首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of major histocompatibility complex (MHC) class I and class II molecules in natural killer (NK) cell-mediated rejection of allogeneic, semi-syngeneic and MHC-matched bone marrow grafts was investigated. The use of β2-microglobulin (β2m) -/- and β2m +/- mice as bone marrow donors to MHC-mismatched recipients allowed an analysis of whether the presence of semi-syngeneic and allogeneic MHC class I gene products would be triggering, protective or neutral, in relation to NK cell-mediated rejection. Loss of β2m did not allow H-2b bone marrow cells to escape from NK cell-mediated rejection in allogeneic (BALB/c) or semi-allogeneic (H-2Dd transgenic C57BL/6) mice. On the contrary, it led to stronger rejection, as reflected by the inability of a larger bone marrow cell inoculum to overcome rejection by the H-2-mismatched recipients. In H-2-matched recipients, loss of β2m in the graft led to a switch from engraftment to rejection. At the recipient level, loss of β2m led to loss of the capability to reject H-2-matched β2m-deficient as well as allogeneic grafts. When MHC class II-deficient mice were used as donors, the response was the same as that against donors of normal MHC phenotype: allogeneic and semi-syngeneic grafts were rejected by NK cells, while syngeneic grafts were accepted. These data suggest a model in which allogeneic class I molecules on the target cell offer partial protection, while certain syngeneic class I molecules give full protection from NK cell-mediated rejection of bone marrow cells. There was no evidence for a role of MHC class II molecules in this system.  相似文献   

2.
Perivascular and peribronchiolar tissues are targets of the immune response during lung allograft rejection. Collagen type V (col[V]) is located within these tissues. Col(V) may be major histocompatibility complex (MHC)-like, and MHC-derived peptides have been used to induce immunologic tolerance and prevent rejection in allografts other than the lung. The current study tests the hypothesis that col(V) could be used to downregulate immune responses to lung alloantigen in vivo. We developed a murine model in which instillations of allogeneic bronchoalveolar lavage (BAL) cells (C57BL/6, I-a(b), H-2(b)) into lungs of BALB/c mice (I-a(d), H-2(d)) induce histology similar to grades 1 and 2 acute lung allograft rejection, apoptosis of airway epithelium and vascular endothelium, and upregulate tumor necrosis factor (TNF)-alpha production locally. The current study reports that instillations of col(V) into lungs before allogeneic BAL cells prevent development of rejection pathology and apoptosis, downregulate alloantigen-induced T-lymphocyte proliferation, and abrogate local TNF-alpha production. In addition, instillation of col(V)-pulsed autologous BAL cells into lungs of mice primed with allogeneic BAL cells perpetuates rejection pathology. Collectively, these data show that col(V) is a novel antigen involved in the rejection process, and suggest that col(V) could be used to modulate the rejection response to lung allografts.  相似文献   

3.
The contribution of direct and indirect alloresponses by CD4+ Th1 and Th2 cells in acute and chronic rejection of allogeneic transplants remains unclear. In the present study, we addressed this question using a transplant model in a single MHC class I‐disparate donor–recipient mouse combination. BALB/c‐dm2 (dm2) mutant mice do not express MHC class I Ld molecules and reject acutely Ld+ skin grafts from BALB/c mice. In contrast, BALB/c hearts placed in dm2 mice are permanently accepted in the absence of chronic allograft vasculopathy. In this model, CD4+ T cells are activated following recognition of a donor MHC class I determinant, Ld 61–80, presented by MHC Class II Ad molecules on donor and recipient APC. Pre‐transplantation of recipients with Ld 61–80 peptide emulsified in complete Freund's adjuvant induced a Th1 response, which accelerated the rejection of skin allografts, but it had no effect on cardiac transplants. In contrast, induction of a Th2 response to the same peptide abrogated the CD8+ cytotoxic T cells response and markedly delayed the rejection of skin allografts while it induced de novo chronic rejection of heart transplants. This shows that Th2 cells activated via indirect allorecognition can exert dual effects on acute and chronic rejection of allogeneic transplants.  相似文献   

4.
Summary: There are two distinct pathways by which T cells may MHC alloantigens. The direct pathway involves T-cell recognition of intact MHC molecules expressed by donor antigen-presenting cells (APCs). The second, or indirect, pathway describes T-cell recognition of peptides derived from the processing and presentation of allogeneic MHC molecules on self APCs. Recent data demonstrates that indirect recognition plays a central role in both acute and chronic rejection of human organ allografts. Our studies have shown that, at the onset of primary acute rejection, recipient T-cell responses lo donor HLA-DR alloantigens are limited to a single dominant determinant present on erne of the disparate alloantigens and restricted by one of the responder's HLA-DR molecules. In allograft recipients with recurring episodes of rejection, and/or at the onset of chronic rejection, recipient T-cell reactivity may spread lo other epitopes within the allogeneic MHC molecule as well as to other alloantigens expressed by graft tissue. Both quantitative and qualitative alterations in T-cell allopeptide reactivity are associated with increased risk of cellular and/or humoral rejection. These studies provide a basis for the design of new therapeutic strategies and for immunologic monitoring of transplant recipients.  相似文献   

5.
Major histocompatibility complex (MHC) class I molecules present peptides from endogenous proteins. However, in some cases class I-restricted peptides can also derive from exogenous antigens. This MHC class I exogenous presentation could be involved in minor histocompatibility antigen (mHAg)-disparate allograft rejection when donor alloantigens are not expressed in graft antigen-presenting cells (APC) that initiate the rejection mechanism. Here we addressed this question by using a skin graft experimental model where donors (H-2b or H-2d Tgβ-gal mice) expressed the mHAg like β-galactosidase (β-gal) in keratinocytes but not in Langerhans' cells (LC) which have an APC function. Rejection of Tgβ-gal skin by a β-gal-specific CD8 cytotoxic T lymphocyte (CTL) effector mechanism should require presentation by donor and/or recipient LC of MHC class I-restricted peptides of exogenous β-gal shed by keratinocytes. Indeed, our results showed that 1) H-2b Tgβ-gal skin was rejected by H-2bxs and H-2bxd recipients; 2) rejection was mediated by β-gal-specific CD8+ CTL effectors; and 3) H-2bxd mice having rejected H-2b Tgβ-gal skin generated β-gal-specific CTL restricted by H-2b and H-2d class I molecules and rejected subsequently grafted H-2d Tgβ-gal skin in an accelerated fashion, demonstrating that recipient LC have presented exogenous β-gal-derived MHC class I epitopes. These results lead to the conclusion that MHC class I exogenous presentation of donor mHAg can initiate allograft rejection.  相似文献   

6.
Recipient T cell recognition of donor major histocompatibility complex (MHC) alloantigens plays a central role in both acute and chronic rejection of human organ allografts. Two different pathways of T cell recognition of donor MHC alloantigens have been described. The direct pathway involves T cell recognition of intact MHC molecules expressed by donor antigen-presenting cells (APCs). The second, or indirect pathway, operates via T helper cell recognition of peptides derived from the processing and presentation of allogeneic MHC molecules on self-APCs. At the onset of primary acute rejection, recipient CD4+ T cell responses to donor HLA-DR alloantigens are limited to a single dominant determinant present on one of the disparate alloantigens and restricted by one of the responder's HLA-DR molecules. In allograft recipients with recurring episodes of rejection, and/or at the onset of chronic rejection, recipient T cell reactivity may spread to other epitopes within the allogeneic MHC molecule, as well as to other alloantigens expressed by graft tissue. Both quantitative and qualitative alterations in T cell allopeptide reactivity are associated with increased risk of cellular and/or humoral rejection. These studies provide a basis for the design of new therapeutic strategies and for immunologic monitoring of transplant recipients.  相似文献   

7.
GVHD is a major complication in allogeneic bone marrow transplantation (BMT). MHC class I mismatching increases GVHD, but in MHC-matched BMT minor histocompatibility antigens (mH) presented by MHC class I result in significant GVHD. To examine the modification of GVHD in the absence of cell surface MHC class I molecules, β2-microglobulin-deficient mice (β2m-/-) were used as allogeneic BMT recipients in MHC- and mH-mismatched transplants. β2m-/- mice accepted MHC class I-expressing BM grafts and developed significant GVHD. MHC (H-2)-mismatched recipients developed acute lethal GVHD. In contrast, animals transplanted across mH barriers developed indolent chronic disease that was eventually fatal. Engrafted splenic T cells in all β2m-/- recipients were predominantly CD3+ αβ TCR+ CD4+ cells (15–20% of all splenocytes). In contrast, CD8+ cells engrafted in very small numbers (1–5%) irrespective of the degree of MHC mismatching. T cells proliferated against recipient strain antigens and recognized recipient strain targets in cytolytic assays. Cytolysis was blocked by anti-MHC class II but not anti-CD8 or anti-MHC class I monoclonal antibodies (MoAbs). Cytolytic CD4+ T cells induced and maintained GVHD in mH-mismatched β2m-/- mice, supporting endogenous mH presentation solely by MHC class II. Conversely, haematopoietic β2m-/- cells were unable to engraft in normal MHC-matched recipients, presumably due to natural killer (NK)-mediated rejection of class I-negative cells. Donor-derived lymphokine-activated killer cells (LAK) were unable to overcome graft rejection (GR) and support engraftment.  相似文献   

8.
The influence of donor major histocompatibility complex (MHC) class I- or class II-deficiency on the initiation of first- and second-set rejection of mouse heart and liver allografts was examined. C3H (H-2k) mice received heterotopic cardiac or orthotopic liver grafts from unmodified B10 (H-2b), B6 (H-2b), b2m (H-2b; class I deficient) or AB0 (H-2b; class II deficient) donors. Organ survival was also investigated in C3H recipients that had been presensitized by a normal B10 skin graft 2–3 weeks before heart or liver transplantation. The absence of cell surface MHC class I or class II resulted in significant prolongation of primary cardiac allograft survival. Three of seven (43%) MHC class I-deficient, and two of five (40%) class II-deficient heart grafts were accepted indefinitely (survival time >100 days). Thus both MHC class I and class II molecules appear to be important for the elicitation of first-set rejection in the heart allograft model. All liver allografts survived >100 days in normal recipients. In C3H recipients that had been presensitized by a B10 skin graft, however, both heart and liver grafts from AB0 (class II deficient) donors underwent accelerated rejection (median survival time [MST] 3 and 4 days, respectively). In contrast, liver grafts from class I-deficient mice (b2m) were still accepted indefinitely by B10 skin-presensitized C3H recipients, whereas class I-deficient hearts survived significantly longer than those from class II-deficient or normal donors. These data demonstrate that the expression of donor MHC class I, and not class II is crucial in initiating second-set organ allograft rejection. In vitro monitoring revealed that at the time of organ transplant, both splenocytes and serum of the skin-presensitized animals displayed high cytotoxicity against AB0 (class II-deficient) but not against b2m (class I-deficient) targets.  相似文献   

9.
After transplantation, recipient T cells can recognize donor antigens either by interacting with MHC class II on donor bone marrow‐derived cells (direct allorecognition), or by recognizing allogeneic peptides bound to self‐MHC class II molecules on recipient antigen presenting cells (indirect allorecognition). The activation of pro‐inflammatory T cells via either of these pathways leads to allograft rejection, so the suppression of both of these pathways is needed to achieve transplantation tolerance. A study in this issue of the European Journal of Immunology [Eur. J. Immunol. 2013. 43: 734–746] shows that allogeneic dendritic cells (DCs) modified to either lack expression of CD80/86 or over‐express indoleamine 2,3‐dioxygenase (IDO) are able to inhibit direct and/or indirect alloresponses in vitro and in vivo in mice. Notably, both allorecognition pathways were suppressed by the coexpression of self‐ and allo‐MHC molecules on semi‐allogeneic DCs. This Commentary discusses the challenges and potential of using genetically‐modified DCs to suppress alloreactivity in the context of transplant tolerance.  相似文献   

10.
Previously, we have shown that the intravenous (i.v.) injection of allogeneic lymphocytes across an H-2 class I-mutant disparity leads to specific skin allograft tolerance caused by irradiation-sensitive donor T cells, which function as veto cells. In the present study, we show that the i.v. injection of H-2 class II-incompatible spleen cells also results in specific skin allograft tolerance. However, tolerance induction depends on the presence of irradiation-resistant non-T cells in the donor cell inoculum. Thus, different mechanisms operate in tolerance induction across an H-2 class I vs. H-2 class II mismatch. I.v. injection of allogeneic spleen cells across an H-2 class I plus class II disparity does not result in skin allograft tolerance. Finally, our data show that transfusion-induced suppression of the delayed-type hypersensitivity response against alloantigens does not correlate with skin allograft tolerance induced by i.v. injected allogeneic lymphocytes. In conclusion, the type of H-2 mismatch between transfusion donor and recipient not only determines the occurrence of allograft tolerance but also the mechanism leading to tolerization.  相似文献   

11.
The indirect alloimmune response seems to be restricted to a few dominant major histocompatibility complex (MHC)-derived peptides responsible for T-cell activation in allograft rejection. The molecular mechanisms of indirect T-cell activation have been studied using peptide analogues derived from the dominant allopeptide in vitro, whereas the in vivo effects of peptide analogues have not been well characterized yet. In the present study, we generated allochimeric peptide analogues by replacing the three allogeneic amino acids 5L, 9L, and 10T in the sequence of the dominant MHC class I allopeptide P1. These allochimeric peptide analogues were used to define the allogeneic amino acids critical for the MHC binding and TCR recognition. We found that position 5 (5L) of the dominant allopeptide acts as an MHC-binding residue, while the other two allogeneic positions, 9 and 10, are important for the T-cell receptor (TCR) recognition. A peptide containing the MHC-binding residue 5L, as the only different amino acid between donor (RT1.A(u)) and recipient (RT1.A(l)) sequences, did not induce proliferation of lymph node cells primed with the dominant peptide and prevented dominant peptide-induced acceleration of allograft rejection. Identification of MHC and TCR contact residues should facilitate the development of antigen-specific therapies to inhibit or regulate the indirect alloimmune response.  相似文献   

12.
Current interpretation based on analytical in vitro works that actions of Ia antigens and accessory cells such as macrophages and dendritic cells are crucial for inducing cytotoxic T cell responses to class I major histocompatibility complex (MHC) alloantigens has been challenged by experiments performed in a newly developed system handling in vivo cytotoxic T cell immunity. We first characterized the transplantation immunity for second-set rejection of ascitic tumor allografts as principally induced by allogeneic stimulator cells via direct pathway, and as exclusively mediated by class I MHC alloantigen-specific in vivo cytotoxic T cell activity. By comparison of activities of limiting effective doses (10(4)-10(5) cells per mouse) of various stimulator cells in this defined system, we could demonstrate that genetic disparity at the D region of H-2 to the recipient is just enough for inducing the immunity, and presence of allogeneic or syngeneic Ia antigens in addition to H-2D alloantigens on stimulator cells does not give any premium effect. Further study revealed that allogeneic peritoneal cells rich in macrophages or glass-adherent spleen cells enriched for dendritic cells are not stronger stimulators than allogeneic adherent cell-depleted spleen cells and semi-allogeneic thymocytes. These results fit with the alternative concept that the physiological pathway inducing in vivo cytotoxic T cell immunity for graft rejection entirely depends on class I MHC antigens on live lymphocytes as self-supported stimulators, and does not crucially involve additional stimulator activities of Ia antigens and special accessory cell types, which must be in vivo concerned with induction of other types of transplantation immunity.  相似文献   

13.
In the rat, autoimmune myocarditis can be produced by the infusion of activated myosin peptide specific, CD4(+), class II restricted, effector T cells. Whether antigen presenting cells (APCs), which interact with these effector T cells in the heart, are a fixed population of cells (resident dendritic, macrophage, or endothelial cells), or a dynamic bone marrow derived population has not yet been demonstrated in vivo. To study this question, bone marrow chimeras were generated using inbred Brown Norway (BN) rats, which are resistant to autoimmune myocarditis, and transplanting them after lethal irradiation with (LewisxBN) F1 bone marrow. BN rats differ at both MHC loci from the susceptible inbred Lewis rats. Two months after bone marrow transplantation, chimeric animals received Lewis T cells specific for a myocarditogenic peptide antigen. To characterize the cardiac APCs, immunohistochemistry using a battery of antibodies including Lewis-specific and broadly reactive antibodies for both MHC class I and class II, was performed on chimeric hearts, with and without infused Lewis T cells, and non-transplanted BN control hearts.All chimeric rats infused with allogeneic (Lewis), anti-cardiac myosin peptide effector T cells displayed the lesions of myocarditis. Myocarditis was not present in non-transplanted BN controls given either Lewis or F1 derived myocarditogenic T cells, nor in chimeric animals which did not receive myocarditogenic T cells, thus excluding graft vs host disease as the explanation for the inflammation in chimeric hearts with myocarditis. Marrow derived cells expressing both Lewis class I and class II MHC molecules were demonstrated on perivascular cells in the myocardium of all chimeric animals, and on infiltrating cells in chimeric animals with myocarditis. Cells expressing Lewis-specific MHC antigens were not detected in the non-transplanted BN controls. Furthermore, immunohistochemistry using broadly reactive antibodies demonstrated MHC class II on perivascular cells with a dendritic morphology in all hearts but not on endothelial cells or cardiac myocytes. These results support the hypothesis that in vivo, cardiac APCs which result in MHC class II restricted, T cell induced myocarditis are a dynamic bone marrow derived population and not a fixed population.In order to address the potential requirement of MHC class I for the initiation of autoimmune myocarditis, myocarditogenic T cells derived from either Lewis or DA(RP) rats were infused into a member of the other strain. These strains share common MHC class II genes but differ at the MHC class I loci. Myocarditis identical to that produced in the syngeneic animal was successfully transferred by the MHC class I mismatched T cells, but only after the recipient animal's native immune system was mildly suppressed. These results further support the primary role for professional antigen presentation via MHC class II restriction to the effector T cells at the initiation of autoimmune myocarditis in the heart.Together, these experiments confirm that activated effector T cells, in order to produce myocarditis, require MHC class II compatible APCs in the heart, that these APCs are bone marrow derived, and will endogenously take up and present local antigens in the target organ after bone marrow reconstitution.  相似文献   

14.
Summary: Natural killer (NK) cells of inbred mice reject allogeneic bone-marrow cells, and NK cells of F1 hybrid mice can reject parental bone-marrow cells (hybrid resistance). In some cases these patterns of rejection can be mimicked in vitro by utilizing IL-2 cultured NK effector cells and allogeneic or parental T-lymphoblasts as target cells. Lysis of allogeneic parental targets in vitro can be explained on the basis of the missing self hypothesis. Subsets of NK cells that bear non-overlapping MHC class I inhibitory receptors belonging to the Ly49 family lyse allogeneic targets because they do not express self class I molectiles of the NK cell donor. Parental strain targets are lysed because they do not express all of the self class I antigens of the Fl hybrid, and hence fail to deliver inhibitory signals to all subsets of Fl NK cells. The expression of Ly49 receptors on NK cells is regulated by liost MHC to ensure maximal sensitivity to alterations in self class I molecules and to prevent autoreactivity. In many instances, however, the rejection of allogeneic bone marrow cells in vivo cannot be readily explained by the missing self hypothesis. In these instances, it appears that rejection is initiated by class 1 MHC receptors on NK ceils Out recognize allogeneic class I molecules as non-self, and activate rather than inhibit NK cell function.  相似文献   

15.
Summary:  Although the optimal donor for allogeneic hematopoietic stem cell transplantation (HSCT) is a human leukocyte antigen-matched sibling, 75% of patients do not have a match, and alternatives are matched unrelated volunteers, unrelated umbilical cord blood units, and full-haplotype-mismatched family members. To cure leukemia, allogeneic HSCT relies on donor T cells in the allograft, which promote engraftment, eradicate malignant cells, and reconstitute immunity. Here, we focus on the open issues of rejection, graft-versus-host disease (GVHD), and infections and the benefits of natural killer (NK) cell alloreactivity and its underlying mechanisms. Donor-versus-recipient NK cell alloreactivity derives from a mismatch between inhibitory receptors for self-major histocompatibility complex (MHC) class I molecules on donor NK clones and the MHC class I ligands on recipient cells. These NK clones sense the missing expression of the self-MHC class I allele on the allogeneic targets and mediate alloreactions. HSCT from 'NK alloreactive' donors controls acute myeloid relapse without causing GVHD. We review the translation of NK cell recognition of missing self into the clinical practice of allogeneic hematopoietic transplantation and discuss how it has opened innovative perspectives in the cure of leukemia.  相似文献   

16.
The recognition of major histocompatibility complex (MHC) allopeptides by recipient MHC class II-restricted CD4(+) T cells via indirect pathway is a prerequisite for the generation of an immune response to the allograft. We tested 13-mer to 24-mer peptides from the MHC class I molecule for their possible immunogenicity in a fully MHC-mismatched rat strain combination. Our results confirm the hierarchical distribution of the immunogenicity of donor MHC class I peptides in the T cell alloactivation via indirect pathway. In addition, we show that allopeptide-induced immune response is critical for acute rejection of heart allografts. Among the seven allopeptides tested, peptide P1 was identified as immunodominant; it induced the greatest T cell proliferation and cytokine production in vitro as well as a significant reduction in allograft survival time. The TCR repertoire of T cells involved in the in vitro and in vivo responses induced by the dominant allopeptide P1 was found to be limited to the Vbeta10 and Vbeta 19 gene families. The identification of dominant allopeptides should greatly facilitate characterization of the specific T cell population responsible for allograft rejection and may be used to modulate the alloimmune response through antigen-specific therapy.  相似文献   

17.
The presentation of MHC peptides by recipient and donor antigen presenting cells is an essential element in allorecognition and allograft rejection. MHC proteins contains two sets of determinants: the dominant determinants that are efficiently processed and presented to T cells, and the cryptic determinants that are not presented sufficiently enough to induce T-cell responses in vivo. In transplanted mice, initial T-cell response to MHC peptides is consistently limited to a single or a few immunodominant determinants on donor MHC molecule. However, in this article we show that under appropriate circumstances the hierarchy of determinants on MHC molecules can be disrupted. First, we observed that γIFN can trigger de novo presentation of cryptic self-MHC peptides by spleen cells. Moreover, we showed that allotransplantation is associated with induction of T-cell responses to formerly cryptic determinants on both syngeneic and allogeneic MHC molecules. Our results suggest that cross-reactivity and inflammation are responsible for the initiation of these auto- and alloimmune responses after transplantation.  相似文献   

18.
T lymphocyte responses to the MHC of an evolutionarily distant species are known to be weak compared with responses against allogeneic MHC products within a species. This fact was used to examine the regions of human MHC class II molecules required for the stimulation of strong primary immune responses against MHC alloantigens. A panel of mouse DAP.3 transfectants expressing the products of wild-type and recombinant DR1/H-2Ek MHC class II genes paired to either DR alpha or H-2E alpha genes was generated, and tested as stimulator cells for purified human T cells. A strong proliferative response to DAP.3 transfectants expressing allogeneic HLA-DR molecules was seen. In contrast, weak or absent responses were recorded against DAP.3 cells expressing H-2E molecules. Substitution of the DR1 beta chain with H-2E beta k led to a dramatic loss of recognition; alpha chain substitution had a less marked effect. Furthermore, replacement of the beta 2 domain of DR1 with H-2E sequence caused 90% inhibition, whereas introduction of the beta 2 domain of DR1 into H-2Ek led to a 10-fold increase in T cell response. These results are most readily explained if the beta 2 domain contributes to the interaction site for the CD4 molecule. Substitution of either half of the beta 1 domain led to a marked loss of response. This was more impressive following substitution of the TCR-contacting alpha-helical region of the domain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
We have shown that tacrolimus (TAC)-induced liver allograft acceptance is associated with migration and persistence of donor B cells and dendritic cells (DC). To clarify whether these MHC class II+ leukocytes have favorable roles in inducing tolerance, we analyzed recipient T cell reactions after allogeneic B or DC infusion. LEW rat B cells localized exclusively in BN host B cell follicles without any direct contact with host T cells. While few donor DC migrated to T cell areas and marginal zones, they were captured by host APC, suggesting that allogeneic MHC class II+ cells may induce immune reactions via the indirect pathway. Although DC-infused non-immunosuppressed recipients showed enhanced ex vivo anti-donor responses, persistent in vitro donor-specific hyporeactivity was seen equally with donor DC or B cell infusion under TAC. The results indicate that donor MHC class II+ APC are capable of regulating recipient immune reactions under TAC. Possible involvement of the indirect pathway of allorecognition is discussed.  相似文献   

20.
Early immune responses are important in shaping long-term outcomes of human lung transplants. To examine the role of early immune responses in lung rejection and acceptance, we developed a method to retransplant mouse lungs. Retransplantation into T-cell-deficient hosts showed that for lungs and hearts alloimmune responses occurring within 72 h of transplantation are reversible. In contrast to hearts, a 72-h period of immunosuppression with costimulation blockade in primary allogeneic recipients suffices to prevent rejection of lungs upon retransplantation into untreated allogeneic hosts. Long-term lung acceptance is associated with induction of bronchus-associated lymphoid tissue, where Foxp3+ cells accumulate and recipient T cells interact with CD11c+ dendritic cells. Acceptance of retransplanted lung allografts is abrogated by treatment of immunosuppressed primary recipients with anti-CD25 antibodies. Thus, events contributing to lung transplant acceptance are established early in the graft and induction of bronchus-associated lymphoid tissue can be associated with an immune quiescent state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号