首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neutralization of TNF or disruption of TNF-R1 leads to fatal Mycobacterium bovis BCG infection. Here we used TNF-LT-alpha-deficient mice to test whether a complete disruption of TNF and LT-alpha reduces further host resistance to BCG infection. The bacterial burden especially in the lungs of TNF-LT-alpha-deficient mice was significantly increased and the mice succumbed to infection between 8 and 10 weeks. In the absence of TNF-LT-alpha the granulomatous response was severely impaired and delayed. The cells in the granulomas of TNF-LT-alpha-deficient mice expressed low levels of MHC class II and ICAM-1. They contained a few T cells and F4/80-positive macrophages expressing little iNOS and acid phosphatase activity. By contrast, the lethal action of endotoxin was dramatically reduced in BCG-infected TNF-LT-alpha-deficient mice. In summary, in the absence of TNF-LT-alpha the recruitment and activation of mononuclear cells in response to BCG infection were significantly delayed and reduced resulting in immature granulomas allowing uncontrolled fatal infection.  相似文献   

2.
The role of nitric oxide (NO) in Mycobacterium bovis Bacillus Calmette Guerin (BCG) infection was investigated using nitric oxide synthase 2 (nos2)-deficient mice, because NO plays a pivotal protective role in M. tuberculosis infection. We demonstrate that nos2-deficient mice were unable to eliminate BCG and succumbed within 8 to 12 weeks to BCG infection (10(6) CFU) with cachexia and pneumonia, whereas all infected wild-type mice survived. The greatest mycobacterial loads were observed in lung and spleen. Nos2-deficient mice developed large granulomas consisting of macrophages and activated T cells and caseous necrotic lesions in spleen. The macrophages in granulomas from nos2-deficient mice had reduced acid phosphatase activities, suggesting that NO is required for macrophage activation. The absence of NOS2 affected the cytokine production of the Th1 type of immune response, except IL-18. Serum amounts of IL-12p40 were increased and IFN-gamma was decreased compared with wild-type mice. The lack of NOS2 resulted in an overproduction of TNF, observed throughout the infection period. Additionally, TNFR1 and TNFR2 shedding was altered compared with wild-type mice. Up-regulation of TNF may be compensatory for the lack of NOS2. The late neutralization of TNF by soluble TNF receptors resulted in heightened disease severity and accelerated death in nos2-deficient mice but had no effect in wild-type mice. In conclusion, the inability of nos2-deficient mice to kill M. bovis BCG resulted in an accumulation of mycobacteria with a dramatic activation of the immune system and overproduction of pro-inflammatory cytokines, which resulted in death.  相似文献   

3.
Tumour necrosis factor-alpha (TNF) plays a central role in the recruitment and activation of mononuclear cells in mycobacterial infection. In the absence of type 1 TNF receptor, Mycobacterium bovis Bacillus Calmette-Guerin (BCG) infection of mice is not contained, leading to fatal disease. Because type 1 TNF receptor binds both TNF and lymphotoxin-a, we used TNF-deficient mice to determine the specific role of TNF in the host resistance to BCG infection. The bacterial burden of the lungs of TNF-deficient mice was substantially increased and the mice succumbed to pneumonia between 8 and 12 weeks with a defective granuloma response. Atypical granulomas developed by 4 weeks expressing low levels of MHC class II, intracellular adhesion molecule (ICAM-1), CD11b and CD11c. Macrophages showed little signs of activation and had low levels of acid phosphatase activity and inducible nitric oxide synthase (INOS) expression. Despite the defective cellular recruitment, the chemokines, monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1 (MIP-1alpha), were increased in broncho-alveolar lavage fluid of TNF-deficient mice. The defective host response was corrected by the transplantation of normal bone marrow cells into irradiated TNF-deficient mice. These results demonstrate that TNF derived from hemopoietic cells rather than from mesenchymal origin are essential for a normal host response to BCG infection. Furthermore, TNF dependent expression of adhesion molecules may be essential for the recruitment of mononuclear cells for the formation of bactericidal BCG granulomas.  相似文献   

4.
Tumor necrosis factor (TNF) signalling via the TNF receptor 1 (TNF-R1) is required for host resistance to mycobacterial infection. The role of TNF-R2 in anti-mycobacterial immunity is not known. Therefore, we compared TNF-R1 and TNF-R2 knockout (KO) mice infected with Mycobacterium bovis BCG (10(7) CFU, i.v.). While the bacterial burden of TNF-R1-deficient mice was significantly increased and the mice succumbed to infection between 4 and 5 weeks, TNF-R2 KO mice were less sensitive, and only 3 of 10 mice died within 12 weeks. Wild-type (WT) mice were resistant to BCG infection. The inability to clear the infection of TNF-R1 KO mice was associated with a reduced delayed-type hypersensitivity (DTH) response to purified protein derivative and severe impairment in forming granulomas with reduced macrophage recruitment and activation, and diminished expression of adhesion molecules. By contrast, TNF-R2 KO mice developed normal DTH response and mature mycobactericidal granulomas as the WT mice. Therefore, anti-mycobacterial immunity is largely dependent on TNF signalling via the TNF-R1, while activation of TNF-R2 plays a minor role.  相似文献   

5.
To investigate the role of tumor necrosis factor (TNF) in protective immune responses to Mycobacterium tuberculosis and M. bovis Bacillus Calmette Guérin (BCG), we have used transgenic mice unable to use TNF because of the expression of high amounts of a soluble TNF receptor (R) type I (sTNFR1) fusion protein, and studied resistance of these mice to infection by lethality assays, evaluation of bacterial recovery and histologic examination. These mice showed a strongly increased sensitivity to M. tuberculosis and BCG infections, with bacterial overgrowth and marked inhibition of macrophage differentiation within granulomas; after M. tuberculosis infection, this resulted in extensive lesions of caseous necrosis in the lung. To explore the respective roles of TNF and interferon (IFN)-γ in resistance to BCG and granuloma differentiation, controls and sTNFR1-transgenic mice were compared to IFN-γR mutant mice and mice double defective in TNF and IFN-γ activity (obtained by crossing transgenic and mutant mice). The three groups of deficient mice showed a strongly enhanced susceptibility to BCG infection, with the following decreasing order of sensitivity between groups: TNF + IFN-γ → TNF → IFN-γ-deficient mice. The hepatic granulomas of IFN-γR mutant mice were small and contained eosinophils but few differentiated macrophages; compared to those of sTNFR1-transgenic mice, acid-fast bacilli were less numerous within the macrophages. Granulomas of double-deficient mice were strikingly different by their very large size and cellular content, made up large numbers of polymorphonuclears, eosinophils, and cells undergoing apoptosis, but without detectable differentiated macrophages; acid-fast bacilli were spread in the lesions. These studies show the essential role of both TNF and IFN-γ in the development, during mycobacterial infections, of protective granulomas containing highly differentiated macrophages capable of destroying ingested bacteria, and emphasize that these two cytokines act synergistically in granuloma formation.  相似文献   

6.
Human monocytic ehrlichiosis (HME) is caused by a tick-borne obligate intracellular pathogen of the order Rickettsiales. HME disease can range from mild to a fatal, toxic shock-like syndrome, yet the mechanisms regulating pathogenesis are not well understood. We define a central role for type I interferons (alpha interferon [IFN-α] and IFN-β) in severe disease in a mouse model of fatal ehrlichiosis caused by Ixodes ovatus Ehrlichia (IOE). IFN-α and IFN-β were induced by IOE infection but not in response to a less virulent strain, Ehrlichia muris. The major sources of type I IFNs during IOE infection were plasmacytoid dendritic cells and monocytes. Mice lacking the receptor for type I IFNs (Ifnar deficient) or neutralization of IFN-α and IFN-β resulted in a reduced bacterial burden. Ifnar-deficient mice exhibited significantly increased survival after IOE infection, relative to that of wild-type (WT) mice, that correlated with increased type II IFN (IFN-γ) production. Pathogen-specific antibody responses were also elevated in Ifnar-deficient mice, and this required IFN-γ. Remarkably, increased IFN-γ and IgM were not essential for protection in the absence of type I IFN signaling. The direct effect of type I IFNs on hematopoietic and nonhematopoietic cells was evaluated in bone marrow chimeric mice. We observed that chimeric mice containing Ifnar-deficient hematopoietic cells succumbed to infection early, whereas Ifnar-deficient mice containing WT hematopoietic cells exhibited increased survival, despite having a higher bacterial burden. These data demonstrate that IFN-α receptor signaling in nonhematopoietic cells is important for pathogenesis. Thus, type I IFNs are induced during a rickettsial infection in vivo and promote severe disease.  相似文献   

7.
The global epidemic caused by the bacterial pathogen Mycobacterium tuberculosis continues unabated. Moreover, the only available vaccine against tuberculosis, Mycobacterium bovis bacillus Calmette-Guérin (BCG), demonstrates variable efficacy. To respond to this global threat, new animal models that mimic the pathological disease process in humans are required for vaccine testing. One new model, susceptible C3Heb/FeJ mice, is similar to human tuberculosis in that these animals are capable of forming necrotic tubercle granulomas, in contrast to resistant C3H/HeOuJ mice. In this study, we evaluated the impact of prior BCG vaccination of C3Heb/FeJ and C3H/HeOuJ mice on exposure to a low-dose aerosol of Mycobacterium tuberculosis W-Beijing strain SA161. Both BCG-vaccinated murine strains demonstrated reduced bacterial loads 25 days after infection compared to controls, indicating vaccine efficacy. However, during chronic infection, vaccine efficacy waned in C3H/HeOuJ but not in C3Heb/FeJ mice. Protection in vaccinated C3Heb/FeJ mice was associated with reduced numbers of CD11b+ Gr1+ cells, increased numbers of effector and memory T cells, and an absence of necrotic granulomas. BCG vaccine efficacy waned in C3H/HeOuJ mice, as indicated by reduced expression of gamma interferon (IFN-γ) and increased expressions of interleukin-17 (IL-17), IL-10, and Foxp3 by T cells compared to C3Heb/FeJ mice. This is the first murine vaccine model system described to date that can be utilized to dissect differential vaccine-derived immune efficacy.  相似文献   

8.
Infection with Plasmodium berghei ANKA (PbA) causes fatal cerebral malaria (CM). While a pathogenic role for tumor necrosis factor (TNF) has been established, we asked whether a disruption of interferon-γ (IFN-γ) signaling would modulate CM. We demonstrate here that IFN-γR-deficient mice are completely protected from CM. PbA-induced release of TNF and up-regulation of endothelial intercellular adhesion molecule (ICAM)-1 expression, recruitment of mononuclear cells, and cerebral microvascular damage with vascular leakage occur only in wild-type mice. Protected mice die at a later time of severe anemia and overwhelming parasitemia. Resistance to CM in IFN-γR-deficient mice is associated with reduced serum TNF levels, reduced interleukin-12 expression in the brain and increased T-helper 2 cytokines. In conclusion, IFN-γ is apparently required for PbA-induced endothelial ICAM-1 up-regulation and subsequent microvascular pathology, resulting in fatal CM. In the absence of IFN-γ signaling, ICAM-1 and TNF up-regulation is reduced; hence, PbA infection fails to cause fatal CM.  相似文献   

9.
The effects of total and partial inhibition of tumor necrosis factor (TNF) on sensitivity to Mycobacterium bovis BCG infection were investigated by using transgenic mice in which hepatocytes produced different amounts of human soluble TNF receptor 1 (sTNFR1) fused to the Fc fragment of human immunoglobulin G3 that could be detected in the serum. Transgenic mice expressing high serum levels of sTNFR1, neutralizing all circulating TNF, failed to develop differentiated granulomas and bactericidal mechanisms, and they succumbed to BCG infection. sTNFR1 transgenic mice did not activate BCG-induced Th1-type cytokines early in infection, but uncontrolled cytokine release was found late in infection. In this work we also evaluated the effect of partial inhibition of TNF on resistance to BCG infection. Transgenic mice expressing low levels of sTNFR1 were protected against BCG infection, and they developed increased bactericidal mechanisms, such as enhanced inducible nitric oxide synthase activity, increased macrophage activation, and showed higher numbers of liver granulomas early in infection compared to their negative littermates. Our data suggest that while total inhibition of TNF prevented BCG-induced cell-mediated immune responses, partial inhibition of TNF could contribute to macrophage activation, induction of bactericidal mechanisms, and granuloma formation in the early phase of BCG infection.  相似文献   

10.
Recognition of mycobacteria by the innate immune system is essential for the development of an adaptive immune response. Mycobacterial antigens stimulate antigen presenting cells (APCs) through distinct Toll-like receptors (TLRs) resulting in rapid activation of the innate immune system. The role of TLRs during infection with Mycobacterium bovis Bacillus Calmette-Guérin (BCG) has been evaluated for TLR2 and TLR4 only. Surprisingly, despite the fact that immune stimulatory CpG-motifs have been originally derived from BCG, for the vaccine strain the role of TLR9 has not been addressed before. To identify the set of TLRs involved in the recognition of BCG, we infected bone marrow-derived macrophages and bone marrow-derived dendritic cells (Flt3-ligand generated DCs) from TLR2, TLR3, TLR4, TLR7, TLR9, MyD88 knockout, TLR2/4 and TLR2/4/9 multiple knockout mice. The degree of activation and stimulation was determined by TNFα, IL-6 and IL-12p40 ELISA. Activation of DCs was measured by surface expression of the costimulatory molecule CD86. We observed the most dramatic reduction of the inflammatory response for TLR2-deficient antigen presenting cells. Both macrophages and DCs produce markedly decreased amounts of TNFα and IL-6 in the absence of TLR2 whereas no significant reduction could be observed for TLR3, 4, 7, 9 single TLR-knockouts. However, IL-12 production in DCs appears not exclusively dependent on TLR2 and only in TLR2/4/9-deficient DCs BCG-induced IL-12 is reduced to background levels. Similarly, up-regulation of CD86 is abolished only in TLR2/4/9-deficient DCs supporting a role of TLR9 in the recognition of M. bovis BCG by murine dendritic cells.  相似文献   

11.
Jacobs M  Brown N  Allie N  Gulert R  Ryffel B 《Immunology》2000,100(4):494-501
Interleukin-10 (IL-10) down-regulates T helper type 1 cell and macrophage functions. As IL-10 is induced along with tumour necrosis factor (TNF) and IL-12 in mycobacterial infection, we asked whether endogenous IL-10 plays a role in the antimycobacterial response. We demonstrate here that IL-10-deficient mice eliminate Mycobacterium bovis Calmette-Guérin bacillus faster than wild-type mice. Granulomas are significantly larger, containing more CD-11b- and CD11c-positive antigen-presenting cells and T cells, and the expression of major histocompatibility complex class II and intracellular adhesion molecule-1 is increased. Macrophages in granulomas of IL-10-deficient mice express high levels of TNF, acid phosphatase and inducible nitric oxide synthase (iNOS). Finally, an increased cutaneous delayed-type hypersensitivity reaction to mycobacterial proteins is further evidence of an augmented cell-mediated immune response. In conclusion, the cell-mediated immunity is enhanced in the absence of IL-10, resulting in a robust granuloma response, which accelerates the clearance of mycobacteria. Therefore, endogenous IL-10 attenuates mycobacterial immunity.  相似文献   

12.
Interleukin-17A (IL-17A)-producing γδ T cells are known to be activated following Mycobacterium bovis bacillus Calmette-Guérin (BCG) infection. Here, we show that CD30, a member of the tumor necrosis factor (TNF) receptor superfamily, is important for activation of IL-17A-producing γδ T cells after BCG infection. Vγ1 Vγ4 γδ T cells preferentially expressing Vγ6/Vδ1 genes were identified as the major source of IL-17A in the peritoneal cavity during the early stage of BCG infection. The number of IL-17A-producing Vγ1 Vγ4 γδ T cells bearing Vγ6 increased in peritoneal exudate cells (PEC) of wild-type (WT) mice but not in those of CD30 knockout (KO) mice in response to BCG infection. Consistently, CD30 ligand (CD30L) or CD30 expression, predominantly by Vγ1 Vγ4 γδ T cells, was rapidly upregulated after BCG infection. Inhibition of CD30L/CD30 signaling by in vivo administration of a soluble CD30 and immunoglobulin fusion protein (CD30-Ig) severely impaired activation of IL-17A-producing Vγ1 Vγ4 γδ T cells in WT mice, while stimulating CD30L/CD30 signaling by in vivo administration of agonistic anti-CD30 monoclonal antibody (MAb) restored IL-17A production by Vγ1 Vγ4 γδ T cells in CD30L KO mice after BCG infection. These results suggest that CD30 signaling plays an important role in the activation of IL-17A-producing Vγ1 Vγ4 γδ T cells bearing Vγ6 at an early stage of BCG infection.  相似文献   

13.
A major concern still prevails as to the reason why various mycobacteria are able to persist within infected host in which protective immunity is generated. To address this question, we monitored the generation of protective T cells during infection with Mycobacterium bovis bacillus Calmette-Guérin (BCG). CD4(+) T cells obtained 3 weeks after infection conferred protection against Mycobacterium tuberculosis challenge and produced IFN-γ and tumor necrosis factor (TNF)-α upon antigen stimulation. However, these abilities were decreased after 6 weeks of infection even though BCG was not thoroughly eliminated from the host. We analyzed the expression of ligands for the CD28/CTLA-4 family receptors on antigen-presenting cells and found that the expression of PD-L1, a ligand for programmed cell death-1 (PD-1), was up-regulated later than 3 weeks of infection. We also found that bacterial numbers in the spleen of PD-1-deficient mice were significantly reduced compared with wild-type mice at 6 and 12 weeks after BCG infection. Furthermore, CD4(+) T cells of PD-1-deficient mice showed a higher ability to confer protection and produce IFN-γ and TNF-α even at 12 weeks after infection. These results indicate that the PD-1-PD-L1 pathway impairs T(h)1 immunity in the late stage of BCG infection, thereby facilitating the bacterial persistence in the host.  相似文献   

14.
Tumor necrosis factor (TNF)-deficient mice were challenged with Leishmania donovani to characterize TNF in the response of visceral intracellular infection to antileishmanial chemotherapy. In wild-type controls (i) liver infection peaked at week 2 and resolved, (ii) discrete liver granulomas developed at weeks 2 to 4 and involuted, and (iii) leishmanicidal responses to antimony (Sb), amphotericin B (AmB), and miltefosine were intact. In TNF knockout (KO) mice (i) initial liver infection was unrestrained, plateaued, and then declined somewhat by week 6, (ii) an absent early granulomatous reaction abruptly accelerated with striking tissue inflammation, widespread hepatic necrosis, and 100% mortality by week 10, and (iii) while the initial response to AmB and miltefosine was intact, killing induced by Sb therapy was reduced by >50%. Although initial AmB treatment during weeks 2 to 3 killed 98% of liver parasites, 75% of AmB-treated KO mice subsequently relapsed and died by week 12; however, additional maintenance AmB preserved long-term survival. These results for a model of visceral infection indicate that endogenous TNF is required early on to control intracellular L. donovani, support granuloma development, and mediate optimal initial effects of Sb and prevent relapse after ordinarily curative AmB treatment. A compensatory, TNF-independent antileishmanial mechanism developed in TNF KO mice; however, its effect was uncontrolled fatal inflammation. Chemotherapeutic elimination of the parasite stimulus reversed the hyperinflammatory response and preserved survival.  相似文献   

15.
Tumor necrosis factor (TNF) induced by Plasmodium berghei ANKA (PbA) infection was suggested to play an important role in the development of cerebral malaria (CM). We asked whether TNF-alpha/beta double-deficient mice, which have a complete disruption of the TNF-signaling pathways, are protected from CM and what might be the possible mechanisms of protection. PbA infection induces fatal CM in wild-type mice, which die within 5 to 8 days with severe neurological signs. In contrast, TNF-alpha/beta-deficient mice are completely resistant to PbA-induced CM. As PbA-induced up-regulation of endothelial intercellular adhesion molecule (ICAM)-1 expression as well as the systemic release of nitric oxide is found only in wild-type mice, TNF is apparently central for the recruitment of mononuclear cells and microvascular damage. Mononuclear cell adhesion to the endothelium, vascular leak and, perivascular hemorrhage are found only in the brain of wild-type mice. By contrast, the development of parasitemia and anemia is independent of TNF. Resistance to CM in TNF-alpha/beta-deficient mice is associated with reduced interferon-gamma and interleukin-12 expression in the brain, in the absence of increased T helper type 2 cytokines. In conclusion, TNF apparently is required for PbA-induced endothelial ICAM-1 up-regulation and subsequent microvascular pathology resulting in fatal CM. In the absence of TNF, ICAM-1 and nitric oxide up-regulation are reduced, and PbA infection fails to cause fatal CM.  相似文献   

16.
17.
To study the specific role of transmembrane tumor necrosis factor (TmTNF) in host defense mechanisms against bacillus Calmette-Guerin (BCG) and Mycobacterium tuberculosis infections, we compared the immune responses of TNF/lymphotoxin (LT)-alpha(-/-) mice expressing a noncleavable transgenic TmTNF (TmTNF tg) to those of TNF/LT-alpha(-/-) and wild-type mice. Susceptibility of TNF/LT-alpha(-/-) mice to BCG infection was associated with impaired induction of systemic RANTES but not of monocyte chemoattractant protein 1 (MCP-1), the development of excessive local and systemic Th1-type immune responses, and a substantially reduced inducible nitric oxide synthase (iNOS) activity. Resistance of TmTNF tg mice to BCG infection was associated with efficient activation of iNOS in granulomas and with the regulated release of local and systemic chemokines and Th1-type cytokines. However, M. tuberculosis infection of TmTNF tg mice resulted in longer survival and enhanced resistance compared to TNF/LT-alpha(-/-) mice but higher sensitivity than wild-type mice. TmTNF tg mice exhibited reduced pulmonary iNOS expression and showed an exacerbated cellular infiltration in the lungs despite a modest bacillary content. Our data thus indicate a role for TmTNF in host defense against mycobacteria by contributing to induction and regulation of Th1-type cytokine and chemokine expression leading to development of bactericidal granulomas expressing iNOS, which critically determines susceptibility versus resistance of the host to mycobacterial infections.  相似文献   

18.
Infectious agents have been proposed to influence susceptibility to autoimmune diseases such as multiple sclerosis. We induced a Th1-mediated central nervous system (CNS) autoimmune disease, experimental autoimmune encephalomyelitis (EAE) in mice with an ongoing infection with Mycobacterium bovis strain bacillus Calmette-Guérin (BCG) to study this possibility. C57BL/6 mice infected with live BCG for 6 weeks were immunized with myelin oligodendroglial glycoprotein peptide (MOG35-55) to induce EAE. The clinical severity of EAE was reduced in BCG-infected mice in a BCG dose-dependent manner. Inflammatory-cell infiltration and demyelination of the spinal cord were significantly lessened in BCG-infected animals compared with uninfected EAE controls. ELISPOT and gamma interferon intracellular cytokine analysis of the frequency of antigen-specific CD4+ T cells in the CNS and in BCG-induced granulomas and adoptive transfer of MOG35-55-specific green fluorescent protein-expressing cells into BCG-infected animals indicated that nervous tissue-specific (MOG35-55) CD4+ T cells accumulate in the BCG-induced granuloma sites. These data suggest a novel mechanism for infection-mediated modulation of autoimmunity. We demonstrate that redirected trafficking of activated CNS antigen-specific CD4+ T cells to local inflammatory sites induced by BCG infection modulates the initiation and progression of a Th1-mediated CNS autoimmune disease.  相似文献   

19.
CD14 is a pattern-recognition receptor implicated in the inflammatory response to microbial components such as lipopolysaccharide, peptidoglycan and lipoarabinomannan. In this work, we made use of CD14-deficient (CD14-/-) mice to evaluate the relative importance of CD14 in response to infection with viable, intact cells of Mycobacterium avium in vitro and in vivo. Following co-incubation of either bone marrow-derived macrophages (Mphi) or thioglycollate-elicited peritoneal Mphi from CD14-/- mice with viable M. avium, tumour necrosis factor (TNF) production was significantly reduced and delayed compared to TNF secretion by infected CD14+/+ Mphi. However, following intravenous infection with a M. avium strain of either high virulence (TMC724) or intermediate virulence (SE01), there was no difference in the bacterial loads of lungs, livers or spleens at 3, 5 and 8 weeks postinfection in CD14-/- mice when compared with syngeneic CD14+/+ mice. At these time-points, TNF and interferon-gamma (IFN-gamma) mRNA expression in the liver was similar in infected CD14+/+ and CD14-/- mice, and granuloma formation and expression of inducible nitric oxide synthase within granuloma Mphi was the same in both mouse groups. In conclusion, although the absence of CD14 results in significantly reduced and delayed TNF production in response to stimulation with M. avium in vitro, there is no evidence that CD14 plays a significant role in either the antibacterial defence or the chronic granulomatous reaction to M. avium infection in vivo.  相似文献   

20.
To assess the role of Toll-like receptor (TLR) signalling in host response to mycobacterial infection, mice deficient in the TLR adaptor molecule myeloid differentiation factor 88 (MyD88) were infected with the vaccine strain Mycobacterium bovis (BCG), and the immune response and bacterial burden were investigated. Macrophages and dendritic cells from MyD88-deficient mice stimulated in vitro with BCG mycobacterial antigens produced very low levels of proinflammatory cytokines, while the expression of costimulatory molecules such as CD40 and CD86 was preserved. Upon systemic infection with BCG (2 x 10(6) CFU i.v.) MyD88-deficient mice developed confluent chronic pneumonia with two log higher CFU than wild-type mice. Interestingly, the infection was controlled in liver and spleen and there was efficient systemic T-cell priming with high IFNgamma production by CD4+ splenic T cells in MyD88-deficient mice. Lung infiltrating cells showed IFNgamma production by pulmonary CD4+ T cells upon specific restimulation, and a reduced capacity to produce nitric oxide and IL-10. In summary, despite the dramatic reduction of the innate immune response, MyD88-deficient mice were able to mount an efficient T-cell response to mycobacterial antigens, which was however insufficient to control infection in the lung, resulting in chronic pneumonia in MyD88-deficient mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号