首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Autism is a pervasive developmental disorder diagnosed in early childhood. Abnormalities of serotonergic neurotransmission have been reported in autism. Serotonin transporter (5-HTT), which modulates serotonin levels, is a major therapeutic target in autism. Therefore, factors that regulate 5-HTT expression might be implicated in autism. One candidate 5-HTT-regulatory protein is the presynaptic protein, syntaxin 1A (STX1A). We examined the association of STX1A with autism in a trio association study using DNA samples from Japanese trios with autistic probands. In TDT analysis, rs69510130 (p = 0.027) showed nominal associations with autism; modest haplotype association was also observed. We further compared STX1A mRNA expression between the autistic and control groups in the postmortem brain. In the anterior cingulate gyrus region, STX1A expression in the autism group was found to be significantly lower than that of the control group. Thus, we suggest a possible role of STX1A in the pathogenesis of autism.  相似文献   

2.
Autistic individuals display impaired social interactions and language, and restricted, stereotyped behaviors. Elevated levels of secreted amyloid precursor protein‐alpha (sAPPα), the product of α‐secretase cleavage of APP, are found in the plasma of some individuals with autism. The sAPPα protein is neurotrophic and neuroprotective and recently showed a correlation to glial differentiation in human neural stem cells (NSCs) via the IL‐6 pathway. Considering evidence of gliosis in postmortem autistic brains, we hypothesized that subsets of patients with autism would exhibit elevations in CNS sAPPα and mice generated to mimic this observation would display markers suggestive of gliosis and autism‐like behavior. Elevations in sAPPα levels were observed in brains of autistic patients compared to controls. Transgenic mice engineered to overexpress human sAPPα (TgsAPPα mice) displayed hypoactivity, impaired sociability, increased brain glial fibrillary acidic protein (GFAP) expression, and altered Notch1 and IL‐6 levels. NSCs isolated from TgsAPPα mice, and those derived from wild‐type mice treated with sAPPα, displayed suppressed β‐tubulin III and elevated GFAP expression. These results suggest that elevations in brain sAPPα levels are observed in subsets of individuals with autism and TgsAPPα mice display signs suggestive of gliosis and behavioral impairment.  相似文献   

3.
Few autistic brain samples are available for study, limiting investigations into molecular and histopathological abnormalities associated with this common disease. To facilitate distribution of samples, we have constructed a tissue array containing cerebral and cerebellar cores from 5 autistic children, 1 girl with Rett syndrome, and 5 age-matched controls. To demonstrate the utility of this resource, we examined phosphorylation of the S6 ribosomal protein, a signaling event regulated by the genes mutated in tuberous sclerosis and Cowden disease. We hypothesized that the molecular pathways altered in these inherited conditions associated with autism might be dysregulated in sporadic autistic cases as well. However, no consistent alterations in S6 phosphorylation were detected in autistic tissues compared to controls in the brain regions analyzed.  相似文献   

4.
Previous structural imaging studies of autistic individuals have identified gray matter abnormalities. It remains unclear, however, which abnormalities contribute to the etiology of autism and, among these abnormalities, which reflect genetic factors. Using voxel-based morphometry, we compared regional gray matter volume in 23 parents of autistic children to an age and sex-matched control sample. We identified relative local gray matter volume increases and decreases in the parent group that are consistent with previous research with autistic individuals. Further, differences were identified in regions that are functionally associated with social-cognitive and motor processes that are impaired in autism. This investigation constitutes the first whole-brain study of regional brain volume in the parents of autistic children, and suggests that a number of structural changes observed in autism may be familial.  相似文献   

5.
Increased brain size has been observed in individuals with autism with a wide range of cognitive functioning. The purpose of this investigation was to obtain measurements of the brain volume in a sample of nonmentally retarded autistic individuals. Magnetic resonance imaging scans from 16 nonmentally retarded individuals with autism and 19 male volunteer comparison subjects were obtained and the following structures were measured: third, fourth, and lateral ventricles and intracranial and cerebral volumes. Mean cerebral and third ventricle volumes in the autistic subjects were significantly greater than in the controls when adjusted for intracranial volume. No other significant results were found. Our finding of increased brain volume in autism is consistent with previous reports in the literature. Additional longitudinal neuroimaging and, more importantly, neuropathologic studies are warranted to provide a better understanding of the complexities underlying increased brain size in autism.  相似文献   

6.
The Abnormal Regulation of Gene Expression in Autistic Brain Tissue   总被引:1,自引:0,他引:1  
Autism is a pervasive developmental disorder of unknown etiology. It is likely caused by mutations in one or more genes. One approach to understanding the molecular changes that occur in autism is to measure gene expression in post-mortem brain samples from individuals diagnosed with autism. This may be accomplished with techniques such as cDNA microarrays or subtractive hybridization. In general, gene expression is regulated as a function of body region, developmental time, and physiological state. A premise of the approaches we describe is that gene expression is regulated in cells from autistic individuals as a consequence of the disease process. It may be useful to detect such changes in order to identify selective biological markers for autism. Additionally, the abnormal regulation of gene expression may reveal cellular pathways that have been disrupted, suggesting strategies for therapeutic intervention.  相似文献   

7.
There are conflicting reports on the relationship between cerebellar vermal lobule hypoplasia and autism. Using quantitative magnetic resonance image analysis, we measured the cerebellar vermis in 125 normal individuals with a broad age range and 102 patients with a variety of neurogenetic abnormalities. We conclude that hypoplasia of cerebellar vermal lobules VI and VII is a nonspecific finding that even occurs in several conditions without autistic behavior. This suggests that it is not a specific neuroanatomical marker for autism, nor is cerebellar dys- genesis likely to be solely responsible for clinical autistic behaviors.  相似文献   

8.
Monoamine oxidase activity in blood platelets from autistic children   总被引:1,自引:0,他引:1  
In order to evaluate the possible abnormality in monoamine oxidase (MAO) activity in early infantile autism, blood platelet samples were obtained from 20 autistic children, aged 2--12 years. MAO activity, measured fluorometrically using serotonin as substrate, was 5.24 +/- 1.65 (Mean +/- Standard Deviation) nM/MG protein/hour in these autistic children. This value was not significantly different from either that in 30 age-matched normal children or that in 39 nonautistic children with various psychiatric and neurological disorders, although autistic children had higher platelet serotonin concentration than these nonautistic individuals.  相似文献   

9.
In order to evaluate the possible abnormality in monoamine oxidase (MAO) activity in early infantile autism, blood platelet samples were obtained from 20 autistic children, aged 2–12 years. MAO activity, measured fluorometrically using serotonin as substrate, was 5.24 ± 1.65 (Mean ± Standard Deviation) nM/mg protein/hour in these autistic children. This value was not significantly different from either that in 30 age-matched normal children or that in 39 nonautistic children with various psychiatric and neurological disorders, although autistic children had higher platelet serotonin concentrations than these nonautistic individuals.  相似文献   

10.
The hypothesis of an immune dysfunction in autism spectrum disorders has previously been put forward without, however, compelling evidence of a direct relation to its etiology or pathogenesis. To further understand if autoimmunity could play a significant role in autism, we analyzed autoantibody repertoires to brain tissue extract in the plasma of 171 autism children, their parents, and 54 controls, by quantitative immunoblotting. Multiparametric analysis revealed significant differences between patients and controls, and showed that one single reactivity in Section 32 of the blot had the most power to discriminate between these samples. Family correlation coefficients and heritability estimates did not provide any evidence that this reactivity was genetically determined. While the molecular weight of the target protein suggested that it might be an isoform of Myelin Basic Protein (MBP), inhibition assays with human MBP argued against this hypothesis. The study evidences the widespread occurrence of autoreactivities to brain tissue in autism patients, which may represent the immune system's neuroprotective response to a previous brain injury occurred during neurodevelopment. The molecular identification of the target protein in Section 32 will contribute to the understanding of the role of immune responses against brain antigens in autistic patients.  相似文献   

11.
The prevalence of autistic disorder was analysed in 25 individuals with Möbius sequence, a disorder with brain‐stem dysfunction. The sample consisted of 18 males and seven females (20 participants were aged 2 to 22 years, and five were aged 1, 19 and 23 months, and 55 years old). Participants were recruited after a nationwide call and were part of a multidisciplinary study of individuals with Möbius sequence. They were given a meticulous neuropsychiatric examination including standardized autism diagnostic interviews. Ten individuals had an autistic spectrum disorder. Six of these met all diagnostic criteria for autism. In 23 individuals cognitive development could be assessed. Eight of those 23 patients had clear learning disability and six individuals were functioning in the normal but subaverage range. Autistic spectrum disorder and learning disability occurred in more than a third of the examined patients. Considering the hospital‐based nature of the sample, these findings may be overestimates. Nevertheless, awareness of this coexistence is important in the diagnosis and habilitation care of children with Möbius sequence. Moreover, the results provide further support for the notion of a subgroup of autistic spectrum disorders being caused by first trimester brain‐stem damage.  相似文献   

12.
13.
Autism is a neurodevelopmental disorder characterized by impaired communication and social interaction and may be accompanied by mental retardation and epilepsy. Its cause remains unknown, despite evidence that genetic, environmental, and immunological factors may play a role in its pathogenesis. To investigate whether immune-mediated mechanisms are involved in the pathogenesis of autism, we used immunocytochemistry, cytokine protein arrays, and enzyme-linked immunosorbent assays to study brain tissues and cerebrospinal fluid (CSF) from autistic patients and determined the magnitude of neuroglial and inflammatory reactions and their cytokine expression profiles. Brain tissues from cerebellum, midfrontal, and cingulate gyrus obtained at autopsy from 11 patients with autism were used for morphological studies. Fresh-frozen tissues available from seven patients and CSF from six living autistic patients were used for cytokine protein profiling. We demonstrate an active neuroinflammatory process in the cerebral cortex, white matter, and notably in cerebellum of autistic patients. Immunocytochemical studies showed marked activation of microglia and astroglia, and cytokine profiling indicated that macrophage chemoattractant protein (MCP)-1 and tumor growth factor-beta1, derived from neuroglia, were the most prevalent cytokines in brain tissues. CSF showed a unique proinflammatory profile of cytokines, including a marked increase in MCP-1. Our findings indicate that innate neuroimmune reactions play a pathogenic role in an undefined proportion of autistic patients, suggesting that future therapies might involve modifying neuroglial responses in the brain.  相似文献   

14.
Our ability to discriminate and recognize thousands of faces despite their similarity as visual patterns relies on adaptive, norm-based, coding mechanisms that are continuously updated by experience. Reduced adaptive coding of face identity has been proposed as a neurocognitive endophenotype for autism, because it is found in autism and in relatives of individuals with autism. Autistic traits can also extend continuously into the general population, raising the possibility that reduced adaptive coding of face identity may be more generally associated with autistic traits. In the present study, we investigated whether adaptive coding of face identity decreases as autistic traits increase in an undergraduate population. Adaptive coding was measured using face identity aftereffects, and autistic traits were measured using the Autism-Spectrum Quotient (AQ) and its subscales. We also measured face and car recognition ability to determine whether autistic traits are selectively related to face recognition difficulties. We found that men who scored higher on levels of autistic traits related to social interaction had reduced adaptive coding of face identity. This result is consistent with the idea that atypical adaptive face-coding mechanisms are an endophenotype for autism. Autistic traits were also linked with face-selective recognition difficulties in men. However, there were some unexpected sex differences. In women, autistic traits were linked positively, rather than negatively, with adaptive coding of identity, and were unrelated to face-selective recognition difficulties. These sex differences indicate that autistic traits can have different neurocognitive correlates in men and women and raise the intriguing possibility that endophenotypes of autism can differ in males and females.  相似文献   

15.
Protein kinase C enzymes play an important role in signal transduction, regulation of gene expression and control of cell division and differentiation. The fsI and betaII isoenzymes result from the alternative splicing of the PKCbeta gene (PRKCB1), previously found to be associated with autism. We performed a family-based association study in 229 simplex and 5 multiplex families, and a postmortem study of PRKCB1 gene expression in temporocortical gray matter (BA41/42) of 11 autistic patients and controls. PRKCB1 gene haplotypes are significantly associated with autism (P<0.05) and have the autistic endophenotype of enhanced oligopeptiduria (P<0.05). Temporocortical PRKCB1 gene expression was reduced on average by 35 and 31% for the PRKCB1-1 and PRKCB1-2 isoforms (P<0.01 and <0.05, respectively) according to qPCR. Protein amounts measured for the PKCbetaII isoform were similarly decreased by 35% (P=0.05). Decreased gene expression characterized patients carrying the 'normal' PRKCB1 alleles, whereas patients homozygous for the autism-associated alleles displayed mRNA levels comparable to those of controls. Whole genome expression analysis unveiled a partial disruption in the coordinated expression of PKCbeta-driven genes, including several cytokines. These results confirm the association between autism and PRKCB1 gene variants, point toward PKCbeta roles in altered epithelial permeability, demonstrate a significant downregulation of brain PRKCB1 gene expression in autism and suggest that it could represent a compensatory adjustment aimed at limiting an ongoing dysreactive immune process. Altogether, these data underscore potential PKCbeta roles in autism pathogenesis and spur interest in the identification and functional characterization of PRKCB1 gene variants conferring autism vulnerability.  相似文献   

16.
Abnormal Brain Lateralization in High-Functioning Autism   总被引:5,自引:0,他引:5  
Disturbances in lateral preference in autism are of interest because of their potential to shed light on brain maturational processes in this disorder. Forty-seven autistic individuals with a history of disordered early language development and 22 autistic individuals with normal early language acquisition were matched with 112 healthy individuals and compared on a standardized measure of lateral preference, the Edinburgh Handedness Inventory. Autistic individuals with a history of early language disturbance showed more atypical cerebral dominance than both healthy participants and autistic individuals with normal early language skills. The data indicated maturational disturbances in establishing lateral preference rather than increased rates of left handedness. Atypical establishment of cerebral dominance may be one cause of disordered language development in autism.  相似文献   

17.
BACKGROUND: The broad autism phenotype includes subclinical autistic characteristics found to have a higher prevalence in unaffected family members of individuals with autism. These characteristics primarily affect the social aspects of language, communication, and human interaction. The current research focuses on possible neurobehavioral characteristics associated with the broad autism phenotype. METHODS: We used a face-processing task associated with atypical patterns of gaze fixation and brain function in autism while collecting brain functional magnetic resonance imaging (fMRI) and eye tracking in unaffected siblings of individuals with autism. RESULTS: We found robust differences in gaze fixation and brain function in response to images of human faces in unaffected siblings compared with typically developing control individuals. The siblings' gaze fixations and brain activation patterns during the face processing task were similar to that of the autism group and showed decreased gaze fixation along with diminished fusiform activation compared with the control group. Furthermore, amygdala volume in the siblings was similar to the autism group and was significantly reduced compared with the control group. CONCLUSIONS: Together, these findings provide compelling evidence for differences in social/emotional processing and underlying neural circuitry in siblings of individuals with autism, supporting the notion of unique endophenotypes associated with the broad autism phenotype.  相似文献   

18.
In aging brain, degenerative as well as compensatory regenerative processes are believed to occur. The neural cell adhesion molecule NCAM is involved in developmental and regenerative processes in the brain. However, the role of NCAM in aging brain has not been characterized. In this study, the expression of NCAM mRNAs and polypeptides was investigated in aging rat brain. The 7.4 and 6.7 kb NCAM mRNAs were selectively downregulated during postnatal development, and the 5.2 and 2.9 kb NCAM mRNAs were upregulated. However, from postnatal day 40 to old age no change in NCAM mRNA classes was observed. The fraction of NCAM mRNA containing the VASE exon increased postnatally but remained stable during adult life. VASE, which is believed to modulate the binding capacity, seemed to be relatively more abundant in the 7.4 and 6.7 kb NCAM mRNAs, encoding transmembrane NCAM forms, than in the 5.2 and 2.9 kb NCAM mRNAs, coding for glycosyl phosphatidylinositol (GPI) linked NCAM. Conversely, insertion of exons a and AAG between exons 12 and 13, a region containing two fibronectin type III repeats, seemed to be more pronounced in 5.2 and 2.9 kb NCAM mRNAs than in the 7.4 and 6.7 kb mRNAs. During postnatal development an increase in the fraction of 6.7 kb NCAM mRNA containing the exons a and AAG was observed. However, during aging the fraction of NCAM mRNAs containing this exon combination seemed constant. At the protein level, NCAM-A was downregulated both during development and aging. No changes were observed during aging in the composition of soluble NCAM forms in the brain, cerebrospinal fluid or blood plasma. The amount of NCAM in rat brain decreased during postnatal development, but remained at a constant level from postnatal day 40 to old age.To conclude, several changes in NCAM expression occur during early postnatal development emphasizing the important role of this molecule in the morphogenetic processes. During aging, a significant selective downregulation of NCAM-A was observed indicating that in general only minor regenerative processes occur in the brain.  相似文献   

19.
Slower cortisol response during ACTH stimulation test in autistic children   总被引:1,自引:0,他引:1  
Autism is a hereditary, pervasive neurodevelopmental disorder that starts early in life. The main characteristics of the autism are impairment in social interactions, difficulties in adapting to novel environmental situations and improper reaction to stress. Since the Hypothalamic-Pituitary-Adrenocortical (HPA) axis plays a key role in the response to stress and because the previous research found abnormalities in HPA system, we conducted a study to test several elements of the HPA axis. Because autism is a heritable disorder, autistic subjects were studied as well as their parents. Cortisol circadian rhythm, cortisol daily secretion and its suppression response to dexamethasone had been measured from saliva or urine samples of the autistic children and their parents. Cortisol secretion response after ACTH stimulation was done with the autistic children only. The cortisol elevation after ACTH stimulation among the autistic individuals was slower (P = 0.017) than in healthy controls. No differences were found in salivary cortisol circadian rhythm or suppression response, as well as in cortisol daily excretion. These data indicate that, compared to healthy subjects, autistic individuals have fine differences in cortisol response to ACTH stimulation or possibly to other types of stress.  相似文献   

20.
The etiology of autism is complex, and in most cases the underlying pathologic mechanisms are unknown. Autism is a hetereogeneous disorder, diagnosed subjectively on the basis of a large number of criteria. Recent research has investigated genetics, in utero insults and brain function as well as neurochemical and immunological factors. On the basis of family and twin studies, there appears to be a genetic basis for a wide "autistic syndrome." About a quarter of cases of autism are associated with genetic disorders such as fragile X syndrome or with infectious diseases such as congenital rubella. Genetic studies have shown an association between autism markers of brain development such as 3 markers of the c-Harvey-ros oncogene and the homeobox gene EN2. In some cases, autism is associated with insults early in gestation, including thalidomide embryopathy. Autism may arise from abnormal central nervous system functioning, since most autistic patients have indications of brain dysfunction, and about half of them have abnormal electroencephalograms. Similarly, the pattern of evoked response potentials and conduction time is altered in autistic children. There is substantial evidence from neuroimaging studies that dysfunctions in the cerebellum and possibly the temporal lobe and association cortex occur in autistic symptoms. Neurochemical studies have investigated the role of serotonin, epinephrine and norepinephrine, since levels of these neurotransmitters are altered in autism, although other hypotheses implicate overactive brain opioid systems and changes in oxytocin neurotransmission. Autoimmunity may also play a role; antibodies against myelin basic protein are often found in children with autism, who also have increased eosinophil and basophil response to IgE-mediated reactions. In summary, the prevailing view is that autism is caused by a pathophysiologic process arising from the interaction of an early environmental insult and a genetic predisposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号