首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work introduces an EGSnrc-based Monte Carlo (MC) beamlet does distribution matrix into a direct aperture optimization (DAO) algorithm for IMRT inverse planning. The technique is referred to as Monte Carlo-direct aperture optimization (MC-DAO). The goal is to assess if the combination of accurate Monte Carlo tissue inhomogeneity modeling and DAO inverse planning will improve the dose accuracy and treatment efficiency for treatment planning. Several authors have shown that the presence of small fields and/or inhomogeneous materials in IMRT treatment fields can cause dose calculation errors for algorithms that are unable to accurately model electronic disequilibrium. This issue may also affect the IMRT optimization process because the dose calculation algorithm may not properly model difficult geometries such as targets close to low-density regions (lung, air etc.). A clinical linear accelerator head is simulated using BEAMnrc (NRC, Canada). A novel in-house algorithm subdivides the resulting phase space into 2.5 X 5.0 mm2 beamlets. Each beamlet is projected onto a patient-specific phantom. The beamlet dose contribution to each voxel in a structure-of-interest is calculated using DOSXYZnrc. The multileaf collimator (MLC) leaf positions are linked to the location of the beamlet does distributions. The MLC shapes are optimized using direct aperture optimization (DAO). A final Monte Carlo calculation with MLC modeling is used to compute the final dose distribution. Monte Carlo simulation can generate accurate beamlet dose distributions for traditionally difficult-to-calculate geometries, particularly for small fields crossing regions of tissue inhomogeneity. The introduction of DAO results in an additional improvement by increasing the treatment delivery efficiency. For the examples presented in this paper the reduction in the total number of monitor units to deliver is approximately 33% compared to fluence-based optimization methods.  相似文献   

2.
Bedford JL  Webb S 《Medical physics》2006,33(4):944-958
Previous studies have shown that, by optimizing segment shapes and weights directly, without explicitly optimizing fluence profiles, effective IMRT plans can be generated with fewer segments. This study proposes a method of direct-aperture optimization with aperture shape constraints, which is designed to provide segmental IMRT plans using a minimum of simple, regular segments. The method uses a cubic function to create smoothly curving multileaf collimator shapes. Constraints on segment dimension and equivalent square are applied, and each segment can be constrained to lie within the previous one, for easy generation of fluence profiles with a single maximum. To simply optimize the segment shapes and reject any shapes which violate the constraints is too inefficient, so an innovative method of feedback optimization is used to ensure in advance that viable aperture shapes are generated. The algorithm is demonstrated using a simple cylindrical phantom consisting of a hemi-annular planning target volume and a central cylindrical organ-at-risk. A simple IMRT rectum case is presented, where segments are used to replace a wedge. More complex cases of prostate and seminal vesicles and prostate and pelvic nodes are also shown. The algorithm produces effective plans in each case with three to five segments per beam. For the simple plans, the constraint that each segment should be contained within the previous one adds additional simplicity to the plan, for a small reduction in plan quality. This study confirms that direct-aperture optimization gives efficient solutions to the segmental IMRT inverse problem and provides a method for generating simple apertures. By using such a method, the workload of IMRT verification may be reduced and simplified, as verification of fluence profiles from individual beams may be eliminated.  相似文献   

3.
Using direct aperture optimization, we have developed an inverse planning approach that is capable of producing efficient intensity modulated radiotherapy (IMRT) treatment plans that can be delivered without a multileaf collimator. This "jaws-only" approach to IMRT uses a series of rectangular field shapes to achieve a high degree of intensity modulation from each beam direction. Direct aperture optimization is used to directly optimize the jaw positions and the relative weights assigned to each aperture. Because the constraints imposed by the jaws are incorporated into the optimization, the need for leaf sequencing is eliminated. Results are shown for five patient cases covering three treatment sites: pancreas, breast, and prostate. For these cases, between 15 and 20 jaws-only apertures were required per beam direction in order to obtain conformal IMRT treatment plans. Each plan was delivered to a phantom, and absolute and relative dose measurements were recorded. The typical treatment time to deliver these plans was 18 min. The jaws-only approach provides an additional IMRT delivery option for clinics without a multileaf collimator.  相似文献   

4.
We have studied the application of direct aperture optimization (DAO) as an inverse planning tool for breast IMRT. Additionally, we have analysed the impact of respiratory motion on the quality of the delivered dose distribution. From this analysis, we have developed guidelines for balancing the desire for a high-quality optimized plan with the need to create a plan that will not degrade significantly in the presence of respiratory motion. For a DAO optimized breast IMRT plan, the tangential fields incorporate a flash field to cover the range of respiratory motion. The inverse planning algorithm then optimizes the shapes and weights of additional segments that are delivered in combination with the open fields. IMRT plans were generated using DAO with the relative weights of the open segments varied from 0% to 95%. To assess the impact of breathing motion, the dose distribution for the optimized IMRT plan was recalculated with the isocentre sampled from a predefined distribution in a Monte Carlo convolution/superposition dose engine with the breast simulated as a rigid object. The motion amplitudes applied in this study ranged from 0.5 to 2.0 cm. For a range of weighting levels assigned to the open field, comparisons were made between the static plans and the plans recalculated with motion. For the static plans, we found that uniform dose distributions could be generated with relative weights for the open segments equal to and below 80% and unacceptable levels of underdosage were observed with the weights larger than 80%. When simulated breathing motion was incorporated into the dose calculation, we observed a loss in dose uniformity as the weight of the open field was decreased to below 65%. More quantitatively, for each 1% decrease in the weight, the per cent volume of the target covered by at least 95% of the prescribed dose decreased by approximately 0.10% and 0.16% for motion amplitudes equal to 1.5 cm and 2.0 cm, respectively. When taking into account the motion effects, the most uniform and conformal dose distributions were achieved when the open segment weights were in the range of 65-80%. Within this range, high-quality IMRT plans were produced for each case. The study demonstrates that DAO with tangential fields provides a robust and efficient technique for breast IMRT planning and delivery when the open segment weight is selected between 65% and 80%.  相似文献   

5.
In this note a technique is described for direct aperture optimization of components deliverable by a variable aperture collimator (VAC) for intensity-modulated radiation therapy. The first key result found was that, provided a large number of VAC components were selected for optimization, the resulting fluence profiles and the dose distribution were quite similar, but not identical, to the outcome of a direct inverse-planning algorithm in which the fluence of each bixel was individually adjusted during the iteration process. A second key feature is the ability to be able to construct highly modulated beams from a quite limited number of such components. It was shown that, when the number fell from 300 to 30, a recognizable conformal dose distribution was still obtainable although poorer. The conclusion was that the technique has the flexibility to cope with optimizing any specified number of VAC components and to observe the effect on the dose distribution of reducing this number.  相似文献   

6.
For the step-and-shoot intensity-modulated radiation therapy (IMRT) technique, the combination of high dose rate, multiple beam segments and low dose per segment can lead to significant differences between the planned dose and the dose delivered to the patient. In this technique, a dose delivery inaccuracy known as the 'overshoot' effect is caused by the dose servo control system. This typically occurs in the first and last beam segments and causes an over- and underdose, respectively. Some dose positional error in the segment sequence is also possible there. Commercial ionization chambers (RK-type) and radiographic Kodak films were used for the measurements. The reported results were obtained using the Pinnacle(3)-V6.2 treatment planning system and a Varian Clinac 21 EX linear accelerator equipped with a 120-leaf Millennium MLC. The dose inaccuracy measurements were based on the comparison of the dose and profiles for reference fields and fields irradiated with the step-and-shoot technique. For our linear accelerators, an 'overshoot' effect ranging from 0.1 to 0.6 MU was found, corresponding to a dose rate from 100 to 600 MU min(-1), respectively. For segments with off-axis distances from 0 to 5.5 cm with >3.5 MU per segment and all dose rates, a MLC leaf-position error of <1 mm was measured. For segments with an off-axis distance of 9.5 cm, a positional error >2 mm was measured for 600 MU min(-1) and 1 MU per segment. The purpose of this study was to find a correction method for segmental dose errors caused by the 'overshoot' effect when small monitor unit and high dose rate are used. To better represent the fluctuation of the segment doses in the beam, a dose ratio between reference and step-and-shoot irradiated fields was defined. A method for the correction of segment dose inaccuracies and a quality assurance programme for the 'overshoot' effect were developed. The ordering of the biggest segment shape in the segment sequence was studied for ten randomly selected prostate patients planned for IMRT. The results of this work can be used to improve the agreement between the planned and delivered doses for IMRT.  相似文献   

7.
This paper is the first investigation of using direct aperture optimization (DAO) for online adaptive radiation therapy (ART). A geometrical model representing the anatomy of a typical prostate case was created. To simulate interfractional deformations, four different anatomical deformations were created by systematically deforming the original anatomy by various amounts (0.25, 0.50, 0.75, and 1.00 cm). We describe a series of techniques where the original treatment plan was adapted in order to correct for the deterioration of dose distribution quality caused by the anatomical deformations. We found that the average time needed to adapt the original plan to arrive at a clinically acceptable plan is roughly half of the time needed for a complete plan regeneration, for all four anatomical deformations. Furthermore, through modification of the DAO algorithm the optimization search space was reduced and the plan adaptation was significantly accelerated. For the first anatomical deformation (0.25 cm), the plan adaptation was six times more efficient than the complete plan regeneration. For the 0.50 and 0.75 cm deformations, the optimization efficiency was increased by a factor of roughly 3 compared to the complete plan regeneration. However, for the anatomical deformation of 1.00 cm, the reduction of the optimization search space during plan adaptation did not result in any efficiency improvement over the original (nonmodified) plan adaptation. The anatomical deformation of 1.00 cm demonstrates the limit of this approach. We propose an innovative approach to online ART in which the plan adaptation and radiation delivery are merged together and performed concurrently-adaptive radiation delivery (ARD). A fundamental advantage of ARD is the fact that radiation delivery can start almost immediately after image acquisition and evaluation. Most of the original plan adaptation is done during the radiation delivery, so the time spent adapting the original plan does not increase the overall time the patient has to spend on the treatment couch. As a consequence, the effective time allotted for plan adaptation is drastically reduced. For the 0.25, 0.5, and 0.75 cm anatomical deformations, the treatment time was increased by only 2, 4, and 6 s, respectively, as compared to no plan adaptation. For the anatomical deformation of 1.0 cm the time increase was substantially larger. The anatomical deformation of 1.0 cm represents an extreme case, which is rarely observed for the prostate, and again demonstrates the limit of this approach. ARD shows great potential for an online adaptive method with minimal extension of treatment time.  相似文献   

8.
9.
An examination of the number of required apertures for step-and-shoot IMRT   总被引:1,自引:0,他引:1  
We have examined the degree to which step-and-shoot IMRT treatment plans can be simplified (using a small number of apertures) without sacrificing the dosimetric quality of the plans. A key element of this study was the use of direct aperture optimization (DAO), an inverse planning technique where all of the multi-leaf collimator constraints are incorporated into the optimization. For seven cases (1 phantom, 1 prostate, 3 head-and-neck and 2 lung), DAO was used to perform a series of optimizations where the number of apertures per beam direction varied from 1 to 15. In this work, we attempt to provide general guidelines for how many apertures per beam direction are sufficient for various clinical cases using DAO. Analysis of the optimized treatment plans reveals that for most cases, only modest improvements in the objective function and the corresponding DVHs are seen beyond 5 apertures per beam direction. However, for more complex cases, some dosimetric gain can be achieved by increasing the number of apertures per beam direction beyond 5. Even in these cases, however, only modest improvements are observed beyond 9 apertures per beam direction. In our clinical experience, 38 out of the first 40 patients treated using IMRT plans produced using DAO were treated with 9 or fewer apertures per beam direction. The results indicate that many step-and-shoot IMRT treatment plans delivered today are more complex than necessary and can be simplified without sacrificing plan quality.  相似文献   

10.
Luan S  Wang C  Chen DZ  Hu XS  Naqvi SA  Yu CX  Lee CL 《Medical physics》2004,31(4):695-707
We present a new MLC segmentation algorithm/software for step-and-shoot IMRT delivery. Our aim in this work is to shorten the treatment time by minimizing the number of segments. Our new segmentation algorithm, called SLS (an abbreviation for static leaf sequencing), is based on graph algorithmic techniques in computer science. It takes advantage of the geometry of intensity maps. In our SLS approach, intensity maps are viewed as three-dimensional (3-D) "mountains" made of unit-sized "cubes." Such a 3-D "mountain" is first partitioned into special-structured submountains using a new mixed partitioning scheme. Then the optimal leaf sequences for each submountain are computed by either a shortest-path algorithm or a maximum-flow algorithm based on graph models. The computations of SLS take only a few minutes. Our comparison studies of SLS with CORVUS (both the 4.0 and 5.0 versions) and with the Xia and Verhey segmentation methods on Elekta Linac systems showed substantial improvements. For instance, for a pancreatic case, SLS used only one-fifth of the number of segments required by CORVUS 4.0 to create the same intensity maps, and the SLS sequences took only 25 min to deliver on an Elekta SL 20 Linac system in contrast to the 72 min for the CORVUS 4.0 sequences (a three-fold improvement). To verify the accuracy of our new leaf sequences, we conducted film and ion-chamber measurements on phantom. The results showed that both the intensity distributions as well as dose distributions of the SLS delivery match well with those of CORVUS delivery. SLS can also be extended to other types of Linac systems.  相似文献   

11.
At an intermediate stage of radiation treatment planning for IMRT, most commercial treatment planning systems for IMRT generate intensity maps that describe the grid of beamlet intensities for each beam angle. Intensity map segmentation of the matrix of individual beamlet intensities into a set of MLC apertures and corresponding intensities is then required in order to produce an actual radiation delivery plan for clinical use. Mathematically, this is a very difficult combinatorial optimization problem, especially when mechanical limitations of the MLC lead to many constraints on aperture shape, and setup times for apertures make the number of apertures an important factor in overall treatment time. We have developed, implemented and tested on clinical cases a metaheuristic (that is, a method that provides a framework to guide the repeated application of another heuristic) that efficiently generates very high-quality (low aperture number) segmentations. Our computational results demonstrate that the number of beam apertures and monitor units in the treatment plans resulting from our approach is significantly smaller than the corresponding values for treatment plans generated by the heuristics embedded in a widely use commercial system. We also contrast the excellent results of our fast and robust metaheuristic with results from an 'exact' method, branch-and-cut, which attempts to construct optimal solutions, but, within clinically acceptable time limits, generally fails to produce good solutions, especially for intensity maps with more than five intensity levels. Finally, we show that in no instance is there a clinically significant change of quality associated with our more efficient plans.  相似文献   

12.
We consider the problem of intensity-modulated radiation therapy (IMRT) treatment planning using direct aperture optimization. While this problem has been relatively well studied in recent years, most approaches employ a heuristic approach to the generation of apertures. In contrast, we use an exact approach that explicitly formulates the fluence map optimization (FMO) problem as a convex optimization problem in terms of all multileaf collimator (MLC) deliverable apertures and their associated intensities. However, the number of deliverable apertures, and therefore the number of decision variables and constraints in the new problem formulation, is typically enormous. To overcome this, we use an iterative approach that employs a subproblem whose optimal solution either provides a suitable aperture to add to a given pool of allowable apertures or concludes that the current solution is optimal. We are able to handle standard consecutiveness, interdigitation and connectedness constraints that may be imposed by the particular MLC system used, as well as jaws-only delivery. Our approach has the additional advantage that it can explicitly account for transmission of dose through the part of an aperture that is blocked by the MLC system, yielding a more precise assessment of the treatment plan than what is possible using a traditional beamlet-based FMO problem. Finally, we develop and test two stopping rules that can be used to identify treatment plans of high clinical quality that are deliverable very efficiently. Tests on clinical head-and-neck cancer cases showed the efficacy of our approach, yielding treatment plans comparable in quality to plans obtained by the traditional method with a reduction of more than 75% in the number of apertures and a reduction of more than 50% in beam-on time, with only a modest increase in computational effort. The results also show that delivery efficiency is very insensitive to the addition of traditional MLC constraints; however, jaws-only treatment requires about a doubling in beam-on time and number of apertures used. Finally, we showed the importance of accounting for transmission effects when assessing or, preferably, optimizing treatment plan quality.  相似文献   

13.
We present an investigation into the use of a fast video-based electronic portal-imaging device (EPID) to study intensity modulated radiation therapy (IMRT) delivery. The aim of this study is to test the feasibility of using an EPID system to independently measure the orchestration of collimator leaf motion and beam fluence; simultaneously measuring both the delivered field fluence and shape as it exits the accelerator head during IMRT delivery. A fast EPID that consists of a terbium-doped gadolinium oxysulphide (GdO2S:Tb) scintillator coupled with an inexpensive commercial 30 frames-per-second (FPS) CCD-video recorder (16.7 ms shutter time) was employed for imaging IMRT delivery. The measurements were performed on a Varian 2100 C/D linear accelerator equipped with a 120-leaf multileaf-collimator (MLC). A characterization of the EPID was performed that included measurements of spatial resolution, linac pulse-rate dependence, linear output response, signal uniformity, and imaging artifacts. The average pixel intensity for fields imaged with the EPID was found to be linear in the delivered monitor units of static non-IMRT fields between 3x3 and 15x15 cm2. A systematic increase of the average pixel intensity was observed with increasing field size, leading to a maximum variation of 8%. Deliveries of a clinical step-and-shoot mode leaf sequence were imaged at 600 MU/min. Measurements from this IMRT delivery were compared with experimentally validated MLC controller log files and were found to agree to within 5%. An analysis of the EPID image data allowed identification of three types of errors: (1) 5 out of 35 segments were undelivered; (2) redistributing all of the delivered segment MUs; and (3) leaf movement during segment delivery. Measurements with the EPID at lower dose rates showed poor agreement with log files due to an aliasing artifact. The study was extended to use a high-speed camera (1-1000 FPS and 10 micros shutter time) with our EPID to image the same delivery to demonstrate the feasibility of imaging without aliasing artifacts. High-speed imaging was shown to be a promising direction toward validating IMRT deliveries with reasonable image resolution and noise.  相似文献   

14.
The purpose of this work was to determine a segmentation protocol for the treatment of localized non-small-cell lung cancer (NSCLC) with intensity-modulated radiotherapy (IMRT) that is as effective as possible while practically simple and hence robust to known practical inaccuracies. This study focused on the stratification of continuous profiles into a discrete number of intensity levels. The selection of the segmentation parameters for the delivery of the fluence profiles using multiple static fields has been considered. Five-field equispaced IMRT treatment plans of five patients with NSCLC were selected. The study comprised nine treatment plans for each patient, starting from a conformal plan, optimizing it for IMRT and then segmenting it utilizing different numbers of segments in each case and optimizing for segment weights separately. A conformal plan, optimized for beam directions, collimator and wedge angles, was also used for comparison with the IMRT plans, so as to consider the best coplanar conformal case. A dose objective for the PTV and the organs-at-risk plus a constraint for the spinal cord were set for all inverse plans. All stages were compared with the aid of dose-volume histograms, dose distributions at the plane of the isocenter, intensity maps for key beams and plots of PTV homogeneity and overall conformality versus complexity. The unsegmented IMRT plans gave the best results but cannot be realized in practice with an MLC. They were best approximated by plans that needed 106-167 segments to deliver, but did not deteriorate significantly when approximated by plans which required 26-40 segments in total. All segmented IMRT plans gave a better lung sparing than the conformal plans, indicating that the deterioration of IMRT plans following segmentation is not equivalent to that of unmodulated, conformal plans. However, optimized conformal plans have the potential to approach the lung sparing achieved by segmented IMRT plans. Among the IMRT situations examined, five-field treatment plans for the lung, utilizing a maximum of 40 segments in total, have proven to give a good approximation of the IMRT plans with continuous modulation.  相似文献   

15.
The decomposition of a fluence matrix in step-and-shoot mode for intensity-modulated radiation therapy (IMRT) usually yields a large number of segments (NS) and, consequently, treatment time is substantially increased. In this paper, we propose a method for reducing the original NS in multileaf collimator segmentations to a user-specified quantity. The proposed method clusters original segments into the same number of groups as desired NS, and computes for each group an equivalent segment and an associated weight. In order to avoid important changes in dose-volume histograms (DVHs), equivalent segments and weights are computed taking into account the original fluence matrix and preserving the highest fluence zones, thus staying as close as possible to the original planned radiation. The method is applicable to unidirectional segmentations, where there is no backtracking of leaves, since this property facilitates the grouping of segments. The experiments showed that treatment times can be considerably reduced, while maintaining similar DVHs and dosimetric indexes. Furthermore, the algorithm achieved an excellent reduction/dose-quality ratio since the final NS was close to that reported for direct step-and-shoot solutions.  相似文献   

16.
Luan S  Wang C  Chen DZ  Hu XS  Naqvi SA  Wu X  Yu CX 《Medical physics》2006,33(5):1199-1212
We present an improved multileaf collimator (MLC) segmentation algorithm, denoted by SLS(NOTG) (static leaf sequencing with no tongue-and-groove error), for step-and-shoot intensity-modulated radiation therapy (IMRT) delivery. SLS(NOTG) is an improvement over the MLC segmentation algorithm called SLS that was developed by Luan et al. [Med. Phys. 31(4), 695-707 (2004)], which did not consider tongue-and-groove error corrections. The aims of SLS(NOTG) are (1) shortening the treatment times of IMRT plans by minimizing their numbers of segments and (2) minimizing the tongue-and-groove errors of the computed IMRT plans. The input to SLS(NOTG) is intensity maps (IMs) produced by current planning systems, and its output is (modified) optimized leaf sequences without tongue-and-groove error. Like the previous SLS algorithm [Luan et al., Med. Phys. 31(4), 695-707 (2004)], SLS(NOTG) is also based on graph algorithmic techniques in computer science. It models the MLC segmentation problem as a weighted minimum-cost path problem, where the weight of the path is the number of segments and the cost of the path is the amount of tongue-and-groove error. Our comparisons of SLS(NOTG) with CORVUS indicated that for the same intensity maps, the numbers of segments computed by SLS(NOTG) are up to 50% less than those by CORVUS 5.0 on the Elekta LINAC system. Our clinical verifications have shown that the dose distributions of the SLS(NOTG) plans do not have tongue-and-groove error and match those of the corresponding CORVUS plans, thus confirming the correctness of SLS(NOTG). Comparing with existing segmentation methods, SLS(NOTG) also has two additional advantages: (1) SLS(NOTG) can compute leaf sequences whose tongue-and-groove error is minimized subject to a constraint on the maximum allowed number of segments, which may be desirable in clinical situations where a treatment with the complete correction of tongue-and-groove error takes too much time, and (2) SLS(NOTG) can be used to minimize a more general type of error called the tongue-or-groove error.  相似文献   

17.
Optimization problems in IMRT inverse planning are inherently multicriterial since they involve multiple planning goals for targets and their neighbouring critical tissue structures. Clinical decisions are generally required, based on tradeoffs among these goals. Since the tradeoffs cannot be quantitatively determined prior to optimization, the decision-making process is usually indirect and iterative, requiring many repetitive optimizations. This situation becomes even more challenging for cases with a large number of planning goals. To address this challenge, a multicriteria optimization strategy called lexicographic ordering (LO) has been implemented and evaluated for IMRT planning. The LO approach is a hierarchical method in which the planning goals are categorized into different priority levels and a sequence of sub-optimization problems is solved in order of priority. This prioritization concept is demonstrated using two clinical cases (a simple prostate case and a relatively complex head and neck case). In addition, a unique feature of LO in a decision support role is discussed. We demonstrate that a comprehensive list of planning goals (e.g., approximately 23 for the head and neck case) can be optimized using only a few priority levels. Tradeoffs between different levels have been successfully prohibited using the LO method, making the large size problem representations simpler and more manageable. Optimization time needed for each level was practical, ranging from approximately 26 s to approximately 217 s. Using prioritization, the LO approach mimics the mental process often used by physicians as they make decisions handling the various conflicting planning goals. This method produces encouraging results for difficult IMRT planning cases in a highly intuitive manner.  相似文献   

18.
19.
Intensity-modulated radiotherapy (IMRT) plans are often complex, increasing the potential for dosimetric errors and prolonged treatment times. The purpose of this study is to evaluate the effectiveness and efficiency of one-step optimization as compared to conventional two-step optimization in inverse IMRT planning and to investigate the tradeoff between the number of segments and IMRT plan quality. Ten IMRT cases were studied, including five prostate patients and five nasopharynx patients. For each patient, seven research plans were generated with the same beam angles and objectives as the clinical plan using a commercial treatment planning system with the ability to perform one-step and two-step optimization. Two-step plans had the number of intensity levels set to 10, 5 and 3. One-step plans had the maximum number of segments set at 80, 60, 40 and 20 for prostate, and 100, 65, 50 and 25 for nasopharynx. When compared with two-step plans with similar numbers of segments, one-step plans resulted in lower MUs, higher homogeneity and conformal indices, and lower doses to sensitive structures. One-step optimization is an effective method for simplifying IMRT plans, resulting in a significant reduction in the number of segments for step and shoot delivery without significantly sacrificing plan quality.  相似文献   

20.
A method which combines the accuracy of Monte Carlo dose calculation with a finite size pencil-beam based intensity modulation optimization is presented. The pencil-beam algorithm is employed to compute the fluence element updates for a converging sequence of Monte Carlo dose distributions. The combination is shown to improve results over the pencil-beam based optimization in a lung tumour case and a head and neck case. Inhomogeneity effects like a broader penumbra and dose build-up regions can be compensated for by intensity modulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号