of the amorphous drugs in the solid dispersions was reduced compared with that in the pure amorphous drugs, indicating that the molecular mobility of the amorphous drugs is reduced in the presence of PVP. The temperature dependence of mean relaxation time (tau) for the nifedipine-PVP solid dispersion was calculated using the Adam-Gibbs-Vogel equation. Parameters D and T(0) in this equation were estimated from the heating rate dependence of T(g). Similar temperature dependence was observed for t(90) and tau values of the solid dispersion, indicating that the information on the temperature dependence of the molecular mobility, along with the crystallization data obtained at around the T(g), are useful for estimating the t(90) of overall crystallization at temperatures below T(g) in the presence of excipients.  相似文献   

14.
The main aim of the study was to investigate the mechanisms of the stabilizing effect of poly(vinylpyrrolidone) (PVP) on amorphous albendazole (ABZ). Solid dispersions of ABZ with PVP polymers and with a copolymer containing poly(vinylacetate) (PVP/VA) were prepared using the solvent casting method. The effects of PVP molecular weight, composition and content on the crystallization of ABZ from the amorphous state were investigated using differential scanning calorimetry. Stability of the amorphous drug with respect to isothermal crystallization was studied at different polymer concentrations and storage temperatures. Solid dispersions were found to be X-ray amorphous and exhibited a single glass transition temperature (Tg). Onset of crystallization and extent of inhibition increased with concentration and molecular weight of the homopolymer. In spite of its having a higher molecular weight, replacement of about 40% of vinylpyrrolidone monomers with vinylacetate groups (as in the copolymer) resulted in reduced inhibition of crystallization. ABZ crystallized from the amorphous state in the absence of polymer even when stored below the Tg. The solvent casting method greatly reduced the requirement for polymer to achieve X-ray amorphous solid dispersions. Such dispersions exhibited a significant increase in induction time and reduction in the rate of crystallization at polymer concentrations as low as 5% and at temperatures as high as 70 degrees C. Factors other than mobility, such as drug-polymer hydrogen bonding' were also found to be involved in crystallization inhibition.  相似文献   

15.
A Raman spectroscopy method was developed for the quantification of the amorphous content of lactose. Both physical mixtures and spray-dried samples were used and the results were compared with the IMC determinations. Sample inhomogeneities were averaged out by collecting multiple spectra from each sample, and the total measurement time remained below 10 min due to the high sensitivity of the CCD-Raman spectrometer used in the measurements. The obtained calibration error (SEC) for the physical mixtures was 1.3% (w/w) in the 0–100% amorphous content range and was reduced to 0.2% (w/w) in the 0–10% range of more practical interest. The crystallization heat values of the spray-dried samples showed a linear correlation with the Raman quantifications in the amorphous content range of 0–80%, but saturated over the 80% concentration. This finding suggests a reference value of ca. 60 J/g for the spray-dried samples, instead of the crystallization heat of amorphous lactose (ca. 50 J/g) valid in the IMC determinations of physical mixtures.  相似文献   

16.
The effect of pH grade of silicates on chemical stability of amorphous drugs coground with silicates (Neusilin and Aerosil) was investigated using quinapril HCl (QHCl) as a model drug. The ability of pH-modifiers (ascorbic acid and MgO) to improve chemical stability was explored. PXRD and polarized light microscopy indicated complete amorphization of all samples by cryo-grinding. All samples remained amorphous during stability study at 40°C and 48% RH. In general, drug degradation was greater in the QHCl/silicate (1:3) coground amorphous samples than the neat amorphous QHCl. The rate of diketopiperazine formation by cyclization of QHCl was higher in the presence of lower pH grades than higher pH grades of silicates. However, the pH-stability profile of coground amorphous systems prepared with different pH grades of silicates was not consistent with the pH-stability profile of the drug in solution. A basic pH-modifier (MgO) in a lower pH grade silicate (Neusilin US2) stabilized coground amorphous QHCl. Also, an acidic pH-modifier (ascorbic acid) in a higher pH grade silicate (Neusilin FL2) suppressed QHCl hydrolysis. The pH grade of silicates is a major factor affecting the chemical stability of a coground amorphous drug and pH-modifiers are useful for chemical stabilization without compromising physical stability. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:3358–3372, 2009  相似文献   

17.
The ability of various polymers to inhibit the crystallization of amorphous felodipine was studied in amorphous molecular dispersions. Spin-coated films of felodipine with poly(vinylpyrrolidone) (PVP), hydroxypropylmethylcellulose acetate succinate (HPMCAS), and hydroxypropylmethylcellulose (HPMC) were prepared and used for measurement of the nucleation rate and to probe drug-polymer intermolecular interactions. Bulk solid dispersions were prepared by a solvent evaporation method and characterized using thermal analysis. It was found that each polymer was able to significantly decrease the nucleation rate of amorphous felodipine even at low concentrations (3-25% w/w). Each polymer was found to affect the nucleation rate to a similar extent at an equivalent weight fraction. For HPMC and HPMCAS, thermal analysis indicated that the glass transition temperature (T(g)) of the solid dispersions were not significantly different from that of felodipine alone, whereas an increase in T(g) was observed for the PVP containing solid dispersions. Infrared spectroscopic studies indicated that hydrogen bonding interactions were formed between felodipine and each of the polymers. These interactions were stronger between felodipine and PVP than for the other polymers. It was speculated that, at the concentrations employed, the polymers reduce the nucleation rate through increasing the kinetic barrier to nucleation.  相似文献   

18.
Water vapor absorption isotherms were measured for three amorphous hydrophobic drug/poly(vinylpyrrolidone) (PVP) dispersions in the concentration range 10-90% w/w PVP. Experimental isotherms were compared to predicted isotherms calculated using each individual component isotherm multiplied by its weight fraction. Indomethacin (IMC)/PVP, ursodeoxycholic acid (UDCA)/PVP and indapamide (IDP)/PVP amorphous dispersions all exhibited experimental isotherms reduced relative to predicted isotherms indicating that dispersion formation altered the water vapor absorption properties of the individual components. For all three drug/PVP systems, deviation from predicted water uptake was greatest close to the 1:1 drug:PVP monomer composition, indicating that intermolecular interaction in amorphous dispersions affects the water uptake properties of the individual components. Using dry glass transition temperature (T(g)) data, the extent of drug/PVP interaction was shown to be greatest in the IDP/PVP system, which could explain why the largest reduction in water vapor absorption was found in this system. The plasticizing effect of absorbed water varied according to dry dispersion PVP content in all systems and the resulting nonideal changes in free volume, calculated using the Vrentas model, were greatest close to the 1:1 drug:PVP monomer composition. A three-component Flory-Huggins model successfully predicted isotherms for IMC/PVP compositions from 60 to 90% w/w PVP and identified an IMC-PVP interaction parameter chi in the range 1.27-1.49, values that suggest poor homogeneity of mixing in the dry system. These data indicate that amorphous dispersion formation causes both chemical and physical changes in the individual amorphous components that can have a significant effect on their water vapor absorption properties.  相似文献   

19.
The objective of this study was to investigate intermolecular interactions between resveratrol and polymers in amorphous blends and to study the potential correlations between compound–polymer interactions, manufacturability, and stability of the amorphous system to crystallization during storage. Polymers included two grades of poly (vinylpyrrolidone) (PVP), Eudragit E100 (E100), hydroxypropyl methylcellulose (HPMC), hydroxypropyl methylcellulose acetate succinate (HPMCAS), carboxymethyl cellulose acetate butyrate, and poly (acrylic acid) (PAA). Amorphous blends (“solid dispersions”) were prepared by dissolving both resveratrol and polymer in a solvent followed by rotary evaporation. Crystallinity was evaluated using X‐ray powder diffraction and was studied as a function of time. Mid‐infrared (IR) spectroscopy was used to investigate resveratrol–polymer interactions. Polymer influence on the crystallization behavior of resveratrol varied and could be correlated to the polymer structure, whereby polymers with good hydrogen bond acceptor groups performed better as crystallization inhibitors. Resveratrol–polymer hydrogen bonding interactions could be inferred from the IR spectra. Somewhat surprisingly, E100 and resveratrol showed evidence of an acid–base reaction, in addition to intermolecular hydrogen bonding interactions. PVP K29/32 appeared to form stronger hydrogen bond interactions with resveratrol relative to HPMC, HPMCAS, and PAA, consistent with acceptor group chemistry. Long‐term stability of the systems against crystallization suggested that stability is linked to the type and strength of intermolecular interactions present. whereby resveratrol blended with E100 and PVP K29/32 showed the greatest stability to crystallization. In conclusion, amorphous resveratrol is unstable and difficult to form, requiring the assistance of a polymeric crystallization inhibitor to facilitate the formation of an amorphous solid dispersion. Polymers effective at inhibiting crystallization were identified, and it is rationalized that their effectiveness is based on the type and strength of their intermolecular interactions with resveratrol.  相似文献   

20.
Drug–polymer solid dispersion has been demonstrated as a feasible approach to formulate poorly water-soluble drugs in the amorphous form, for the enhancement of dissolution rate and bioperformance. The solubility (for crystalline drug) and miscibility (for amorphous drug) in the polymer are directly related to the stabilization of amorphous drug against crystallization. Therefore, it is important for pharmaceutical scientists to rationally assess solubility and miscibility in order to select the optimal formulation (e.g., polymer type, drug loading, etc.) and recommend storage conditions, with respect to maximizing the physical stability. This commentary attempts to discuss the concepts and implications of the drug–polymer solubility and miscibility on the stabilization of solid dispersions, review recent literatures, and propose some practical strategies for the evaluation and development of such systems utilizing a working diagram.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号