首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fusarium graminearum and Fusarium verticillioides are fungal pathogens that cause diseases in cereal crops, such as Fusarium head blight (FHB), seedling blight, and stalk rot. They also produce a variety of mycotoxins that reduce crop yields and threaten human and animal health. Several strategies for controlling these diseases have been developed. However, due to a lack of resistant cultivars and the hazards of chemical fungicides, efforts are now focused on the biocontrol of plant diseases, which is a more sustainable and environmentally friendly approach. In the present study, the lipopeptide mycosubtilin purified from Bacillus subtilis ATCC6633 significantly suppressed the growth of F. graminearum PH-1 and F. verticillioides 7600 in vitro. Mycosubtilin caused the destruction and deformation of plasma membranes and cell walls in F. graminearum hyphae. Additionally, mycosubtilin inhibited conidial spore formation and germination of both fungi in a dose-dependent manner. In planta experiments demonstrated the ability of mycosubtilin to control the adverse effects caused by F. graminearum and F. verticillioides on wheat heads and maize kernels, respectively. Mycosubtilin significantly decreased the production of deoxynivalenol (DON) and B-series fumonisins (FB1, FB2 and FB3) in infected grains, with inhibition rates of 48.92, 48.48, 52.42, and 59.44%, respectively. The qRT-PCR analysis showed that mycosubtilin significantly downregulated genes involved in mycotoxin biosynthesis. In conclusion, mycosubtilin produced by B. subtilis ATCC6633 was shown to have potential as a biological agent to control plant diseases and Fusarium toxin contamination caused by F. graminearum and F. verticillioides.  相似文献   

2.
Fusarium head blight (FHB) is an important disease of wheat worldwide caused mainly by Fusarium graminearum (syn. Gibberella zeae). This fungus can be highly aggressive and can produce several mycotoxins such as deoxynivalenol (DON), a well known harmful metabolite for humans, animals, and plants. The fungus can survive overwinter on wheat residues and on the soil, and can usually attack the wheat plant at their point of flowering, being able to infect the heads and to contaminate the kernels at the maturity. Contaminated kernels can be sometimes used as seeds for the cultivation of the following year. Poor knowledge on the ability of the strains of F. graminearum occurring on wheat seeds to be transmitted to the plant and to contribute to the final DON contamination of kernels is available. Therefore, this study had the goals of evaluating: (a) the capability of F. graminearum causing FHB of wheat to be transmitted from the seeds or soil to the kernels at maturity and the progress of the fungus within the plant at different growth stages; (b) the levels of DON contamination in both plant tissues and kernels. The study has been carried out for two years in a climatic chamber. The F. gramineraum strain selected for the inoculation was followed within the plant by using Vegetative Compatibility technique, and quantified by Real-Time PCR. Chemical analyses of DON were carried out by using immunoaffinity cleanup and HPLC/UV/DAD. The study showed that F. graminearum originated from seeds or soil can grow systemically in the plant tissues, with the exception of kernels and heads. There seems to be a barrier that inhibits the colonization of the heads by the fungus. High levels of DON and F. graminearum were found in crowns, stems, and straw, whereas low levels of DON and no detectable levels of F. graminearum were found in both heads and kernels. Finally, in all parts of the plant (heads, crowns, and stems at milk and vitreous ripening stages, and straw at vitreous ripening), also the accumulation of significant quantities of DON-3-glucoside (DON-3G), a product of DON glycosylation, was detected, with decreasing levels in straw, crown, stems and kernels. The presence of DON and DON-3G in heads and kernels without the occurrence of F. graminearum may be explained by their water solubility that could facilitate their translocation from stem to heads and kernels. The presence of DON-3G at levels 23 times higher than DON in the heads at milk stage without the occurrence of F. graminearum may indicate that an active glycosylation of DON also occurs in the head tissues. Finally, the high levels of DON accumulated in straws are worrisome since they represent additional sources of mycotoxin for livestock.  相似文献   

3.
4.
Fusarium graminearum, causal agent of Fusarium head blight (FHB), causes a huge economic loss. No information is available on the activity of quinofumelin, a novel quinoline fungicide, against F. graminearum or other phytopathogens. In this study, we used mycelial growth and spore germination inhibition methods to determine the inhibitory effect of quinofumelin against F. graminearum in vitro. The results indicated that quinofumelin excellently inhibited mycelial growth and spore germination of F. graminearum, with the average EC50 values of 0.019 ± 0.007 μg/mL and 0.087 ± 0.024 μg/mL, respectively. In addition, we found that quinofumelin could significantly decrease deoxynivalenol (DON) production and inhibit the expression of DON-related gene TRI5 in F. graminearum. Furthermore, we found that quinofumelin could disrupt the formation of Fusarium toxisome, a structure for producing DON. Western blot analysis demonstrated that the translation level of TRI1, a marker gene for Fusarium toxisome, was suppressed by quinofumelin. The protective and curative assays indicated that quinofumelin had an excellent control efficiency against F. graminearum on wheat coleoptiles. Taken together, quinofumelin exhibits not only an excellent antifungal activity on mycelial growth and spore germination, but also could inhibit DON biosynthesis in F. graminearum. The findings provide a novel candidate for controlling FHB caused by F. graminearum.  相似文献   

5.
6.
Fusarium graminearum, the causal agent of Fusarium head blight (FHB), produces trichothecenes including deoxynivalenol (DON), nivalenol (NIV), and 3,7,15-trihydroxy-12,13-epoxytrichothec-9-ene (NX-3). These toxins contaminate grains and cause profound health problems in humans and animals. To explore exploiting a fungal self-protection mechanism in plants, we examined the ability of F. graminearum trichothecene 3-O-acetyltransferase (FgTri101) to detoxify several key trichothecenes produced by F. graminearum: DON, 15-ADON, NX-3, and NIV. FgTri101 was cloned from F. graminearum and expressed in Arabidopsis plants. We compared the phytotoxic effects of purified DON, NIV, and NX-3 on the root growth of transgenic Arabidopsis expressing FgTri101. Compared to wild type and GUS controls, FgTri101 transgenic Arabidopsis plants displayed significantly longer root length on media containing DON and NX-3. Furthermore, we confirmed that the FgTri101 transgenic plants acetylated DON to 3-ADON, 15-ADON to 3,15-diADON, and NX-3 to NX-2, but did not acetylate NIV. Approximately 90% of the converted toxins were excreted into the media. Our study indicates that transgenic Arabidopsis expressing FgTri101 can provide plant protection by detoxifying trichothecenes and excreting the acetylated toxins out of plant cells. Characterization of plant transporters involved in trichothecene efflux will provide novel targets to reduce FHB and mycotoxin contamination in economically important plant crops.  相似文献   

7.
The current study investigated the fungal diversity in freshly harvested oat samples from the two largest production regions in Brazil, Paraná (PR) and Rio Grande do Sul (RS), focusing primarily on the Fusarium genus and the presence of type B trichothecenes. The majority of the isolates belonged to the Fusarium sambucinum species complex, and were identified as F. graminearum sensu stricto (s.s.), F. meridionale, and F. poae. In the RS region, F. poae was the most frequent fungus, while F. graminearum s.s. was the most frequent in the PR region. The F. graminearum s.s. isolates were 15-ADON genotype, while F. meridionale and F. poae were NIV genotype. Mycotoxin analysis revealed that 92% and 100% of the samples from PR and RS were contaminated with type B trichothecenes, respectively. Oat grains from PR were predominantly contaminated with DON, whereas NIV was predominant in oats from RS. Twenty-four percent of the samples were contaminated with DON at levels higher than Brazilian regulations. Co-contamination of DON, its derivatives, and NIV was observed in 84% and 57.7% of the samples from PR and RS, respectively. The results provide new information on Fusarium contamination in Brazilian oats, highlighting the importance of further studies on mycotoxins.  相似文献   

8.
Fusarium head blight (FHB) is one of the most important diseases of barley in Manitoba province (western Canada), and other major barley producing regions of the world. Little is known about the Fusarium species and mycotoxin spectra associated with FHB of barley in Manitoba. Hence, barley grain samples were collected from 149 commercial fields from 2017 to 2019, along with information on respective cropping history, and analyzed with respect to Fusarium species spectra, abundance, chemotype composition, and mycotoxin profiles. Fusarium poae was the predominant Fusarium species associated with FHB of barley in Manitoba, followed by F. graminearum, and F. sporotrichioides; F. equiseti and F. avenaceum were also detected but at low levels. F. poae strains with the nivalenol (NIV) chemotype and F. graminearum strains with 3-acetyl deoxynivalenol (3-ADON) and 15-acetyl deoxynivalenol (15-ADON) chemotypes were commonly detected in the barley grain samples. Nivalenol (597.7, 219.1, and 412.4 µg kg−1) and deoxynivalenol (DON) (264.7, 56.7, and 65.3 µg kg−1) were the two most prevalent mycotoxins contaminating Manitoba barley in 2017, 2018 and 2019, respectively. A substantially higher DON content was detected in grain samples from barley fields with cereals as a preceding crop compared to canola and flax. Furthermore, F. poae proved less sensitive to four triazole fungicides (metconazole, prothioconazole+tebuconazole, tebuconazole, and prothioconazole) than F. graminearum. Findings from this research will assist barley producers with improved understanding of FHB threat levels and optimizing practices for the best management of FHB in barley.  相似文献   

9.
Fusarium head blight (FHB) is a devastating wheat disease, mainly caused by Fusarium graminearum (FG)—a deoxynivalenol (DON)-producing species. However, Fusarium avenaceum (FA), able to biosynthesize enniatins (ENNs), has recently increased its relevance worldwide, often in co-occurrence with FG. While DON is a well-known mycotoxin, ENN activity, also in association with DON, is poorly understood. This study aims to explore enniatin B (ENB) activity, alone or combined with DON, on bread wheat and on Fusarium development. Pure ENB, DON, and ENB+DON (10 mg kg−1) were used to assess the impacts on seed germination, seedling growth, cell death induction (trypan blue staining), chlorophyll content, and oxidative stress induction (malondialdehyde quantification). The effect on FG and FA growth was tested using ENB, DON, and ENB+DON (10, 50, and 100 mg kg−1). Synergistic activity in the reduction of seed germination, growth, and chlorophyll degradation was observed. Conversely, antagonistic interaction in cell death and oxidative stress induction was found, with DON counteracting cellular stress produced by ENB. Fusarium species responded to mycotoxins in opposite directions. ENB inhibited FG development, while DON promoted FA growth. These results highlight the potential role of ENB in cell death control, as well as in fungal competition.  相似文献   

10.
The aim of this study was to evaluate the interactions between wheat plant (spikelets and straws), a strain of mycotoxigenic pathogen Fusarium graminearum and commercial biocontrol agents (BCAs). The ability of BCAs to colonize plant tissue and inhibit the pathogen or its toxin production was observed throughout two phases of the life cycle of pathogens in natural conditions (colonization and survival). All evaluated BCAs showed effective reduction capacities of pathogenic traits. During establishment and the expansion stage, BCAs provoked an external growth reduction of F. graminearum (77–93% over the whole kinetic studied) and mycotoxin production (98–100% over the whole kinetic studied). Internal growth of pathogen was assessed with digital droplet polymerase chain reaction (ddPCR) and showed a very strong reduction in the colonization of the internal tissues of the spikelet due to the presence of BCAs (98% on average). During the survival stage, BCAs prevented the formation of conservation perithecia of the pathogen on wheat straw (between 88 and 98% of perithecia number reduction) and showed contrasting actions on the ascospores they contain, or perithecia production (−95% on average) during survival form. The mechanisms involved in these different interactions between F. graminearum and BCAs on plant matrices at different stages of the pathogen’s life cycle were based on a reduction of toxins, nutritional and/or spatial competition, or production of anti-microbial compounds.  相似文献   

11.
Jianbo Qiu  Jianrong Shi 《Toxins》2014,6(8):2291-2309
Members of the Fusarium graminearum species complex (FGSC) are important pathogens on wheat, maize, barley, and rice in China. Harvested grains are often contaminated by mycotoxins, such as the trichothecene nivalenol (NIV) and deoxynivalenol (DON) and the estrogenic mycotoxin zearalenone (ZEN), which is a big threat to humans and animals. In this study, 97 isolates were collected from maize, wheat, and rice in Jiangsu and Anhui provinces in 2013 and characterized by species- and chemotype-specific PCR. F. graminearum sensu stricto (s. str.) was predominant on maize, while most of the isolates collected from rice and wheat were identified as F. asiaticum. Fusarium isolates from three hosts varied in trichothecene chemotypes. The 3-acetyldeoxynivalenol (3ADON) chemotype predominated on wheat and rice population, while 15ADON was prevailing in the remaining isolates. Sequence analysis of the translation elongation factor 1α and trichodiene synthase indicated the accuracy of the above conclusion. Additionally, phylogenetic analysis suggested four groups with strong correlation with species, chemotype, and host. These isolates were also evaluated for their sensitivity to carbendazim and mycotoxins production. The maize population was less sensitive than the other two. The DON levels were similar in three populations, while those isolates on maize produced more ZEN. More DON was produced in carbendazim resistant strains than sensitive ones, but it seemed that carbendazim resistance had no effect on ZEN production in wheat culture.  相似文献   

12.
Suspensions or solutions with 1% of Chinese galls (Galla chinensis, GC) or 1% of tannic acid (TA), inhibited germination of conidia or mycelium growth of Fusarium graminearum (FG) by 98%–100% or by 75%–80%, respectively, whereas dried bark from buckthorn (Frangula alnus, FA) showed no effect at this concentration. In climate chamber experiments where the wheat variety “Apogee” was artificially inoculated with FG and F. crookwellense (FCr) and treated with 5% suspensions of TA, GC and FA, the deoxynivalenol (DON) content in grains was reduced by 81%, 67% and 33%, respectively. In field experiments with two commercial wheat varieties and artificial or semi-natural inoculations, mean DON reductions of 66% (TA) and 58% (FA), respectively, were obtained. Antifungal toxicity can explain the high efficacies of TA and GC but not those of FA. The Fusarium head blight (FHB) and mycotoxin reducing effect of FA is probably due to elicitation of resistance in wheat plants. With semi-natural inoculation, a single FA application in the first half of the flowering period performed best. However, we assume that applications of FA at the end of ear emergence and a treatment, triggered by an infection period, with TA or GC during flowering, might perform better than synthetic fungicides.  相似文献   

13.
Fusarium head blight (FHB) can lead to dramatic yield losses and mycotoxin contamination in small grain cereals in Canada. To assess the extent and severity of FHB in oat, samples collected from 168 commercial oat fields in the province of Manitoba, Canada, during 2016–2018 were analyzed for the occurrence of Fusarium head blight and associated mycotoxins. Through morphological and molecular analysis, F. poae was found to be the predominant Fusarium species affecting oat, followed by F. graminearum, F. sporotrichioides, F. avenaceum, and F. culmorum. Deoxynivalenol (DON) and nivalenol (NIV), type B trichothecenes, were the two most abundant Fusarium mycotoxins detected in oat. Beauvericin (BEA) was also frequently detected, though at lower concentrations. Close clustering of F. poae and NIV/BEA, F. graminearum and DON, and F. sporotrichioides and HT2/T2 (type A trichothecenes) was detected in the principal component analysis. Sampling location and crop rotation significantly impacted the concentrations of Fusarium mycotoxins in oat. A phylogenetic analysis of 95 F. poae strains from Manitoba was conducted using the concatenated nucleotide sequences of Tef-1α, Tri1, and Tri8 genes. The results indicated that all F. poae strains belong to a monophyletic lineage. Four subgroups of F. poae strains were identified; however, no correlations were observed between the grouping of F. poae strains and sample locations/crop rotations.  相似文献   

14.
Paraguay is a non-traditional wheat-producing country in one of the warmest regions in South America. Fusarium Head Blight (FHB) is a critical disease affecting this crop, caused by the Fusarium graminearum species complex (FGSC). A variety of these species produce trichothecenes, including deoxynivalenol (DON) and its acetylated forms (3-ADON and 15-ADON) or nivalenol (NIV). This study characterized the phylogenetic relationships, and chemotype diversity of 28 strains within FGSC collected from wheat fields across different country regions. Phylogenetic analysis based on the sequence of elongation factor-1α gene (EF-1α) from 28 strains revealed the presence of four species in the FGSC: F. graminearum sensu stricto, F. asiaticum, F. meridionale and F. cortaderiae. Ten strains selected for further analysis revealed that all F. graminearum strains were 15-ADON chemotype, while the two strains of F. meridionale and one strain of F. asiaticum were NIV chemotype. Thus, the 15-ADON chemotype of F. graminearum sensu stricto was predominant within the Fusarium strains isolated in the country. This work is the first report of phylogenetic relationships and chemotype diversity among Fusarium strains which will help understand the population diversity of this pathogen in Paraguay.  相似文献   

15.
Momordica charantia L., a vegetable crop with high nutritional value, has been used as an antimutagenic, antihelminthic, anticancer, antifertility, and antidiabetic agent in traditional folk medicine. In this study, the antifungal activity of M. charantia seed extract toward Fusarium solani L. was evaluated. Results showed that M. charantia seed extract effectively inhibited the mycelial growth of F. solani, with a 50% inhibitory rate (IC50) value of 108.934 μg/mL. Further analysis with optical microscopy and fluorescence microscopy revealed that the seed extract led to deformation of cells with irregular budding, loss of integrity of cell wall, as well as disruption of the fungal cell membrane. In addition, genomic DNA was also severely affected, as small DNA fragments shorter than 50 bp appeared on agarose gel. These findings implied that M. charantia seed extract containing α-momorcharin, a typical ribosome-inactivating protein, could be an effective agent in the control of fungal pathogens, and such natural products would represent a sustainable alternative to the use of synthetic fungicides.  相似文献   

16.
Little is known about the degradability of mycotoxin deoxynivalenol (DON) by the spent mushroom substrate (SMS)-derived manganese peroxidase (MnP) and lignin peroxidase (LiP) and its potential. The present study investigated the growth inhibition of Fusarium graminearum KR1 and the degradation of DON by MnP and LiP extracted from SMS. The results from the 7-day treatment period showed that mycelium inhibition of F. graminearum KR1 by MnP and LiP were 23.7% and 74.7%, respectively. Deoxynivalenol production in the mycelium of F. graminearum KR1 was undetectable after treatment with 50 U/mL of MnP or LiP for 7 days. N-acetyl-D-glucosamine (GlcNAc) content and chitinase activity both increased in the hyphae of F. graminearum KR1 after treatment with MnP and LiP for 1, 3, and 6 h, respectively. At 12 h, only the LiP-treated group had higher chitinase activity and GlcNAc content than those of the control group (p < 0.05). However, more than 60% of DON degradabilities (0.5 mg/kg, 1 h) were observed under various pH values (2.5, 4.5, and 6.5) in both MnP (50 U/g) and LiP (50 U/g) groups, while DON degradability at 1 mg/kg was 85.5% after 50 U/g of LiP treatment for 7 h in simulated pig gastrointestinal tracts. Similarly, DON degradability at 5 mg/kg was 67.1% after LiP treatment for 4.5 h in simulated poultry gastrointestinal tracts. The present study demonstrated that SMS-extracted peroxidases, particularly LiP, could effectively degrade DON and inhibit the mycelium growth of F. graminearum KR1.  相似文献   

17.
Fusarium head blight (FHB) caused by fungi of the genus Fusarium is one of the most dangerous crop diseases, which has a wide geographic distribution and causes severe economic losses in the production of major cereal species. The infection leads to the accumulation of mycotoxins in grains, which compromises its suitability for human and animal consumption. The study demonstrated that grain samples from warmer regions of Poland, including Sulejów and Tomaszów Bolesławicki (results differed across years of the study), were colonized mainly by F. graminearum and were most highly contaminated with deoxynivalenol (DON). Samples from Northeastern Poland, i.e., Ruska Wieś, which is located in a cooler region, were characterized by a predominance of Fusarium species typical of the cold climate, i.e., Fusarium poae and Penicillium verrucosum. A Spearman’s rank correlation analysis revealed that the severity of grain infection with F. avenaceum/F. tricinctum was affected by the mean daily temperature and high humidity in May, and the corresponding values of the correlation coefficient were determined at R = 0.54 and R = 0.50. Competitive interactions were observed between the F. avenaceum/F. tricinctum genotype and DON-producing F. culmorum and F. graminearum, because the severity of grain infections caused by these pathogens was bound by a negative correlation.  相似文献   

18.
Fusarium head blight (FHB) is a major disease in wheat causing severe economic losses globally by reducing yield and contaminating grain with mycotoxins. In Canada, Fusarium graminearum is the principal etiological agent of FHB in wheat, producing mainly the trichothecene mycotoxin, deoxynivalenol (DON) and its acetyl derivatives (15-acetyl deoxynivalenol (15ADON) and 3-acetyl deoxynivalenol (3ADON)). Understanding the population biology of F. graminearum such as the genetic variability, as well as mycotoxin chemotype diversity among isolates is important in developing sustainable disease management tools. In this study, 570 F. graminearum isolates collected from commercial wheat crops in five geographic regions in three provinces in Canada in 2018 and 2019 were analyzed for population diversity and structure using 10 variable number of tandem repeats (VNTR) markers. A subset of isolates collected from the north-eastern United States was also included for comparative analysis. About 75% of the isolates collected in the Canadian provinces of Saskatchewan and Manitoba were 3ADON indicating a 6-fold increase in Saskatchewan and a 2.5-fold increase in Manitoba within the past 15 years. All isolates from Ontario and those collected from the United States were 15ADON and isolates had a similar population structure. There was high gene diversity (H = 0.803–0.893) in the F. graminearum populations in all regions. Gene flow was high between Saskatchewan and Manitoba (Nm = 4.971–21.750), indicating no genetic differentiation between these regions. In contrast, less gene flow was observed among the western provinces and Ontario (Nm = 3.829–9.756) and USA isolates ((Nm = 2.803–6.150). However, Bayesian clustering model analyses of trichothecene chemotype subpopulations divided the populations into two clusters, which was correlated with trichothecene types. Additionally, population cluster analysis revealed there was more admixture of isolates among isolates of the 3ADON chemotypes than among the 15ADON chemotype, an observation that could play a role in the increased virulence of F. graminearum. Understanding the population genetic structure and mycotoxin chemotype variations of the pathogen will assist in developing FHB resistant wheat cultivars and in mycotoxin risk assessment in Canada.  相似文献   

19.
The major causal agents Fusarium graminearum (F. graminearum) and Fusarium asiaticum could produce multiple mycotoxins in infected wheat, which threatens the health of humans and animals. Specifically, deoxynivalenol (DON) and its derivatives 3- and 15-acetyldeoxynivalenol (3-ADON and 15-ADON) are commonly detected mycotoxins in cereal grains. However, the good chromatographic separation of 3-ADON and 15-ADON remains challenging. Here, an LC-MS/MS method for the chemotype determination of Fusarium strains was developed and validated. 3- and 15-ADON could be separated chromatographically in this study with sufficiently low limits of detection (LODs; 4 μg/kg) and limits of quantification (LOQs; 8 μg/kg). The satisfying intraday and interday reproducibility (both %RSDr and %RSDR were <20%) of this method indicated good stability. The recoveries of all analytes were in the range of 80–120%. In addition, three F. graminearum complex (FGC) strains, i.e., PH-1 (chemotype 15-ADON), F-1 (chemotype 3-ADON) and 5035 (chemotype 15-ADON), were selected to verify the accuracy of the method in differentiating phenotypes. The validation results showed that this LC-MS/MS method based on sample pretreatment is effective and suitable for the chromatographic separation of 3-ADON and 15-ADON in wheat.  相似文献   

20.
Deoxynivalenol (DON) is the most prevalent trichothecene in Europe and its occurrence is associated with infections of Fusarium graminearum and F. culmorum, causal agents of Fusarium head blight (FHB) on wheat. Resistance to FHB is a complex character and high variability occurs in the relationship between DON content and FHB incidence. DON conjugation to glucose (DON-3-glucoside, D3G) is the primary plant mechanism for resistance towards DON accumulation. Although this mechanism has been already described in bread wheat and barley, no data are reported so far about durum wheat, a key cereal in the pasta production chain. To address this issue, the ability of durum wheat to detoxify and convert deoxynivalenol into D3G was studied under greenhouse controlled conditions. Four durum wheat varieties (Svevo, Claudio, Kofa and Neodur) were assessed for DON-D3G conversion; Sumai 3, a bread wheat variety carrying a major QTL for FHB resistance (QFhs.ndsu-3B), was used as a positive control. Data reported hereby clearly demonstrate the ability of durum wheat to convert deoxynivalenol into its conjugated form, D3G.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号