首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Brain stimulation》2020,13(3):774-782
BackgroundBehavioral alterations, like mechanical and thermal hyperalgesia, and modulation of biomarkers in the peripheral and central nervous systems (CNS) are markers of chronic pain. Transcranial direct current stimulation (tDCS) with exercise is a promising therapy for pain due to its neuromodulatory capacity.ObjectiveTo assess the individual effects of tDCS, exercise, and the two combined on the nociceptive response and BDNF, IL-1β, and IL-4 levels in the CNS structures of rats in a chronic pain model.MethodsFor 8 consecutive days after the establishment of chronic neuropathic pain by inducing a constriction injury to the sciatic nerve (CCI), the rats received tDCS, exercise, or both treatments combined (20 min/day). The hyperalgesic response was assessed by von Frey and hot plate tests at baseline, 7, and 14 days after CCI surgery and immediately, 24 h, and 7 days after the end of treatment. The BDNF, IL-1β, and IL-4 levels were assessed in the cerebral cortex, brainstem, and spinal cord by enzyme-linked immunosorbent assay at 48 h and 7 days after the end of treatment.ResultsThe CCI model triggered marked mechanical and thermal hyperalgesia. However, bimodal tDCS, aerobic exercise, and the two combined relieved nociceptive behavior for up to 7 days following treatment completion.ConclusionsBimodal tDCS, aerobic exercise, or both treatments combined promoted analgesic effects for neuropathic pain. Such effects were reflected by cytokine modulation throughout the spinal cord-brainstem-cerebral cortex axis.  相似文献   

2.
Objective. This experiment was performed to test the hypothesis that intrathecally pumped saline, but not artificial cerebrospinal fluid (CSF), would be analgesic in a rat model of neuropathic pain. Materials and Methods. Surgery for the chronic constriction injury (CCI) model of neuropathic pain and intrathecal catheter placement were performed on the rats, baseline pain testing and pump implantation were performed 7 days later, and pain tests were repeated on days 1, 4, 7, and 14 after pump implantation. Results. Intrathecally pumped saline and artificial CSF were analgesic for cold allodynia (p < 0.05), and intrathecally pumped saline but not CSF for heat nociception in the affected paw (p < 0.005) compared to rats with unattached subcutaneous pumps. No analgesia was observed on tests of spontaneous pain or pressure hyperalgesia (p > 0.1). Conclusions. Intrathecally pumped saline and artificial CSF have analgesic effects on some neuropathic and normal, nociceptive pain signs in CCI rats.  相似文献   

3.
The use of botulinum neurotoxin type A (BoNT/A) against pain, with emphasis for its possible use in alleviating chronic pain, still represents an outstanding challenge for experimental research. In this study, we examined the effects of BoNT/A on morphine-induced tolerance during chronic morphine treatment in neuropathic CD1 mice subjected to sciatic nerve lesion according to the Chronic Constriction Injury (CCI) model of neuropathic pain. We measured the effects of BoNT/A on CCI-induced allodynia and hyperalgesia and on the expression of glial fibrillary acidic protein (GFAP, marker of astrocytes), complement receptor 3/cluster of differentiation 11b (CD11b, marker of microglia), and neuronal nuclei (NeuN) at the spinal cord level. We also analyzed the colocalized expression of GFAP, CD11b and NeuN with phosphorylated p-38 mitogen-activated protein kinase and with μ-opioid receptor (MOR). A single intraplantar injection of BoNT/A (15 pg/paw) into the injured hindpaw, the day before the beginning of chronic morphine treatment (9 days of twice daily injections of 40 mg/kg morphine), was able to counteract allodynia and enhancement of astrocytes expression/activation induced by CCI. In addition, BoNT/A increased the analgesic effect of morphine and countered morphine-induced tolerance during chronic morphine treatment. These effects were accompanied, in neurons, by re-expression of MORs that had been reduced by repeated morphine administration. The combinatory effects of BoNT/A and morphine could have relevant therapeutic implications for sufferers of chronic pain who could benefit of pain relief reducing tolerance due to repeated treatment with opiates.  相似文献   

4.
Abstract

Aim of the study: The current study was aimed to investigate the neuropathic pain attenuating mechanism of pregabalin using chronic constriction injury (CCI) model in rats.

Material and Methods: The sciatic nerve was ligated by placing four loose ligatures around it to induce neuropathic pain. The pain development in terms of cold allodynia, mechanical hyperalgesia, and heat hyperalgesia was assessed on the 7th and 14th day after surgery, using acetone drop, pinprick, and hot plate tests. On the 14th day after the injury, pain parameters were assessed 30?minutes after administration of pregabalin (30?mg/kg) and sodium nitroprusside (5?mg/kg) in CCI-subjected rats.

Results: CCI led to induction of neuropathic pain, which was more prominent on 14th day in comparison to 7th day. A single administration of pregabalin and sodium nitroprusside on 14th day, markedly reduced pain parameters and increased serum nitrite levels. Pretreatment with L-NAME abolished neuropathic pain attenuating effects of pregabalin suggesting that pregabalin may increase the levels of nitric oxide to mitigate neuropathic pain. Pretreatment with naloxone significantly abrogated pain attenuating effects of pregabalin and sodium nitroprusside in CCI-subjected rats suggesting that pregabalin and nitric oxide-mediated analgesic action are mediated through release of endogenous opioids. Moreover, naloxone failed to modulate pregabalin-induced increase in nitric oxide levels suggesting that the opioid system does not control the nitric oxide levels, and opioids may be downstream modulators of nitric oxide.

Conclusion: Pregabalin may increase the release of nitric oxide, which may increase the release of endogenous opioids to attenuate neuropathic pain in CCI subjected rats.  相似文献   

5.
BackgroundNeuropathic pain, or pain after nerve injury, is a disorder with a significant reliance on the signalling of cytokines such as IL-1β. However, quantifying the cytokine release repeatedly over time in vivo is technically challenging.AimTo evaluate if changes in IL-1β are correlated with the presentation of mechanical allodynia over time, by repeatedly quantifying intrathecal IL-1β concentrations following chronic constriction injury of the sciatic nerve in rats. Also, to establish any possible correlation between biochemical spinal marker expression and the in vivo quantification of IL-1β. Finally, to assess the expression of the mature IL-1β in lumbar spinal cord samples.MethodThe Chronic Constriction Injury model (CCI) was used to initiate nerve injury in male Sprague Dawley rats and the generation of behavioural mechanical allodynia was quantified. Using an indwelling intrathecal catheter, a stainless steel (SS) wire biosensing device was repeatedly introduced to quantify intrathecal IL-1β concentrations at three timepoints of 0, 7, and 14 days post CCI. Fixed spinal cord samples (L4-L5), collected on day 14, were imaged for the expression of glial fibrillary acidic protein (GFAP, astrocytes) and ionized calcium binding adaptor molecule 1 (IBA1, microglia). Snap frozen spinal cord tissues (L4-L5) were also processed for western blot analysis.ResultsUsing the novel SS based biosensing device we established that CCI caused a significant increase in intrathecal IL-1β concentrations from day 0 to day 7 (p = 0.001) and to day 14 (p < 0.0001), while the sham group did not show any significant increase. We also further showed that the degree of mechanical allodynia correlated positively with the increase in the intrathecal concentration of IL-1β in the active CCI animals (p = 0.0007). While there was a significant increase in the ipsilateral GFAP expression in injured animals compared to sham animals (p = 0.03), we did not find any significant correlation between in vivo IL-1β concentration on days 7 and 14 and the area of dorsal horn GFAP or IBA1 positive structures on day 14. The result of western blot analysis of whole lumbar spinal cord revealed that there was no significant change (p = 0.7579) in IL-1β expression on day 14 in the CCI group compared to the sham group.ConclusionFor the first time we have established that the SS based immunosensing platform technology can repeatedly sample the intrathecal space for bioactive peptides, such as IL-1β. Using this novel approach, we have been able to establish the correlation of the intrathecal concentration of IL-1β with the extent of mechanical allodynia, providing a molecular biomarker of the degree of the exaggerated pain state.  相似文献   

6.
7.
Mu opioid receptors and analgesia at the site of a peripheral nerve injury   总被引:6,自引:0,他引:6  
Opioid ligands may exert antinociception through receptors expressed on peripheral afferent axons. Whether local opioid receptors might attenuate neuropathic pain is uncertain. In this work, we examined the function and expression of local mu opioid receptors (MORs) associated with the chronic constriction injury (CCI) model of sciatic neuropathic pain in rats. Low-dose morphine or its carrier were percutaneously superfused over the CCI site with the injector blinded to the identity of the injectate. Morphine, but not its carrier, and not equimolar systemic doses of morphine reversed thermal hyperalgesia in a dose-related, naloxone-sensitive fashion. Moreover, analgesia was conferred at both 48 hours and 14 days after CCI, times associated with very different stages of nerve repair. Equimolar local DAGO ([D-Ala2, N-Me-Phe4, Gly5-(ol)] enkephalin), a selective MOR ligand, provided similar analgesia. Local morphine also attenuated mechanical allodynia. MOR protein was expressed in axonal endbulbs of Cajal just proximal to the injury site, in aberrantly regenerating small axons in the epineurial sheath around the CCI site and in residual small axons distal to the CCI lesion. Sensory neurons ipsilateral to CCI had an increase in the proportion of neurons expressing MOR. We suggest that local MOR expressed in axons may be exploited to modulate some forms of neuropathic pain.  相似文献   

8.
The pathogenesis of neuropathic pain is complex. P2X2/3 receptor plays a crucial role in nociception transduction of chronic pain. VEGF inhibitors are effective for pain relief. The present study investigated the effects of VEGF and VEGF receptor-2 (VEGFR2) on the pain transmission in neuropathic pain states that mediated by P2X2/3 receptor in primary sensory neurons. Chronic constriction injury (CCI) model was used as neuropathic pain model. Sprague-Dawley rats had been randomly divided into sham group, CCI group and CCI rats treated with anti-rVEGF antibody group. Mechanical withdrawal threshold and thermal withdrawal latency were measured. Expressions of VEGF, VEGFR2 and P2X2/3 in L4-6 dorsal root ganglia (DRG) were detected by immunohistochemistry, RT-PCR and western blot analysis. The mechanical withdrawal threshold and thermal withdrawal latency in CCI group were lower than those in sham group and CCI rats treated with anti-rVEGF antibody group (p < 0.05), while VEGF, VEGFR2 and P2X2/3 receptors’ expressions of L4-6 DRG in CCI group were higher than those in the other two groups (p < 0.05). The expressions of VEGF, VEGFR2 and P2X2/3 in L4-6 DRG of CCI rats treated with anti-rVEGF antibody group were decreased compared with those in CCI group (p < 0.05). The results show that VEGF and VEGFR2 are involved in the pathogenesis of neuropathic pain and VEGF primarily potentiates pain responses mediated by P2X2/3 receptor on DRG neurons. Anti-rVEGF treatment in CCI rats may alleviate chronic neuropathic pain by decreasing the expressions of VEGFR2 and P2X2/3 receptors on DRG neurons to inhibit the transmission of neuropathic pain signaling.  相似文献   

9.
In the present study, we investigated the anti-inflammatory mechanisms by which gabapentin enhances morphine anti-nociceptive effect in neuropathic pain in rats and the interaction between the anti-nociceptive effects of gabapentin on morphine and the interleukin (IL)-10-heme-oxygenase (HO)-1 signal pathway in a rat model of neuropathic pain. The neuropathic pain model was induced via a left L5/6 spinal nerve ligation (SNL) in rats. The anti-nociceptive effect of gabapentin and IL-10 on morphine was examined over a 7-day period, and the effects of the anti-IL-10 and HO-1 inhibitor zinc protoporphyrin (ZnPP) on gabapentin/morphine co-injection were assessed. Drug administration was given over 7 days, and on day 8, both anti-inflammatory cytokine IL-10, a stress-induced protein HO-1 and pro-inflammatory cytokines IL-1β, IL-6 and TNF-α were measured. Gabapentin attenuated morphine tolerance over 7 days of co-administration, and reduced the expression of pro-inflammatory cytokines but increased IL-10 and HO-1 expression. The effect of gabapentin on morphine was partially blocked using the anti-IL-10 antibody or the HO-1 inhibitor zinc protoporphyrin. Our findings indicated that the anti-nociceptive effects of gabapentin on morphine might be caused by activation of the IL-10-HO-1 signalling pathway, which resulted in the inhibition of the expression of pro-inflammatory cytokines in neuropathic pain in the rat spinal cord.  相似文献   

10.
Opioids, such as morphine, induce potent analgesia and are the gold standard for the treatment of acute pain. However, opioids also activate glia, inducing pro-inflammatory cytokine and chemokine production, which counter-regulates the analgesic properties of classical opioid receptor activation. It is not known how long these adverse pro-inflammatory effects last or whether prior morphine could sensitize the central nervous system (CNS) such that responses to a subsequent injury/inflammation would be exacerbated. Here, multiple models of inflammation or injury were induced two days after morphine (5 mg/kg b.i.d., five days , s.c.) to test the generality of morphine sensitization of later pain. Prior repeated morphine potentiated the duration of allodynia from peripheral inflammatory challenges (complete Freund’s adjuvant (CFA) into either hind paw skin or masseter muscle) and from peripheral neuropathy (mild chronic constriction injury (CCI) of the sciatic nerve). Spinal cord and trigeminal nucleus caudalis mRNAs were analyzed to identify whether repeated morphine was sufficient to alter CNS expression of pro-inflammatory response genes, measured two days after cessation of treatment. Prior morphine elevated IL-1β mRNA at both sites, MHC-II and TLR4 in the trigeminal nucleus caudalis but not spinal cord, but not glial activation markers at either site. Finally, in order to identify whether morphine sensitized pro-inflammatory cytokine release, spinal cord was isolated two days after morphine dosing for five days , and slices stimulated ex vivo with lipopolysaccharide. The morphine significantly induced TNFα protein release. Therefore, repeated morphine is able to sensitize subsequent CNS responses to immune challenges.  相似文献   

11.
We have previously demonstrated that glial inhibitors reduce the development of allodynia and hyperalgesia, potentiating the effect of a single morphine dose in a neuropathic pain model. This study explores the effects of two glial activation inhibitors, minocycline and pentoxifylline, on the development of tolerance to morphine in naive and chronic constriction injury (CCI)-exposed mice. Administration of morphine to naive (20 mg/kg; i.p.) and CCI-exposed mice (40 mg/kg; i.p.) twice daily resulted in tolerance to its anti-nociceptive effect after 6 days. Injections of morphine were combined with minocycline (30 mg/kg, i.p.) or pentoxifylline (20 mg/kg, i.p.) administered as two preemptive doses before first morphine administration in naive or pre-injury in CCI-exposed mice, and repeated twice daily 30 min before each morphine administration. With treatment, development of morphine tolerance was delayed by 5 days (from 6 to 11 days), as measured by the tail-flick test in naive and by tail-flick, von Frey, and cold plate tests in CCI-exposed mice. Western blot analysis of CD11b/c and GFAP protein demonstrated that minocycline and pentoxifylline, at doses delaying development of tolerance to morphine analgesia, significantly diminished the morphine-induced increase in CD11b/c protein level. We found that repeated systemic administration of glial inhibitors significantly delays development of morphine tolerance by attenuating the level of this microglial marker under normal and neuropathic pain conditions. Our results support the idea that targeting microglial activation during morphine therapy/treatment is a novel and clinically promising method for enhancing morphine's analgesic effects, especially in neuropathic pain.  相似文献   

12.
The role of mitogen-activated protein kinase (MAPK) family has been well defined in neuropathic pain. Ras and c-Raf constitute an important part of MAP kinase family as Ras/Raf/MEK/ERK2 signaling cascade. The present study was designed to investigate the analgesic potential of farnesyl thiosalicylic acid, a novel Ras inhibitor, and GW 5074, a selective c-Raf1 inhibitor, in chronic constriction-induced injury (CCI)-induced peripheral neuropathic pain. Neuropathic pain was induced by placing four loose ligatures around the sciatic nerve. The development of pain was assessed on 14th day in terms of cold allodynia; mechanical hyperalgesia and mechanical allodynia by performing acetone test, pinprick and Von Frey tests, respectively. Farnesyl thiosalicylic acid (2.5, 5 and 10 μg) and GW 5074 (1, 2 and 4 μg) were injected intrathecally on 14th day following nerve ligature to assess their analgesic potential in CCI model. Nerve ligature-induced CCI produced significant neuropathic pain manifestations in terms of cold and mechanical allodynia, and mechanical hyperalgesia. Single intrathecal administration of farnesyl thiosalicylic acid (5 and 10 μg) as well as GW 5074 (2 and 4 μg) significantly attenuated CCI-induced hyperalgesia and allodynia. The analgesic effects of farnesyl thiosalicylic acid and GW 5074 in CCI model suggests that pharmacological inhibition of Ras and c-Raf-1 signaling may be potentially useful for managing neuropathic pain.  相似文献   

13.
The aim of the present study was to develop a new experimental pain model by adapting the chronic constriction injury (CCI) model of the sciatic nerve to the exclusively sensory saphenous nerve in rats. Animals were divided into naïve, sham, and two experimental groups, in which two or four 4-0 chromic gut ligatures were loosely ligated around the saphenous nerve. Then, behavioral signs of neuropathic pain were observed for 8 weeks. In rats with four ligatures, prominent mechanical allodynia and thermal hyperalgesia developed; these behavioral signs were not prominent in rats with two ligatures. Pharmacological analysis was made in rats with four loose ligations; morphine and WIN 55,212-2, a cannabinoid agonist, reversed all of the modalities tested, whereas gabapentin only suppressed mechanical allodynia and amitriptyline only reduced mechanical hyperalgesia. Our data establish a rat model of saphenous CCI with significant allodynia and hyperalgesia, which is sensitive to a number of analgesic compounds.  相似文献   

14.
ABSTRACT

Objective: Despite the application of dexmedetomidine (DEX) as a perioperative adjuvant in local analgesia, the exact analgesic mechanism underpinning chronic neuropathic pain (CNP) awaits our elucidation.

Methods: We investigated the molecular mechanisms of the anti-nociceptive effect of DEX on neuropathic pain in a mouse model induced by chronic constriction injury (CCI).

Results: DEX administration significantly increased the paw withdrawal latency (PWL) values 0.5 to 2 h post-injection in CCI-induced CNP mice at day 5 to 21 versus dimethyl sulfoxide (DMSO)-treated mice, confirming its analgesic effect. The c-Fos expression was significantly elevated in CCI mice versus the sham-operated group, whereas the elevation was mitigated by DEX injection. Subsequently, the involvement of MKP1 and MKP3 in the pathogenesis of chronic neuropathic pain was evaluated. Western blotting analyses revealed significant decrease in both MKP1 and MKP3 in the spinal cord in CCI group versus the sham group. DEX markedly elevated the MKP3 expression and modestly reduced the MKP1 expression, with insignificant difference in the latter. Co-injection of BCI (an MKP3 inhibitor) and DEX evidently reduced the PWL values in CCI mice. Furthermore, DEX significantly downregulated the phosphorylation of extracellular-signal-regulated kinase (ERK) 1/2, down-stream effector of MKP3 in CCI mice, whereas the downregulation was reversed by BCI.

Conclusion: We confirmed that DEX exerts the analgesic effect on chronic neuropathic pain via the regulation of MKP3/ERK1/2 signaling pathway, which may contribute to clarification of the molecular mechanism and novel therapy for chronic neuropathic pain.  相似文献   

15.
ABSTRACT

Current drug treatment available for neuropathic pain (NP) provides meager and partial pain relief due to incomplete efficacy and dose-dependent adverse effect. Hence, combination therapy can provide prolongation in analgesic effect with milder side effects. The present investigation aimed at observing the effects of sildenafil (SD) on Fluoxetine (FLX) in attenuation of chronic constriction injury (CCI) induced NP in rats. CCI was achieved in rats by placing four loose ligations around the sciatic nerve and rats were received respective treatments on SD and FLX till 14 days further behaviors parameters like heat hyperalgesia and allodynia, pin prick and acetone drop test were executed in order to access thermal, mechanical and cold allodynia, respectively, on a predetermined time interval. On the 21st day the animals were sacrificed for determination of total protein, myeloperoxidase activity in the adjoining muscular tissues while glutathione and TNF-α in the sciatic nerve. Co-administration of SD + FLX + CCI gave the pronounced effect that was superior over individual responses of SD and FLX in all behavioral as well as biochemical parameters. It was observed that attenuation in the altered behavioral pattern of CCI induced rats was modified prominently from 3rd day only in a group of rats treated with SD + FLX + CCI. The whole study was finally supported by histopathological results. Finally, it was concluded that SD produces an additive effect when given with FLX in attenuation of NP may be due to elevation in the level of intracellular concentrations of cyclic guanosine monophosphate which further causes downregulation of calcium channel.  相似文献   

16.
Neuropathic pain is chronic pain that follows nerve injury, mediated in the brain by elevated levels of the inflammatory protein tumor necrosis factor-alpha (TNF). We have shown that peripheral nerve injury increases TNF in the hippocampus/pain perception region, which regulates neuropathic pain symptoms. In this study we assessed pain sensation and perception subsequent to specific targeting of brain-TNF (via TNF antibody) administered through a novel subcutaneous perispinal route. Neuropathic pain was induced in Sprague-Dawley rats via chronic constriction injury (CCI), and thermal hyperalgesia was monitored for 10 days post-surgery. On day 8 following CCI and sensory pain behavior testing, rats were randomized to receive perispinal injection of TNF antibody or control IgG isotype antibody. Pain perception was assessed using conditioned place preference (CPP) to the analgesic, amitriptyline. CCI-rats receiving the perispinal injection of TNF antibody had significantly decreased CCI-induced thermal hyperalgesia the following day, and did not form an amitriptyline-induced CPP, whereas CCI-rats receiving perispinal IgG antibody experienced pain alleviation only in conjunction with i.p. amitriptyline and did form an amitriptyline-induced CPP. The specific targeting of brain TNF via perispinal delivery alleviates thermal hyperalgesia and positively influences the affective component of pain.PerspectiveThis study presents a novel route of drug administration to target central TNF for treatment of neuropathic pain. Targeting central TNF through perispinal drug delivery could potentially be a more efficient and sustained method to treat patients with neuropathic pain.  相似文献   

17.
This study examined the effects of pulsed radiofrequency (PRF) on sciatic nerve ligation-induced mechanical pain hypersensitivity in rats. The nociceptive threshold was evaluated using the paw pressure vocalization test. Seven days after nerve ligation, animals receiving a single PRF session (120 s/2 Hz/45 V/42°C) on L4-5-6 dorsal root ganglia ipsilateral to a chronic constriction injury (CCI) showed a reduced sensory hypersensitivity at H4 6 and 1 day after PRF as compared with animals without PRF. One day after PRF, the effect of morphine (2 mg/kg, subcutaneous) increased the nociceptive threshold in the no PRF/CCI group and more extensively in PRF/CCI animals. These results showed that PRF might represent an interesting strategy not only to reduce neuropathic pain but also to enhance the efficacy of morphine in patients with neuropathic pain, well known to be opioid resistant.  相似文献   

18.
Besides generally accepted lower analgesic potencies of opioids in neuropathic pain, our recent pharmacological reports have demonstrated that the effectiveness of the μ-opioid receptor (MOR) agonists in neuropathy might depends upon the chemical/structural property of these compounds (alkaloid vs. peptides). Such findings prompted us to investigate the changes in MOR mRNA expression (estimated by PCR) as well as MOR functional activity (examined by [35S]GTPγS binding) in the dorsal horn of the spinal cord and the dorsal root ganglia (DRG) of neuropathic rats at different time points after sciatic nerve ligation. We found that the spinal MOR mRNA level and agonist-stimulated [35S]GTPγS binding were not affected by nerve injury. In contrast, down-regulation of MOR mRNA in the ipsilateral side of DRG developed 3 (approximately 63% reduction) and 14 (approximately 89% reduction) days after the ligation. The decrease was paralleled with pronounced reduction in the stimulation of [35S]GTPγS binding by morphine (approximately 37–39%). Thus, neuropathy-induced specific dysfunction of MOR to activate G-protein together with changes in the MOR synthesis might be related, at least in part, to diminish analgesic efficacy of morphine in neuropathic pain. Interesting observations from current studies are linked to endomorphins (EMs), which do not affect the G protein stimulation of MOR after nerve ligation. This intriguing property of EMs, together with previously reported high analgesic efficacy of these compounds indicate that chemically/structurally different MOR agonists, particularly morphine versus EMs, may differentially interact with receptors causing distinct pharmacological effects in chronic pain.  相似文献   

19.
Previous studies have shown that activation of p38 mitogen-activating kinase (MAPK) in spinal microglia participates in the generation of inflammatory and neuropathic pain in various rodent models. However, these studies focused on male mice to avoid confounding effects of the estrous cycle of females. Recent studies have shown that some spinal pro-inflammatory signaling such as Toll-like receptor 4-mediated signaling contributes to pain hypersensitivity only in male mice. In this study we investigated the distinct role of spinal p38 in inflammatory and neuropathic pain using a highly selective p38 inhibitor skepinone. Intrathecal injection of skepinone prevented formalin induced inflammatory pain in male but not female mice. Furthermore, intrathecal skepinone reduced chronic constriction injury (CCI) induced neuropathic pain (mechanical allodynia) in male mice on CCI-day 7 but not CCI-day 21. This male-dependent inhibition of neuropathic pain also occurred in rats following intrathecal skepinone. Nerve injury induced spinal p38 activation (phosphorylation) in CX3CR1-GFP+ microglia on CCI-day 7, and this activation was more prominent in male mice. In contrast, CCI induced comparable microgliosis and expression of the microglial markers CX3CR1 and IBA-1 in both sexes. Notably, intraperitoneal or local perineural administration of skepinone inhibited CCI-induced mechanical allodynia in both sexes of mice. Finally, skepinone only reduced the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in lamina IIo neurons of spinal cord slices of males 7 days post CCI. Therefore, the sex-specific p38 activation and signaling is confined to the spinal cord in inflammatory and neuropathic pain conditions.  相似文献   

20.
Nuclear factor kappa B(NF-κB) in the spinal cord is involved in pro-infl ammatory cytokine-mediated pain facilitation. However, the role of NF-κB activation in chronic morphine-induced analgesic tolerance and the underlying mechanisms remain unclear. In the present study, we found that the level of phosphorylated NF-κB p65(p-p65) was increased in the dorsal horn of the lumbar 4–6 segments after intrathecal administration of morphine for 7 consecutive days, and the p-p65 was co-localized with neurons and astrocytes. The expression of TNF-α and IL-1β was also increased in the same area. In addition, pretreatment with pyrrolidinedithiocarbamate(PDTC) or SN50, inhibitors of NF-κB, prevented the development of morphine analgesic tolerance and alleviated morphine withdrawal-induced allodynia and hyperalgesia. The increase in TNF-α and IL-1β expression induced by chronic morphine exposure was also partially blocked by PDTC pretreatment. In another experiment, rats receiving PDTC or SN50 beginning on day 7 of morphine injection showed partial recovery of the anti-nociceptive effects of morphine and attenuation of the withdrawal-induced abnormal pain. Meanwhile, intrathecal pretreatment with lipopolysaccharide from Rhodobacter sphae-roides, an antagonist of toll-like receptor 4(TLR4), blocked the activation of NF-κB, and prevented the development of morphine tolerance and withdrawal-induced abnormal pain. These data indicated that TLR4-mediated NF-κB activation in the spinal cord is involved in the development and maintenance of morphine analgesic tolerance and withdrawalinduced pain hypersensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号