共查询到20条相似文献,搜索用时 10 毫秒
1.
During service, bearing components experience rolling cyclic fatigue (RCF), resulting in subsurface plasticity and decay of the parent microstructure. The accumulation of micro strains spans billions of rolling cycles, resulting in the continuous evolution of the bearing steel microstructure. The bearing steel composition, non-metallic inclusions, continuously evolving residual stresses, and substantial work hardening, followed by subsurface softening, create further complications in modelling bearing steel at different length scales. The current study presents a multiscale overview of modelling RCF in terms of plastic deformation and the corresponding microstructural alterations. This article investigates previous models to predict microstructural alterations and material hardening approaches widely adopted to mimic the cyclic hardening response of the evolved bearing steel microstructure. This review presents state-of-the-art, relevant reviews in terms of this subject and provides a robust academic critique to enhance the understanding of the elastoplastic response of bearing steel under non-proportional loadings, damage evolution, and the formation mechanics of microstructural alterations, leading to the increased fatigue life of bearing components. It is suggested that a multidisciplinary approach at various length scales is required to fully understand the micromechanical and metallurgical response of bearing steels widely used in industry. This review will make significant contributions to novel design methodologies and improved product design specifications to deliver the durability and reliability of bearing elements. 相似文献
2.
Pawe Zmarzy 《Materials》2022,15(11)
The production of rolling bearings is a complicated process that requires the use of many operations. The manufactured elements of rolling bearings should be of high quality while minimizing production costs. Despite many research studies related to the analysis of technological processes, there is still a lack of research and tools allowing us to satisfactorily assess the relationships between individual operations of the rolling bearing ring process of production and the quality. To perform such an assessment, one can use the concept of technological heredity phenomenon analysis. As the surface waviness of the bearing race is of key importance, the present paper aims at evaluating how the individual technological operations of the rolling bearing ring production process affect the formation of their surface waviness. The surface waviness of the bearing race was measured in both directions (two sections), i.e., along the circumference using the Talyrond 365 measurement system and across the circumference of the race using Talysurf PGI. The production of 6308-2z rolling bearings made of AISI (American Iron and Steel Institute) 52100 bearing steel was analyzed. The occurrence of the phenomenon of technological heredity in the production of rolling bearings was observed. The research results indicate that the turning operation reduces the surface waviness of the bearing rings obtained after forging, while the heat treatment causes a slight increase in surface waviness. On the other hand, grinding operation significantly reduces the waviness, with this reduction being greater for the outer ring. Furthermore, the research has shown that the waviness of the surface is an inheritance factor caused by individual operations of the rolling bearing rings manufacturing process. 相似文献
3.
Ceramics are advanced engineering materials in which have been broadly used in numerous industries due to their superior mechanical and physical properties. For application, the industries require that the ceramic products have high-quality surface finishes, high dimensional accuracy, and clean surfaces to prevent and minimize thermal contact, adhesion, friction, and wear. Ceramics have been classified as difficult-to-machine materials owing to their high hardness, and brittleness. Thus, it is extremely difficult to process them with conventional finishing processes. In this review, trends in the development of non-conventional finishing processes for the surface finishing of difficult-to-machine ceramics are discussed and compared to better comprehend the key finishing capabilities and limitations of each process on improvements in terms of surface roughness. In addition, the future direction of non-conventional finishing processes is introduced. This review will be helpful to many researchers and academicians for carrying out additional research related to the surface finishing techniques of ceramics for applications in various fields. 相似文献
4.
A GPM-30 fatigue machine was used to investigate the influence of surface ultrasonic rolling (SURT) on the rolling contact fatigue (RCF) life of D2 wheel steel. The experimental results present that the RCF life of the grinding processing sample is 4.1 × 105 cycles. During the RCF process, the flaking of the fine grain layer and high surface roughness of the grinding processing sample cause the production of RCF cracks. When the samples are treated by SURT with 0.2 MPa and 0.4 MPa, the RCF life is 9.2 × 105 cycles and 9.6 × 105 cycles, respectively. After SURT, the surface roughness of the samples is reduced, and a certain thickness of gradient-plastic-deformation layer and a residual-compressive-stress layer are produced. These factors lead to the improvement of the RCF property. However, when the static pressure increases to 0.6 MPa during SURT, the RCF life of the sample is reduced during RCF testing. The micro-cracks, which are formed during SURT, become the crack source and cause the formation of RCF cracks, decreasing of the RCF life. 相似文献
5.
The effect of surface integrity on the hot fatigue performance of Ti2AlNb alloy was investigated. A turning process was used to prepare the standard specimens for hot fatigue tests. The surface integrity characterization and axial fatigue tests were performed. The results show that the influence of surface roughness on the hot fatigue performance of the Ti2AlNb alloy is a secondary factor. The compressive residual stress and enhanced microhardness in the surface layer has a significant effect on the hot fatigue life and they are dominant in the hot fatigue behavior of the Ti2AlNb alloy. Through the investigation on the characteristics of the fatigue fractures, the fatigue propagation process was significantly suppressed because of the strong residual compressive stress and microhardness distribution on the surface layer of the Ti2AlNb specimen. 相似文献
6.
Pawe Zmarzy 《Materials》2020,13(23)
The paper features the development of multi-dimensional mathematical models used for evaluating the impact of selected factors on the vibration generated by 6304ZZ type rolling ball bearings from three manufacturers in the aspect of the wear process. The bearings were manufactured of AISI 52100 bearing steel. The analyzed factors included the inner and outer raceways’ roundness and waviness deviations, radial clearance and the total curvature ratio. The models were developed for vibration recorded in three frequency ranges: 50–300 Hz, 300–1800 Hz and 1800–10,000 Hz. The paper includes a specification of the principles of operation of innovative measuring systems intended for testing bearing vibration, raceway geometries and radial clearance. Furthermore, it features a specification of particular stages of the multi-dimensional mathematical models’ development and verification. Testing with the purpose of statistical evaluation of the analyzed factors is also presented. The test results and mathematical models indicate that the inner raceway’s waviness deviation had a dominant impact on the vibration examined in all frequencies. The roundness and waviness deviation of bearing raceways made of AISI 52100 steel propagates the bearing wear process. 相似文献
7.
To improve the surface corrosion resistance of 42CrMo4 high-strength steel used in a marine environment, this article studied the effects of hard turning on the surface integrity and corrosion resistance of 42CrMo4 high-strength steel through the single factor experimental method, namely hard turning, polarization corrosion, electrochemical impedance spectroscopy, potentiodynamic polarization curve, and salt spray tests. The results indicated that the surface integrity was modified by the hard turning, with a surface roughness lower than Ra 0.8 μm, decreased surface microhardness, fine and uniform surface microstructure, and dominant surface residual compressive stress. The hard turning process was feasible to strengthen the surface corrosion resistance of 42CrMo4 high-strength steel. The better corrosion resistance of the surface layer than that of the substrate material can be ascribed to the uniform carbides and compact microstructure. The corrosion resistance varied with cutting speeds as a result of the changed surface microhardness and residual compressive stress, varied with feed rates as a result of the changed surface roughness, and varied with cutting depths as a result of the changed surface residual compressive stress, respectively. The surface integrity with smaller surface roughness and microhardness and bigger surface residual compressive stress was beneficial for corrosion resistance. 相似文献
8.
A new approach based on the direct spectral method for fatigue analysis of elements subjected to bimodal stress histories, including high compression effects, is proposed. A correction factor, taking into account the influence of the mean compressive stresses, is used in the proposed method. Equivalent amplitude is estimated, based on criteria proposed by Smith, Watson, and Tooper, and by Bergmann and Seeger. The method is presented with example of a thrust roller bearing. Two cases in which the rollers were subjected to constant force 206 N (where constant amplitude stresses occurred in the rollers) and cyclic force (where bimodal stresses with variable amplitudes occurred in the rollers) are studied. It is observed that multiaxial fatigue criteria (Crossland, Papadopoulos) do not include the influence of bimodal stresses and should not be used for such loading conditions. The proposed method includes both kinds of stress waveforms in the fatigue analysis and can be applied for the accurate identification of stress components and the determination of fatigue life. The damage rate calculated by the proposed approach for rollers subjected to a cyclic force (equivalent load equal to 151 N) was 0.86, which is in good agreement with the recommendations provided in the literature. The obtained accuracy of the proposed method is above 95%. 相似文献
9.
Eleonora Atzeni Silvio Genna Erica Menna Gianluca Rubino Alessandro Salmi Federica Trovalusci 《Materials》2021,14(18)
Metal additive manufacturing is a major concern for advanced manufacturing industries thanks to its ability to manufacture complex-shaped parts in materials that are difficult to machine using conventional methods. Nowadays, it is increasingly being used in the industrial manufacturing of titanium-alloy components for aerospace and medical industries; however, the main weakness of structural parts is the fatigue life, which is affected by surface quality, meaning the micro-cracking of small surface defects induced by the manufacturing process. Laser finishing and Abrasive Fluidized Bed are proposed by the authors since they represent cost-effective and environment-friendly alternatives for automated surface finishing. A comparison between these two finishing technologies was established and discussed. Experimental tests investigated both mechanical properties and fatigue performances. The tests also focused on understanding the basic mechanisms involved in fatigue failures of machined Ti-6Al-4V components fabricated via Electron Beam Melting and the effects of operational parameters. X-ray tomography was used to evaluate the internal porosity to better explain the fatigue behaviour. The results demonstrated the capability of Laser finishing and Abrasive Fluidized Beds to improve failure performances. Life Cycle Analysis was additionally performed to verify the effectiveness of the proposed technologies in terms of environmental impact and resource consumption. 相似文献
10.
Machined surface integrity characteristics, including surface stresses, physical-mechanical properties and metallographic structures, play important roles in the fatigue performance of machined components. This work aimed at investigating the effects of machined surface integrity on high-temperature low-cycle fatigue life. The process parameters were optimized to obtain required surface integrity and fatigue life of the turning superalloy Inconel 718. The relationships between low-cycle fatigue life and machined surface integrity characterization parameters were established based on the low-cycle fatigue tests at a high temperature (650 °C). The sensitivities of turning process parameters to high-temperature low-cycle fatigue life were analyzed, and the optimization parameters were proposed with the goal of antifatigue manufacturing. Experimental results indicated that the impact order of the characterization parameters of machined surface integrity on the high-temperature low-cycle fatigue life were the degree of work hardening RHV, the residual stress in the cutting speed direction S22, the fatigue stress concentration factor Kf, the degree of grain refinement RD and the residual stress in the feed direction S33. In the range of turning parameters of the experiments in this research, the cutting speeds could be 80~110 m/min, and the feed rate could be 0.10~0.12 mm/rev to achieve a longer high-temperature low-cycle fatigue life. The results can be used for guiding the fatigue-resistant manufacturing research of aeroengine superalloy turbine disks. 相似文献
11.
Magnesium alloys are widely used in numerous engineering applications owing to their superior structural characteristics. However, the machining of magnesium alloy is challenging because of its poor machinability characteristics. Therefore, this paper investigates the machining of magnesium alloys under different sustainable cooling conditions. The machining was performed by varying cutting velocity, feed rate, and depth of cut under dry and cryogenic cooling conditions. The primary focus of the paper is to develop a predictive model for surface roughness under different machining environments. The models developed were found to be in excellent agreement with experimental results, with only 0.3 to 1.6% error. Multi-objective optimization were also performed so that the best surface finish together with high material removal rate could be achieved. Furthermore, the various parameters of surface integrity (i.e., surface roughness, micro-hardness, micro-structures, crystallite size, and lattice strain) were also investigated. 相似文献
12.
Alejandra Torres Nuria Cuadrado Jordi Llum Montserrat Vilaseca J. Antonio Travieso-Rodriguez 《Materials》2022,15(24)
Burnishing is a plastic deformation process that reduces roughness while increasing hardness by introducing compressive residual stresses near the surface zone. These improvements will depend mainly on two fundamental variables: the applied load and the friction derived from the tool–surface interaction. Nevertheless, microstructural differences in the materials have not yet been considered within this interaction. This leads to a generalization of the process that can result in the failure of industrial components. Therefore, the aim of this work is to study the microstructural influence of the ball-burnishing process from a tribological perspective. Thus, martensitic and austenitic stainless steels were evaluated in terms of friction and surface integrity. The results show that parameterizing the process according to the tool–surface interaction is critical since improvements depend on friction as a function of the availability of plastic deformation of the crystallographic structures. 相似文献
13.
The fundamental issue in surface metrology is to provide methods that can allow the establishment of correlations between measured topographies and performance or processes, or that can discriminate confidently topographies that are processed or performed differently. This article presents a set of topographies from two-staged processed steel rings, measured with a 3D contact profilometer. Data were captured individually from four different regions, namely the top, bottom, inner, and outer surfaces. The rings were manufactured by drop forging and hot rolling. Final surface texture was achieved by mass finishing with spherical ceramic media or cut wire. In this study, we compared four different multiscale methods: sliding bandpass filtering, three geometric length- and area-scale analyses, and the multiscale curvature tensor approach. In the first method, ISO standard parameters were evaluated as a function of the central wavelength and bandwidth for measured textures. In the second and third method, complexity and relative length and area were utilized. In the last, multiscale curvature tensor statistics were calculated for a range of scales from the original sampling interval to its forty-five times multiplication. These characterization parameters were then utilized to determine how confident we can discriminate (through F-test) topographies between regions of the same specimen and between topographies resulting from processing with various technological parameters. Characterization methods that focus on the geometrical properties of topographic features allowed for discrimination at the finest scales only. Bandpass filtration and basic height parameters Sa and Sq proved to confidently discriminate against all factors at all three considered bandwidths. 相似文献
14.
Adel T. Abbas Abdulhamid A. Al-Abduljabbar Ibrahim A. Alnaser Mohamed F. Aly Islam H. Abdelgaliel Ahmed Elkaseer 《Materials》2022,15(6)
This article reports an extended investigation into the precision hard turning of AISI 4340 alloy steel when machined by two different types of inserts: wiper nose and conventional round nose. It provides a closer look at previously published work and aims at determining the optimal process parameters for simultaneously minimizing surface roughness and maximizing productivity. In the mathematical models developed by the authors, surface roughness at different cutting speeds, depths of cut and feed rates is treated as the objective function. Three robust multi-objective techniques, (1) multi-objective genetic algorithm (MOGA), (2) multi-objective Pareto search algorithm (MOPSA) and (3) multi-objective emperor penguin colony algorithm (MOEPCA), were used to determine the optimal turning parameters when either the wiper or the conventional insert is used, and the results were experimentally validated. To investigate the practicality of the optimization algorithms, two turning scenarios were used. These were the machining of the combustion chamber of a gun barrel, first with an average roughness (Ra) of 0.4 µm and then with 0.8 µm, under conditions of high productivity. In terms of the simultaneous achievement of both high surface quality and productivity in precision hard turning of AISI 4340 alloy steel, this work illustrates that MOPSA provides the best optimal solution for the wiper insert case, and MOEPCA results are the best for the conventional insert. Furthermore, the results extracted from Pareto front plots show that the wiper insert is capable of successfully meeting both the requirements of Ra values of 0.4 µm and 0.8 µm and high productivity. However, the conventional insert could not meet the 0.4 µm Ra requirement; the recorded global minimum was Ra = 0.454 µm, which reveals the superiority of the wiper compared to the conventional insert. 相似文献
15.
Hot work tool steels (HWS) are widely used for high performance components as dies and molds in hot forging processes, where extreme process-related mechanical and thermal loads limit tool life. With the functionalizing and modification of tool surfaces with tailored surfaces, a promising approach is given to provide material flow control resulting in the efficient die filling of cavities while reducing the process forces. In terms of fatigue properties, the influence of surface modifications on surface integrity is insufficiently studied. Therefore, the potential of the machining processes of high-feed milling, micromilling and grinding with regard to the implications on the fatigue strength of components made of HWS (AISI H11) hardened to 50 ± 1 HRC was investigated. For this purpose, the machined surfaces were characterized in terms of surface topography and residual stress state to determine the surface integrity. In order to analyze the resulting fatigue behavior as a result of the machining processes, a rotating bending test was performed. The fracture surfaces were investigated using fractographic analysis to define the initiation area and to identify the source of failure. The investigations showed a significant influence of the machining-induced surface integrity and, in particular, the induced residual stress state on the fatigue properties of components made of HWS. 相似文献
16.
Additive manufacturing technology has been widely used in aviation, aerospace, automobiles and other fields due to the fact that near-net-shaped components with unprecedented geometric freedom can be fabricated. Additively manufactured aluminum alloy has received a lot of attention, due to its excellent material properties. However, the finished surface of additively manufactured aluminum alloy with nanoscale surface roughness is quite challenging and rarely addressed. In this paper, a novel machining technology known as ultrasonic elliptical vibration-assisted cutting (UEVC) was adopted to suppress the generation of cracks, improve the surface integrity and reduce tool wear during the ultra-precision machining of selective laser melting (SLM) additively manufactured AlSi10Mg alloy. The experimental results revealed that, in the conventional cutting (CC) process, surface defects, such as particles, pores and grooves, appeared on the machined surface, and the machined surface rapidly deteriorated with the increase in cumulative cutting area. In contrast, an almost flawless machined surface was obtained in the UEVC process, and its roughness value was less than 10 nm. Moreover, the tool wear of the CC tool was remarkably greater than that of the UEVC tool, and the standard flank wear width of the CC tool was more than twice that of the UEVC tool. Therefore, the UEVC technology is considered to be a feasible method for the ultra-precision machining of SLM additively manufactured AlSi10Mg alloy. 相似文献
17.
The surface finish was extensively studied in usual machining processes (turning, milling, and drilling). For these processes, the surface finish is strongly influenced by the cutting feed and the tool nose radius. However, a basic understanding of tool/surface finish interaction and residual stress generation has been lacking. This paper aims to investigate the surface finish and residual stresses under the orthogonal cutting since it can provide this information by avoiding the effect of the tool nose radius. The orthogonal machining of AA7075-T651 alloy through a series of cutting experiments was performed under dry conditions. Surface finish was studied using height and amplitude distribution roughness parameters. SEM and EDS were used to analyze surface damage and built-up edge (BUE) formation. An analysis of the surface topography showed that the surface roughness was sensitive to changes in cutting parameters. It was found that the formation of BUE and the interaction between the tool edge and the iron-rich intermetallic particles play a determinant role in controlling the surface finish during dry orthogonal machining of the AA7075-T651 alloy. Hoop stress was predominantly compressive on the surface and tended to be tensile with increased cutting speed. The reverse occurred for the surface axial stress. The smaller the cutting feed, the greater is the effect of cutting speed on both axial and hoop stresses. By controlling the cutting speed and feed, it is possible to generate a benchmark residual stress state and good surface finish using dry machining. 相似文献
18.
Adel T. Abbas Saqib Anwar Elshaimaa Abdelnasser Monis Luqman Jaber E. Abu Qudeiri Ahmed Elkaseer 《Materials》2021,14(4)
In this paper, an experimental investigation into the machinability of AISI 316 alloy during finishing end milling operation under different cooling conditions and with varying process parameters is presented. Three environmental-friendly cooling strategies were utilized, namely, dry, minimal quantity lubrication (MQL) and MQL with nanoparticles (Al2O3), and the variable process parameters were cutting speed and feed rate. Power consumption and surface quality were utilized as the machining responses to characterize the process performance. Surface quality was examined by evaluating the final surface roughness and surface integrity of the machined surface. The results revealed a reduction in power consumption when MQL and MQL + Al2O3 strategies were applied compared to the dry case by averages of 4.7% and 8.6%, respectively. Besides, a considerable reduction in the surface roughness was noticed with average values of 40% and 44% for MQL and MQL + Al2O3 strategies, respectively, when compared to the dry condition. At the same time, the reduction in generated surface roughness obtained by using MQL + Al2O3 condition was marginal (5.9%) compared with using MQL condition. Moreover, the results showed that the improvement obtained in the surface quality when using MQL and MQL + Al2O3 coolants increased at higher cutting speed and feed rate, and thus, higher productivity can be achieved without deteriorating final surface quality, compared to dry conditions. From scanning electron microscope (SEM) analysis, debris, furrows, plastic deformation irregular friction marks, and bores were found in the surface texture when machining under dry conditions. A slight smoother surface with a nano-polishing effect was found in the case of MQL + Al2O3 compared to the MQL and dry cooling strategies. This proves the effectiveness of lubricant with nanoparticles in reducing the friction and thermal damages on the machined surface as the friction marks were still observed when machining with MQL comparable with the case of MQL + Al2O3. 相似文献
19.
The crankshaft is one of the core components of a Rotate Vector (RV) reducer. The fatigue life of the RV reducer is severely hindered by fatigue failure on the eccentric cylindrical surface of the crankshaft. The hardness gradients and residual stress in the crankshaft, associated with machining operations, exert an enormous impact on the rolling contact fatigue (RCF). In this work, a finite element method (FEM)-based three-dimensional elasto-plastic contact model is established to calculate the stress–strain field by taking hardness gradients and initial residual stress into account. The RCF characteristics of an RV reducer crankshaft is investigated by applying modified Fatemi–Socie (FS) multiaxial fatigue criterion. The results indicate that initial residual stress plays an influential role in the fatigue damage by altering the distribution of the maximum normal stress near the contact surface. The modified FS fatigue criterion could better consider the effect of initial residual stress and the shear stress, which significantly improves the prediction accuracy of the contact fatigue life model. The contact fatigue performance could be considerably improved by designing appropriate shot peening parameters to obtain optimized residual stress distribution. Therefore, the technique presented may serve as an important guideline for the anti-fatigue design of an RV reducer crankshaft. 相似文献
20.
Xiaolong Ke Wei Wu Chunjin Wang Yongheng Yu Bo Zhong Zhenzhong Wang Tianyi Wang Jianji Fu Jiang Guo 《Materials》2022,15(5)
Ti6Al4V alloy has been widely used in many fields, such as aerospace and medicine, due to its excellent biocompatibility and mechanical properties. Most high-performance components made of Ti6Al4V alloy usually need to be polished to produce their specific functional requirements. However, due to the material properties of Ti6Al4V, its polishing process still requires significant development. Therefore, this study aimed to investigate the performance of polishing Ti6Al4V by using tools with different rigidities. Two kinds of bonnet tool were used, namely a pure rubber (PR) bonnet and a semirigid (SR) bonnet. The characterization of material removal and surface integrity after polishing was conducted through a series of experiments on a 6-DOF robotic polishing device. The results demonstrate that both bonnet tools successfully produce nanometric level surface roughness. Moreover, the material removal rate of the SR bonnet tool is significantly higher than that of the PR bonnet, which is consistent with the material removal characteristics of glass polishing in previous research. In addition, the presented analysis on key polishing parameters and surface integrity lays the theoretical foundation for the polishing process of titanium alloy in different application fields. 相似文献