首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The ultrastructure of aqueous colloidal dispersions of the cubic monoolein/poloxamer 407/water phase, in particular the particle size distribution and presence of an additional vesicular fraction, highly depends on composition and preparation parameters. Therefore, the effect of autoclaving on such dispersions was investigated. Before autoclaving at 121 degrees C, a dispersion of 4.6% monoolein/0.4% poloxamer predominantly consists of cubic particles beside a fraction of non-cubic particles. The small vesicular particles disappear almost completely upon autoclaving whereas larger particles with cubic structure remain in the sample. In contrast, a 4.4% monoolein/0.6% poloxamer dispersion contains predominantly small vesicular particles before heat treatment. After autoclaving, the majority of the particles is larger and of cubic structure and only a few small non-cubic particles remain. The effect can already be observed at short autoclaving times (e.g., 5 min) but a temperature of at least 90 degrees C is required to induce a major change in the ultrastructure. Results from temperature dependent small angle X-ray diffraction investigations indicate that temperatures corresponding to an isotropic phase are required for particle transformation. Heat treatment of monoolein/poloxamer dispersions can thus be used to transform vesicular dispersions into dispersions of cubic phase or to improve the cubic/non-cubic particle ratio in dispersions already containing particles with cubic internal structure.  相似文献   

2.
Colloidal cubic phase particles formed in the monoolein/poloxamer/water system are being investigated as potential drug carriers for, e.g., intravenous administration. Preparation methods must, however, still be further developed to reliably yield monoolein dispersions with cubic particles in a size range acceptable for i.v. administration and adequate long-term stability. In this context, the influence of different composition and preparation parameters on the properties of monoolein dispersions prepared by high-pressure homogenization was studied. High pressure homogenization of coarse poloxamer 407-stabilized monoolein/water mixtures leads to dispersions with a large fraction of micrometer-sized particles at low poloxamer concentrations. Higher poloxamer concentrations lead to lower mean particle sizes but the fraction of cubic particles becomes smaller and vesicular particles are observed instead. A study of the characteristics of a dispersion with a standard composition indicated that the homogenization temperature has a much stronger influence on the dispersion properties than the homogenization pressure or the type of homogenizer used. Temperatures around 40-60 degrees C lead to the most favorable dispersion properties. The high temperature sensitivity of the preparation process appears to be at least partly correlated with the phase behavior of the dispersed particles determined by temperature-dependent X-ray diffraction.  相似文献   

3.
Aqueous colloidal monoolein/poloxamer dispersions are under investigation as drug delivery systems. Depending on the composition and preparation procedure these dispersions may either contain predominantly vesicular particles or nanoparticles of cubic inner structure. To study the influence of ultrastructure on drug release, corresponding dispersions loaded with the model drugs diazepam (two different concentrations) and chloramphenicol were prepared by high-pressure homogenization with or without subsequent heat treatment. The dispersions were characterized with regard to particle size and their ultrastructure was confirmed with small angle X-ray diffractometry. Two techniques with high time resolution, differential pulse polarography (DPP) and ultrafiltration at low pressure were compared for their suitability to monitor rapid release from the dispersions. Instantaneous release was found for both drugs independent on the type of particle structure with the amount of released drug being controlled by the partition coefficient. Both release methods were suitable to monitor the rapid appearance of the releasable drug in the release medium.  相似文献   

4.
Colloidal dispersions of cholesterol esters in the supercooled smectic state are under investigation as a novel drug carrier system in particular with respect to parenteral application. In the present study, suitable conditions for the homogenization of cholesteryl myristate dispersions stabilized with a phospholipid/bile salt blend were evaluated. For effective particle size reduction homogenization with high pressure and at temperatures above the melting temperature of the cholesterol ester (isotropic melt) is necessary. Homogenization at lower temperature where the matrix lipid is in the smectic state is less effective even when applying the highest homogenization pressure possible but still leads to dispersions with particles in the colloidal size range. Since sterility is required for parenteral medications and is usually achieved by autoclaving for aqueous systems, the physical and chemical stability of cholesteryl myristate nanoparticles stabilized with different surface active agents during heat treatment was investigated as well. The dispersions were characterized by particle size and zeta potential measurements, differential scanning calorimetry (DSC) and high performance thin layer chromatography (HPTLC). The results indicate that cholesteryl myristate nanoparticles stabilized with phospholipid/sodium glycocholate, polyvinyl alcohol, poloxamer and poloxamine can be sterilized by autoclaving. Compared to cholesterol ester free dispersions of phospholipids, the phospholipid seems to be more stable against hydrolysis during prolonged heat treatment in the phospholipid/bile salt containing cholesteryl myristate dispersions.  相似文献   

5.
This study investigates the potential of poloxamers as solid dispersions (SDs) carriers in improving the dissolution rate of a poorly soluble drug, carbamazepine (CBZ). Solid dispersions were prepared with poloxamer 188 (P188) and poloxamer 407 (P407) by melting method in different drug:carrier ratios (1:1, 1:2 and 1:3). Prepared samples were characterized using differential scanning calorimetry (DSC), hot-stage polarized light microscopy (HSM), powder X-ray diffraction (PXRD) and Fourier transform infrared spectroscopy (FT-IR) to investigate drug physical state within the SDs matrix, possible polymorphic transitions and drug-polymer interactions. The interactions between CBZ molecules and polymeric chains were also evaluated using molecular dynamics simulation (MDS) technique. The most thermodynamically stable polymorphic form III of CBZ was present in all SDs, regardless of the type of poloxamer and drug-to-carrier ratio. The absence of drug-polymer interactions was observed by FT-IR analysis and additionally confirmed by MDS. Formation of persistent hydrogen bond between two CBZ molecules, observed by MDS indicate high tendency of CBZ molecules to aggregate and form crystalline phase within dispersion. P188 exhibit higher efficiency in increasing CBZ dissolution rate due to its more pronounced hydrophilic properties, while increasing poloxamers concentration resulted in decreasing drug release rate, as a consequence of their thermoreversible gelation.  相似文献   

6.
In an attempt to overcome problems of conventional high-energy preparation processes for colloidal drug carrier systems, premix membrane emulsification was investigated for the first time as an alternative low-energy input process for the preparation of pharmaceutical nanoemulsions and solid lipid nanoparticles. The effect of process parameters on dispersions based on nonpolar lipids (medium-chain triglycerides, soybean oil, and trimyristin) and different emulsifiers (sodium dodecyl sulfate, poloxamer 188, polyglyceryl-10-laurate, and sucrose laurate) was studied in a small-volume device and a larger scale-up approach. For emulsions and suspensions, mean particle sizes in a range from about 100 to 200 nm were observed for monomodal to monodisperse particle size distributions after 21 cycles of extrusion through polycarbonate membrane filters. As the mass ratio of matrix lipid to emulsifier (4:3, w/w concentrations) usually applied for the preparation of stable colloidal lipid particles was quite high, the amount of emulsifier in the dispersions was minimized. It was observed that the minimal concentration of emulsifier increased with decreasing membrane pore size. The possibility to prepare colloidal drug carrier systems with a high concentration of matrix lipid (up to 20%) by an optimized membrane extrusion process offers new opportunities for the processing of sensitive substances.  相似文献   

7.
Dispersions of bicontinuous cubic monoglyceride-water phases, so-called 'cubosomes', have been proposed as parenteral sustained release delivery systems. For the present study, dispersions of monoolein-rich monoglycerides (MO), with or without purified soya phospholipids (PL), were prepared by equilibration of a MO/(PL)/water cubic phase, subsequent fragmentation with a poloxamer 407 (P407) solution, sonication and homogenization. This yielded systems of very different macroscopic appearance: Almost transparent dispersions, slightly turbid systems, opaque dispersions or milky emulsions. The mean z-average particle diameters ranged from 80 nm to well above 350 nm. Considerable particle growth could be detected in most systems during storage at room temperature. Storage at 5 degrees C resulted in the formation of ointment-like gels, which may be attributed to the crystallization of MO. Freeze-fracture transmission electron micrographs of MO dispersions revealed predominantly spherical particles with a low fracturing tendency. Synchrotron radiation X-ray diffraction indicated that high energy input during disintegration of the cubic phase leads to very complex systems in which particles with a cubic structure and MO/(PL) vesicles may coexist. The characteristic reflections of cubic systems were absent in the diffraction patterns of almost transparent or slightly turbid dispersions. The results indicate a strong dependence of ultrastructure of the dispersions on the preparation parameters.  相似文献   

8.
The interaction of aqueous nanoparticle dispersions, e.g. based on monoolein/poloxamer 407, with blood components is an important topic concerning especially the parenteral way of administration. Therefore, the influence of human and porcine plasma on dispersed cubic phases was investigated. Particle size measurements of mixtures with plasma indicated a decrease in particle size. In cryo-transmission electron micrographs, different structures could be found, which arose from the dispersed cubic phases under plasma contact. Non-cubic structures on the particle surface were decomposed first. Several phase transitions with the formation of smaller and sometimes larger particle fractions were observed beside remaining cubic structures. A very low but detectable hemolytic activity was found for the dispersed cubic phases based on monoolein and poloxamer 407, when compared to the hemolytic activity of cubic phases based on monoolein and poloxamer 188, on soy phosphatidylcholine, glycerol dioleate and polysorbate 80 or the parenteral fat emulsion Lipofundin MCT 20%.  相似文献   

9.
The present study investigates the possibility of using poloxamers as solubility and dissolution rate enhancing agents of the poorly water soluble drug substance desloratadine that can be used for the preparation of immediate release tablet formulation. Two commercially available poloxamer grades (poloxamer P 188 and poloxamer P 407) were selected, and solid dispersions (SDs) containing different weight ratio of poloxamers and desloratadine were prepared by a low temperature melting method. All SDs were subjected to basic physicochemical characterization by thermal and vibrational spectroscopy methods in order to evaluate the efficiency of poloxamers as solubility enhancers. Immediate release tablets were prepared by direct compression of powdered solid dispersions according to a General Factorial Design, in order to evaluate the statistical significance of two formulation (X(1) - type of poloxamer in SD and X(2) - poloxamer ratio in SD) and one process variable (X(3) - compression force) on the drug dissolution rate. It was found that desloratadine in SDs existed in the amorphous state, and that can be largely responsible for the enhanced intrinsic solubility, which was more pronounced in SDs containing poloxamer 188. Statistical analysis of the factorial design revealed that both investigated formulation variables exert a significant effect on the drug dissolution rate. Increased poloxamer ratio in SDs resulted in increased drug dissolution rate, with poloxamer 188 contributing to a faster dissolution rate than poloxamer 407, in accordance with the results of intrinsic dissolution tests. Moreover, there is a significant interaction between poloxamer ratio in SD and compression force. Higher poloxamer ratio in SDs and higher compression force results in a significant decrease of the drug dissolution rate, which can be attributed to the lower porosity of the tablets and more pronounced bonding between poloxamer particles.  相似文献   

10.
Dissolution molecular mechanism of solid dispersions still remains unclear despite thousands of reports about this technique. The aim of current research was to investigate the molecular dissolution mechanism of solid dispersions by molecular dynamics simulations. The formation of ibuprofen/polymer solid dispersions was modeled by the simulated annealing method. After that, the models of solid dispersions were immersed into the water box with 25–30 Å thicknesses and 50–100 ns MD simulations were performed to all systems. Simulation results showed various dissolution behaviors in different particle sizes and various polymers of solid dispersions. Small-sized particles of solid dispersions dissolved quickly in the water, while the large particles of PEG or PVP-containing solid dispersions gradually swelled in the dissolution process and drug molecules may aggregate together. In the dissolution process, the carboxylic groups of ibuprofen molecules turned its direction from polymer molecules to external water box and then the drug molecules left the polymer coils. At the same time, polymer coils gradually relaxed and became free polymer chains in the solution. In addition, solid dispersion with poloxamer could prevent the precipitate of drug molecules in the dissolution process, which is different from those of PEG or PVP-containing systems. This research provided us clear images of dissolution process of solid dispersions at the molecular level.  相似文献   

11.
Taking ABT627 as a hydrophobic model drug, poly-(lactic-co-glycolic acid) (PLGA) microspheres were prepared by an emulsion solvent evaporation method. Various process parameters, such as continuous phase/dispersed phase (CP/DP) ratio, polymer concentration, initial drug loading, polyvinyl alcohol concentration and pH, on the characteristics of microspheres and in vitro drug release pattern of ABT627 were investigated. Internal morphology of the microspheres was observed with scanning electron microscopy by stereological method. CP/DP is a critical factor in preparing microspheres and drug loading increased significantly with increasing CP/DP ratios accompanied by a remarkably decreased burst release. At CP/DP ratio 20, microspheres with a core-shell structure were formed and the internal porosity of the microspheres decreased with increasing CP/DP ratio. Increase in PLGA concentration led to increased particle sizes and decreased drug release rates. ABT627 release rate increased considerably with increasing PVA concentrations in the continuous phase from 0.1% to 0.5%. The maximum solubility of ABT627 in PLGA was approximately 30%, under which ABT627 was dispersed in PLGA matrix in a molecular state. Increase in initial drug loading had no significant influence on particle size, drug encapsulation efficiency, burst release and internal morphology. However, drug release rate decreased at higher drug loading. Independent of process parameters, ABT627 was slowly released from the PLGA microspheres over 30 days, by a combination of diffusion and polymer degradation. During the first 13 days, ABT627 was mainly released by the mechanism of diffusion demonstrated by the unchanged internal morphology. In contrast, a core-shell structure of the microspheres was observed after being incubated in the release medium for 17 days, independent of drug loading, implying that the ABT627/PLGA microspheres degraded by autocatalytic effect, starting from inside of the matrix. In conclusion, hydrophobic drug release from the PLGA microspheres is mainly dependent on the internal morphology and drug distribution state in the microspheres.  相似文献   

12.
Poly(lactide-co-glycolide) nanoparticles loaded with pilocarpine hydrochloride were prepared by the high-pressure emulsification-solvent evaporation method. The nanoparticles were produced using polyvinylalcohol (PVA), carbomer (Carbopol 980) or poloxamer (Lutrol F-68) as stabilizers during emulsification. The influence of pressure and number of cycles on the nanoparticle properties was investigated. For comparison, nanoparicles without high-pressure treatment of the emulsion were made. The nanoparticle size, drug loading and release properties depended strongly on the homogenization pressure and number of cycles applied. Nanoparticles obtained without high pressure homogenization showed larger size and high values of polydispersity index, especially when carbopol and poloxamer were used as emulsifiers. Drug loading and encapsulation efficiency of all samples also decreased with pressure. The low drug loading could be due to two reasons. First, the high pressure promoted drug diffusion out of protoparticles during emulsification either by size reduction or shear forces. Secondly, the characteristics of the outer water phase of the emulsion also influenced the nanoparticle drug loading. This was proven by the different drug loadings measured when nanoparticles were made with PVA, carbopol or poloxamer at equal pressures applied. The main factor influencing the release properties of nanoparticles was the pressure used during emulsification. Faster drug release was observed from nanoparticles obtained after high-pressure emulsification compared to those prepared without homogenization of the emulsion.  相似文献   

13.
Lactose/poloxamer dispersions were prepared by mixing under vacuum to achieve a de-aerated mix with good capsule filling properties and disperse phase uniformity at 70 degrees C. Satisfactory capsule filling of molten dispersions was achieved up to a limiting concentration of disperse phase, dependent on particle size distribution and continuous phase viscosity. Lactose/poloxamer dispersions exhibited thixotropic shear thinning behaviour with an abrupt increase in apparent viscosity above a limiting concentration of disperse phase. There was a good correlation between satisfactory filling of molten dispersions into capsules and apparent viscosity of the formulation, whereas, the pronounced increase in apparent viscosity resulted in unsatisfactory filling above a critical concentration of disperse phase. The rheological data was analysed in detail using empirical models and also used to identify capsule filling problems at extrudate shear rates for flow from hopper to pump (12 s(-1)) and from nozzle to capsule (340 s(-1)).  相似文献   

14.
Purpose The present study concerns the production and characterization of monooleine (MO) dispersions as drug delivery systems for indomethacin, taken as model anti-inflammatory drug. Methods Dispersions were produced by emulsification and homogenization of MO and poloxamer in water. Morphology and dimensional distribution of the disperse phase have been characterized by cryo-transmission electron microscopy and photon correlation spectroscopy, respectively. X-ray diffraction has been performed to determine the structural organization of the disperse phase. Sedimentation field flow fractionation (SdFFF) has been performed to investigate drug distribution in the dispersion. An in vitro diffusion study was conducted by Franz cell associated to stratum corneum epidermis membrane on cubosome dispersions viscosized by carbomer. In vivo studies based on skin reflectance spectrophotometry and tape stripping were performed to better investigate the performance of cubosome as indomethacin delivery system. Results Microscopy studies showed the coexistence of vesicles and cubosomes. X-ray diffraction revealed the presence of a bicontinuous cubic phase of spatial symmetry Im3m (Q229). SdFFF demonstrated that no free drug was present in the dispersion. Indomethacin incorporated in viscosized MO dispersions exhibited a lower flux with respect to the analogous formulation containing the free drug in the aqueous phase and to the control formulation based on carbomer gel. Reflectance spectroscopy demonstrated that indomethacin incorporated into MO dispersions can be released in a prolonged fashion. Tape-stripping experiments corroborated this finding. Conclusions MO dispersions can be proposed as nanoparticulate systems able to control the percutaneous absorption of indomethacin.  相似文献   

15.
A straightforward solvent wetting method was used to prepare felodipine solid dispersions in the presence of various carriers. Dichloromethane is not needed when HPMC solid dispersions were produced using the solvent wetting method. The amount of ethanol used to prepare solid dispersions did not have a significant effect on the dissolution rate of felodipine. The results of X-ray diffraction and thermal analysis indicated that the drug was in the amorphous state when PVP, HPMC, and poloxamer were used as carriers. The dissolution rates of felodipine in PVP, HPMC, or poloxamer solid dispersions were much faster than those for the corresponding physical mixtures. However, dissolution profiles were found to depend on the carrier used; the dissolution rate of felodipine increased slowly for solid dispersions prepared using HPMC, whereas rapid initial dissolution rates were observed for solid dispersions prepared using PVP or poloxamer. Increases in dissolution rates were partly dependent on the ratios of felodipine to carrier. No significant changes in crystal form were observed by X-ray diffraction or thermal analysis, and no significant changes in dissolution rate were observed when sorbitol and mannitol were used as carriers.  相似文献   

16.
In this study, transdermal etodolac-loaded cubosomes were developed in order to relieve patient pain and joints stiffness by providing stable etodolac concentration at the targeting sites through controlled drug delivery via the noninvasive skin route with more sustaining and less frequent dosing. Different ratios and percentages of poloxamer 407 and monoolein were used to formulate the cubosomes using emulsification and homogenization processes. The etodolac-loaded cubosomes showed particle size values ranging from 135.95 to 288.35?nm and zeta potential values ranging from ?18.40 to ?36.10?mV. All the cubosomes offered an encapsulation efficiency value of about 100% and showed drug loading capacity ranging from 1.28 to 6.09%. The in vitro drug release studies revealed a controlled drug release profile with a drug release rate up to 15.08%/h. Increasing poloxamer concentration in etodolac-loaded cubosomes resulted in nanoparticles with less particle size and faster drug release. The particles exhibited cubic and hexagonal shapes. The DSC and X-ray analysis demonstrated that the drug was encapsulated in the cubosomes bicontinuous structures in amorphous form. In addition, investigated cubosomes exhibited fast drug penetration through excited mice skin followed by slower drug penetration for up to 24?h. The pharmacokinetic study in human volunteers showed that the selected etodolac-loaded cubosomes enhanced the bioavailability of etodolac as compared to the oral capsules (266.11%) with evidence of longer half-life and higher MRT that reached 18.86 and 29.55?h, respectively. The etodolac-loaded cubosomes propose a promising system for treatment of arthritis simply through skin application.  相似文献   

17.
Topical 5% alpha lipoic acid (ALA) has shown efficacy in treatment of photo-damaged skin. The aim of this work was to evaluate the potential of poloxamer (P407) gel as a vehicle for the novel lipid base particulate system (cubosome dispersions) of ALA. Cubosome dispersions were formulated by two different approaches, emulsification of glyceryl monoolein (GMO) and poloxamer (P407) in water followed by ultrasonication, and the dilution method using a hydrotrope. Three different concentrations of GMO were used to formulate the cubosome dispersions using the first method, 5% (D1), 10% (D2) and 15% w/w (D3). In the second technique an isotropic liquid was produced by combining GMO with ethanol, and this isotropic liquid was then diluted with a P407 solution (D4). The dispersions were characterized by zeta potential, light scattering techniques, optical and transmission electron microscopy, encapsulation efficiency and in vitro drug release. Results showed that D4 was not a uniform dispersion and that D1, D2 and D3 were uniform dispersions, in which by increasing the GMO content in the dispersion, the size of the cubosomes decreased, zeta potential became more negative, encapsulation efficiency increased up to 86.48% and the drug release rate was slower. P407 gels were prepared using the cold method. Two concentrations of P407 gel were fabricated, 20 and 30% w/w. P407 gels were loaded with either ALA or dispersions containing ALA cubosomes. P407 gels were characterized by critical gelation temperature, rheological measurements and in vitro drug release studies. Results suggested that by increasing P407 concentration, the gelation temperature decreases and viscosity increases. Drug release in both cases was found to follow the Higuchi square root model. Gel loaded with ALA cubosomes provided a significantly lower release rate than the gel loaded with the un-encapsulated ALA. A double blinded placebo controlled clinical study was conducted, aiming to evaluate the efficacy as an anti-wrinkle agent and volunteer’s satisfaction upon application of topical 30% P407 gel loaded with ALA cubosomes. Results indicated reduction in facial lines, almost complete resolution of fine lines in the periorbital region and upper lip area and overall improvement in skin color and texture in most volunteers. There were no instances of irritation, peeling or other apparent adverse side effects.  相似文献   

18.
Two clinical trials were carried out in order to study adrenal suppression in 6 patients with psoriatic erythroderma and in 28 patients with psoriasis treated with topical glucocorticosteroids. Betamethasone-17-valerate (0.1%), betamethasone-17,21-dipropionate (0.05%) and budesonide (0.025%) ointments were studied in erythroderma; betamethasone-17,21-dipropionate and budesonide in psoriasis. The erythroderma study was an open, crossover experiment; the psoriasis study was a double-blind, group-comparative study. Adrenal suppression was measured as plasma cortisol concentrations with and without ACTH stimulation. The depressive activity on the HPA-axis in increasing order was budesonide, betamethasone-17-valerate and betamethasone-17,21-dipropionate. The differences, however, did not reach statistically significant levels.  相似文献   

19.
Solid lipid nanoparticles (SLN) show promise as a drug delivery system for skin administration. The solid state of the lipid particle enables efficient drug encapsulation and controlled drug release. The present study addresses the influence of lipid composition and drug substance lipid solubility on the in vitro release profile of corticosteroids from SLN for topical administration. Firstly, the effect of lipid composition on the lipid solubility and in vitro release of betamethasone-17-valerate (BMV) was determined by varying the lipid monoglyceride content and the chain length of the fatty acid moiety. Secondly, the effect of drug substance physicochemical properties was determined by studying five different corticosteroid derivatives with different lipophilicity. A high concentration of monoglyceride in SLN increased the amount of BMV released. The corticosteroid release rate depended on the drug substance lipophilicity and it was clear that the release profiles depended on drug partitioning to the aqueous phase as indicated by zero order kinetics. The results emphasize that the corticosteroid solubility in the lipid phase greatly influence drug distribution in the lipid particles and release properties. Thus knowledge of drug substance solubility and lipid polarity contributes to optimize SLN release properties.  相似文献   

20.
To develop a novel ibuprofen-loaded solid dispersion with enhanced bioavailability, various ibuprofen-loaded solid dispersions were prepared with water, HPMC and poloxamer. The effect of HPMC and poloxamer on aqueous solubility of ibuprofen was investigated. The dissolution and bioavailability of solid dispersion in rats were then evaluated compared to ibuprofen powder. When the amount of carrier increased with a decreased in HPMC/poloxamer ratio, the aqueous solubility of ibuprofen was elevated. The solid dispersion composed of ibuprofen/HPMC/poloxamer at the weight ratio of 10:3:2 improved the drug solubility approximately 4 fold. It gave significantly higher initial plasma concentration, AUC and Cmax of drug than did ibuprofen powder in rats. The solid dispersion improved the bioavailability of drug about 4-fold compared to ibuprofen powder. Thus, this ibuprofen-loaded solid dispersion with water, HPMC and poloxamer was a more effective oral dosage form for improving the bioavailability of poor water-soluble ibuprofen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号