首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Machine-made sand is gradually replacing natural sand to achieve sustainable development. Experimental studies and gray-correlation analysis were used to study the properties of tunnel slag machine-made mortar and concrete. The properties of machine-made mortar with different stone powder content were analyzed through experiments. By analyzing the performance of machine-made sand concrete with equal amounts of cement replaced by stone powder, the optimum replacement ratio is obtained. Gray-correlation analysis was used to compare the degree of influence of fineness modulus and stone powder content on the performance of concrete. Scanning electron microscopy (SEM) and X-ray diffractometry (XRD) were used to analyze the microstructure of tunnel slag sand concrete. The test results showed that the flexural and compressive strengths of the machine-made sand concrete were greater than the standard sand with the same stone powder content. The 28-day flexural and compressive strengths had a maximum difference of more than 30%. The best stone powder content of the machine-made mortar is in the range of 5% to 8%. When the replacement cement content of stone powder is about 6%, the mechanical and working properties of machine-made sand concrete achieve the optimal state. The lower the stone powder content, the closer the mechanical and working properties of machine-made sand concrete and river sand concrete. The correlation between the performance of machine-made sand concrete and fineness modulus is the largest. When the stone powder content is low, it has almost no effect on the compressive strength of concrete. The results point out the direction for the quality control of tunnel slag machine-made sand concrete.  相似文献   

2.
Expanded polystyrene (EPS) concrete is commonly used as the core material of commercial sandwich panels (CSPs). It is environmentally friendly and lightweight but has poor strength. Adding fibers can improve the microstructure of EPS concrete and reduce the weakening effect of EPS beads on the mechanical properties of concrete. An orthogonal experimental design (OED) was used in this paper to analyze the influence of length and content of polypropylene fiber (PF), glass fiber (GF), and carbon fiber (CF) on the physical and mechanical properties and micromorphology of EPS concrete. Among them, CFs have the most apparent impact on concrete and produce the most significant improvements in all properties. According to the requirements of the flexural performance of CSPs, the splitting tensile strength was taken as the optimization index, and the predicted optimal combination (OC) of EPS concrete with fibers was selected. The variations in the material properties, mechanical properties, and microstructure with age were analyzed. The results show that with increasing age, the dry density, compressive strength, and splitting tensile strength of concrete are markedly improved relative to those of the CSP core material and the control case (CC), and even the degree of hydration is improved.  相似文献   

3.
Blast furnace slag is one of the largest solid wastes in the world. The slag-based geopolymer obtained by alkali activation has many advantages, such as a high strength, a good corrosion resistance, low carbon and environmental protection. Existing studies have shown that the mechanical properties of slag-based geopolymers are related to the combined effects of many factors, but there is still a lack of reliable conclusions on the primary and secondary influence degree of each factor, which greatly affects the scientific preparation and application of slag-based geopolymers. In order to solve this problem, we choose to proceed from the two perspectives of the mix ratio of the alkali activator and the elemental composition of raw materials. Through the orthogonal analysis method, this paper studies the influence of the modulus of the alkali activator, the solid-to-liquid ratio of the activator, the water–cement ratio and the metakaolin replacement rate on the uniaxial compressive strength of a slag-based geopolymer. The results show that when the solid–liquid ratio is about 0.25, the modulus of the alkali activator is 1.3~1.5, the water–cement ratio is about 0.4 and the samples with higher strength can be prepared. With the addition of metakaolin, a new gel phase NASH was formed in the system, which significantly promoted the late strength and toughness growth of the sample. The research results comprehensively analyze the influence of different factors on the mechanical properties of the slag-based geopolymer, which can provide a valuable reference for the engineering application of alkali-activated slag materials.  相似文献   

4.
According to the authors’ best information, the majority of research focuses on other waste materials, such as recycling industrial waste (glass, silica fume, marble and waste foundry sand), etc. However, some researchers suggest dune sand as an alternative material for concrete production, but knowledge is still scarce. Therefore, a comprehensive review is required on dune sand to evaluate its current progress as well as its effects on the strength and durability properties of concrete. The review presents detailed literature on dune sand in concrete. The important characteristics of concrete such as slump, compressive, flexural, cracking behaviors, density, water absorption and sulfate resistance were considered for analysis. Results indicate that dune sand can be used in concrete up to 40% without any negative effect on strength and durability. The negative impact of dune sand on strength and durability was due to poor grading and fineness, which restricts the complete (100%) substation of dune sand. Furthermore, a decrease in flowability was observed. Finally, the review highlights the research gap for future studies.  相似文献   

5.
The depletion of natural resources of river sand and its availability issues as a construction material compelled the researchers to use manufactured sand. This study investigates the compressive strength of concrete made of manufactured sand as a partial replacement of normal sand. The prediction model, i.e., gene expression programming (GEP), was used to estimate the compressive strength of manufactured sand concrete (MSC). A database comprising 275 experimental results based on 11 input variables and 1 target variable was used to train and validate the developed models. For this purpose, the compressive strength of cement, tensile strength of cement, curing age, Dmax of crushed stone, stone powder content, fineness modulus of the sand, water-to-binder ratio, water-to-cement ratio, water content, sand ratio, and slump were taken as input variables. The investigation of a varying number of genetic characteristics, such as chromosomal number, head size, and gene number, resulted in the creation of 11 alternative models (M1-M11). The M5 model outperformed other created models for the training and testing stages, with values of (4.538, 3.216, 0.919) and (4.953, 3.348, 0.906), respectively, according to the results of the accuracy evaluation parameters root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2). The R2 and error indices values revealed that the experimental and projected findings are in extremely close agreement. The best model has 200 chromosomes, 8 head sizes, and 3 genes. The mathematical expression achieved from the GEP model revealed that six parameters, namely the compressive and tensile strength of cement, curing period, water–binder ratio, water–cement ratio, and stone powder content contributed effectively among the 11 input variables. The sensitivity analysis showed that water–cement ratio (46.22%), curing period (25.43%), and stone powder content (13.55%) were revealed as the most influential variables, in descending order. The sensitivity of the remaining variables was recorded as w/b (11.37%) > fce (2.35%) > fct (1.35%).  相似文献   

6.
At present, the treatment of tailings is mostly carried out in the form of stacking in tailings ponds, resulting in a huge waste of mineral resources and a major threat to the environment and ecology. Using tailings instead of a part of the cement to make cementitious materials is an effective way to reduce the accumulation of tailings. In this paper, lead–zinc tailings-based cementitious materials were prepared by using lead–zinc tailings, fly ash, and ordinary Portland cement, and the effects of four factors on the mechanical properties of lead–zinc tailings, as well as fly ash content, cement content, and water–binder ratio were studied by orthogonal experiments. The corresponding relationship between the factors and the properties of cementitious materials was determined, and the optimization and prediction of the raw material ratio of lead–zinc tailings-based cementitious materials were realized. The test showed the ratio of raw materials to be at the lowest price ratio. Synchronously the ratio that meets the minimum strength requirements was predicted. When the proportion of fly ash:lead and zinc tailings:cement = 30:40:30 and the water–binder ratio was 0.4, the predicted compressive strength of the prepared cementitious material achieved 22.281 MPa, which meets the strength requirements, while the total content of lead–zinc tailings and fly ash was the highest at this time.  相似文献   

7.
With the rapid development of infrastructure construction, it is an inevitable trend to replace natural sand in short supply with manufactured sand to meet sustainable development. In this paper, the relationship between the particle shape characteristics of manufactured sand and concrete performance is discussed using a morphological analysis and concrete experiments. The particle shape parameters of five types of manufactured sand were obtained by using the aggregate image measurement system (AIMS) and digital image processing (DIP) techniques, and the correlations between different parameters were analyzed. Moreover, the properties of concrete with the five kinds of manufactured sand were tested. The results show that particle size and type have a significant impact on particle shape parameters. Particle shape parameters, especially angularity, correlate well with the workability and compressive strength of concrete while having little effect on the durability of concrete. An accurate understanding of the morphological characteristics of manufactured sand is conducive to the optimization of concrete mix designs. Therefore, it is suggested that a manufactured-sand shape test be included in aggregate specification.  相似文献   

8.
This paper describes orthogonal experiments to investigat the effects of content of fly ash and slag, sol ratio, modulus of sodium silicate and expander on the compressive strength and shrinkage of alkali activated low-carbon green concrete (AAGC) of different ages. The microstructures and hydration product compositions of AAGC with different proportions were further studied by Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD) and Mercury Intrusion Porosimetry (MIP). The results show that with an increase of fly ash content, the compressive strength of AAGC gradually decreases, the decline of compressive strength at 28 d is smaller than that of 7 d, and the shrinkage strain gradually increases at 28 d. As the sol ratio increases, the compressive strength increases first and then decreases. When the sol ratio is 0.42, the compressive strength is maximal at 28 d; the same is true for compressive strength at 7 d. Additionally, an increase of sol ratio can reduce the shrinkage strain at 28 d. Finally, when the sol ratio was 0.46, the shrinkage decreased by 30.5% compared with 0.40 at 28 d. As the modulus of sodium silicate (Ms) increases, the compressive strength first increases and then decreases. When Ms is 1.4, the compressive strength reaches the maximum. As Ms increases, the shrinkage strain decreases first and then increases at 28 d. When Ms is 1.0, the shrinkage strain is the maximum at 28 d. Finally, with an increase in the content of expander, the compressive strength decreases at 7 d and 28 d, and the shrinkage strain decreases at 28 d. The shrinkage strain at 28 d is the minimum with 9% content. AAGC mixed with a small amount of fly ash and expander has more hydration products and significantly reduced cracks. In addition, the proportion of small hole volume of AAGC increases, while the proportion of large hole volume decreases. AAGC mixed with fly ash and slag without expander has more unhydrated particles and its structure is loose.  相似文献   

9.
The continuous growth of the concrete industry requires an increased quantity of cement and natural aggregates year after year, and it is responsible for a major part of the global CO2 emissions. These aspects led to rigorous research for suitable raw materials. Taking into account that these raw materials must have a sustainable character and also a low impact on environmental pollution, the replacement of the conventional components of concrete by residual waste can lead to these targets. This paper’s aim is to analyze the density, compressive strength and the thermal conductivity of nine concrete compositions with various rates of waste: four mixes with 10%, 20%, 40% and 60% chopped PET bottles aggregates and 10% fly ash as cement partial substitution; a mix with 60% waste polystyrene of 4–8 mm and 10% fly ash; a mix with 20% waste polystyrene of 4–8 mm, 10% waste polystyrene of 0–4 mm and 10% fly ash; a mix with 50% waste polystyrene of 4–8 mm, 20% waste polystyrene of 0–4 mm and 20% fly ash two mixes with 10% fly ash and 10% and 40% waste sawdust, respectively. Using 60% PET aggregates, 60% polystyrene granules of 4–8 mm, or 20% polystyrene of 0–4 mm together with 50% polystyrene of 4–8 mm led to the obtainment of lightweight concrete, with a density lower than 2000 kg/m3. These mixes also registered the best results from a thermal conductivity point of view, after the concrete mix with 40% saw dust. Regarding compressive strength, the mix with 10% PET obtained a result very close to the reference mix, while those with 20% PET, 40% PET, 30% polystyrene, and 10% saw dust, respectively, registered values between 22 MPa and 25 MPa, values appropriate for structural uses.  相似文献   

10.
The paper focuses on investigating the effect of impregnation of recycled concrete aggregate on the mechanical and durability properties of concrete using this aggregate. Cement paste, limewater and diluted water glass were used to impregnate the aggregate. Both a single impregnation and a double impregnation using two different solutions were carried out. A total of four groups of concrete series, with two values of w/c ratio (0.45 and 0.60), were made. Concrete made using the impregnated aggregate was tested and the results were compared with those of concrete made using untreated recycled aggregate of the same kind. The results indicate that impregnation of aggregate improves the mechanical properties of concrete in many cases but reduces its resistance to cyclic freezing and thawing. Furthermore, in the case of impregnation with two solutions, the order in which the impregnants are applied influences the effect obtained. Using the results received, the impregnation methods were ranked in order from best to worst. The best impregnation method proved to be with cement paste, followed by diluted water glass, while the worst results were obtained with limewater, followed by diluted water glass.  相似文献   

11.
The application of supplementary cementitious materials (SCMs) in concrete has been reported as the sustainable approach toward the appropriate development. This research aims to compare the result of compressive strength (C-S) obtained from the experimental method and results estimated by employing the various modeling techniques for the fly-ash-based concrete. Although this study covers two aspects, an experimental approach and modeling techniques for predictions, the emphasis of this research is on the application of modeling methods. The physical and chemical properties of the cement and fly ash, water absorption and specific gravity of the aggregate used, surface area of the cement, and gradation of the aggregate were analyzed in the laboratory. The four predictive machine learning (PML) algorithms, such as decision tree (DT), multi-linear perceptron (MLP), random forest (RF), and bagging regressor (BR), were investigated to anticipate the C-S of concrete. Results reveal that the RF model was observed more exact in investigating the C-S of concrete containing fly ash (FA), as opposed to other employed PML techniques. The high R2 value (0.96) for the RF model indicates the high precision level for forecasting the required output as compared to DT, MLP, and BR model R2 results equal 0.88, 0.90, and 0.93, respectively. The statistical results and cross-validation (C-V) method also confirm the high predictive accuracy of the RF model. The highest contribution level of the cement towards the prediction was also reported in the sensitivity analysis and showed a 31.24% contribution. These PML methods can be effectively employed to anticipate the mechanical properties of concretes.  相似文献   

12.
The reuse of waste in civil construction brings environmental and economic benefits. However, for these to be used in concrete, it is necessary a previous evaluation of their physical and chemical characteristics. Thus, this study aimed to characterize and analyze the waste foundry exhaust sand (WFES) for use in self-compacting concrete (SCC). Foundry exhaust sand originates from the manufacturing process of sand molds and during demolding of metal parts. It is a fine sand rich in silica in the form of quartz collected by baghouse filter. Characterization of WFES was conducted through laser granulometry, scanning electron microscopy (SEM) in the energy dispersive spectroscopy (EDS) mode, X-ray diffraction (XRD), X-ray fluorescence (XRF), Fourier transform infrared spectroscopy (FTIR), thermogravimetry (TG) and derivative thermogravimetry (DTG) techniques. The waste was classified as non-hazardous and non-inert, with physical and chemical properties suitable for use in SCC composition, as fine aggregate or mineral addition. Five mixtures of SCC were developed, in order to determine the waste influence in both fresh and hardened concrete. The properties in the fresh state were reached. There was an increase in compressive strength and sulfate resistance, a decrease in water absorption of self-compacting concrete by incorporating WFES as 30% replacement.  相似文献   

13.
In this study, the effect of waste glass on the mechanical properties of concrete was examined by conducting a series of compressive strength, splitting tensile strength and flexural strength tests. According to this aim, waste glass powder (WGP) was first used as a partial replacement for cement and six different ratios of WGP were utilized in concrete production: 0%, 10%, 20%, 30%, 40%, and 50%. To examine the combined effect of different ratios of WGP on concrete performance, mixed samples (10%, 20%, 30%) were then prepared by replacing cement, and fine and coarse aggregates with both WGP and crashed glass particles. Workability and slump values of concrete produced with different amounts of waste glass were determined on the fresh state of concrete, and these properties were compared with those of plain concrete. For the hardened concrete, 150 mm × 150 mm × 150 mm cubic specimens and cylindrical specimens with a diameter of 100 mm and a height of 200 mm were tested to identify the compressive strength and splitting tensile strength of the concrete produced with waste glass. Next, a three-point bending test was carried out on samples with dimensions of 100 × 100 × 400 mm, and a span length of 300 mm to obtain the flexure behavior of different mixtures. According to the results obtained, a 20% substitution of WGP as cement can be considered the optimum dose. On the other hand, for concrete produced with combined WGP and crashed glass particles, mechanical properties increased up to a certain limit and then decreased owing to poor workability. Thus, 10% can be considered the optimum replacement level, as combined waste glass shows considerably higher strength and better workability properties. Furthermore, scanning electron microscope (SEM) analysis was performed to investigate the microstructure of the composition. Good adhesion was observed between the waste glass and cementitious concrete. Lastly, practical empirical equations have been developed to determine the compressive strength, splitting tensile strength, and flexure strength of concrete with different amounts of waste glass. Instead of conducting an experiment, these strength values of the concrete produced with glass powder can be easily estimated at the design stage with the help of proposed expressions.  相似文献   

14.
In light of the scientific research, the corrosion of concrete structures is one of the main problems that may reduce their durability due to the negative impact of the natural environment. The paper analyzes the influence of the type of component on the selected properties of lightweight concrete subjected to the influence of aggressive liquids. Four concrete mixes were prepared with a granular aggregate made of foamed glass (GEGA) and aggregate made of sintered fly ash (GAA) with the use of a mineral additive: silica fly ash. The prepared lightweight concrete after one year was exposed for 60 days to the following environments: strong acid—HCl, 1% and 2% concentration, weak acid—CH3COOH, 1% and 2% concentration, and an aqueous salt solution of Na2SO4, 1% and 2% concentration. Then, the compressive strength was tested, and the microstructure analysis of the ready-made lightweight concrete (LWC) was performed. The degree of penetration of aggressive solutions into the cracks of the samples was assessed by means of applying 1% phenolphthalein solution. Changes in the weight of lightweight concrete samples after the test period were estimated. The obtained test results indicate that the decrease in the durability of lightweight concrete can be classified as a long-term process. Concrete with GEGA and GAA showed high resistance to aggressive environments. Moreover, the environment containing chlorides turned out to be the most aggressive, while the environment containing sulfates proved to be the least aggressive. The higher the concentration of the destructive factor was, the faster the corrosion process went. This has been proven by measuring the pH using phenolphthalein and carrying out microscopic examination. Concretes containing aggregates made of foamed glass and sintered fly ash are suitable for use both in traditional construction and in facilities exposed to an aggressive environment (e.g., in the chemical industry and at gas stations).  相似文献   

15.
Recycled concrete brick (RCB) is manufactured by recycled aggregate processed from discarded concrete blocks arising from the demolishing of existing buildings. This paper presents research on the seismic performance of RCB masonry walls to assess the applicability of RCB for use in rural low-rise constructions. The seismic performance of a masonry wall is closely related to the vertical load applied to the wall. Thus, the compressive performance of RCB masonry was investigated firstly by constructing and testing eighteen RCB masonry compressive specimens with different mortar strengths. The load-bearing capacity, deformation and failure characteristic were analyzed, as well. Then, a quasi-static test was carried out to study the seismic behavior of RCB walls by eight RCB masonry walls subjected to an axial compressive load and a reversed cyclic lateral load. Based on the test results, equations for predicting the compressive strength of RCB masonry and the lateral ultimate strength of an RCB masonry wall were proposed. Experimental values were found to be in good agreement with the predicted values. Meanwhile, finite element analysis (FEA) and parametric analysis of the RCB walls were carried out using ABAQUS software. The elastic-plastic deformation characteristics and the lateral load-displacement relations were studied.  相似文献   

16.
Few studies have reported the cohesion and friction angle of concrete at a super early age. However, these two mechanical parameters are necessary to study the influence of engineering vibration on super-early-age concrete. In view of this, the mechanical properties of the super-early age-concrete are investigated in this work by direct shear testing. Firstly, the shear strength of the super-early-age concrete is measured by the direct shear experiment under different normal pressures at different times. Secondly, the cohesion and friction angle of the super early age concrete are calculated according to the Mohr–Coulomb criterion of failure. To overcome the great discreteness and randomness in the measured data, a new robust regression analysis algorithm is presented to replace the traditional regression analysis method to obtain more reliable and reasonable mechanical parameters. According to the experimental and theoretical analysis results, it is found that the friction angles of the super early age concrete are located in the interval of [50°, 70°]. The cohesion of the concrete is about 78.7 kPa at the initial setting state and about 190.9 kPa at the final setting state, respectively. It has been shown that the cohesion of the concrete at a super-early age tends to increase rapidly with time. The method and test results of this work can be used as a reference for relevant engineering practice. Specifically, the proposed regression method can be extended to the data analysis of other mechanical parameters of concrete, as well as other brittle materials such as rock. The test results of early concrete cohesion and friction angle can be used to analyze the adverse effects of vibration on newly cast concrete members in pile driving and blasting engineering.  相似文献   

17.
Concrete mix design methods are used to determine proportions of concrete ingredients needed for certain workability and strength. Each mix design method operates under certain assumptions and suggests slightly different proportions. It is of great importance that site/construction engineers know the method by which the mix was designed. However, it can be difficult to know the designing method based solely on mix proportions. Hence, in this work, a decision trees model was used to classify high strength concrete mix design methods based on their produced concrete mix proportions. It was found that the trained decision tree model is capable of classifying mix design methods with high accuracy. Further, based on dimensionality reduction methods, the amount of cement in a concrete mix was found to be the paramount predictor of the used mix design method. In this work, a novel high-accuracy model for determining a mix design method based only on mix proportion is proposed.  相似文献   

18.
In this study, aramid fiber (Kevlar® 29 fiber) and carbon fiber were added into concrete in a hybrid manner to enhance the static and impact mechanical properties. The coupling agent presence on the surface of carbon fibers was spotted in Scanning Electron Microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS) graphs. The carbon fiber with a coupling agent affected the mechanical strength of the reinforced concrete. At 1% fiber/cement weight percentage, the hybrid fiber-reinforced concrete (HFRC) prepared using Kevlar fiber and carbon fiber of 12 and 24 mm in length under different mix proportions was investigated to determine the maximum mechanical strengths. From the test results, the mechanical strength of the HFRC attained better performance than that of the concrete with only Kevlar or carbon fibers. Foremost, the mix proportion of Kevlar/carbon fiber (50–50%) significantly improved the compressive, flexural, and splitting tensile strengths. Under different impact energies, the impact resistance of the HFRC specimen was much higher than that of the benchmark specimen, and the damage of the HFRC specimens was examined with an optical microscope to identify slippage or rupture failure of the fiber in concrete.  相似文献   

19.
In this study, the effects of soybean-urease-induced carbonate precipitation on a high-temperature damage repair of concrete were explored. C50 concrete specimens were exposed to high temperatures from 300 to 600 °C, then cooled to an ambient temperature and repaired by two different methods. The influences of the damage temperature and repair methods on surface film thickness, average infrared temperature increase, water absorption, and compressive strength were investigated. Scanning electron microscopy (SEM) images were carried out to further study the mechanism involved. The results revealed that the white sediments on the surface of the repaired specimens were calcium carbonate (CaCO3) and calcium oxalate (CaC2O4). The surface film thickness reached up to 1.94 mm after repair. The average infrared temperature increase in the repaired specimens at different damage temperatures was averagely reduced by about 80% compared with that before the repair. It showed more obvious repair effects at higher temperatures in water absorption and compressive strength tests; the compressive strength of repaired specimens was 194% higher than that before repairs at 600 °C. A negative pressure method was found to be more effective than an immersion method. This study revealed the utilization of SICP on repairing high-temperature damage of concrete is feasible theoretically.  相似文献   

20.
This paper analyzes concrete fine aggregate (sand) modification by scrap tire rubber particles-fine crumb rubber (FCR) and coarse crumb rubber (CCR) of fraction 0/1 mm. Such rubberized concrete to get better bonding properties were modified by car-boxylated styrene butadiene rubber (SBR) latex and to gain the strength were modified by glass waste. The following tests—slump test, fresh concrete density, fresh concrete air content, compressive strength, flexural strength, fracture energy, freezing-thawing, porosity parameter, and scanning electron microscope—were conducted for rubberized concretes. From experiments, we can see that fresh concrete properties decreased when crumb rubber content has increased. Mostly it is related to crumb rubber (CR) lower specific gravity nature and higher fineness compared with changed fine aggregate-sand. In this research, we obtained a slight loss of compressive strength when CR was used in concrete However, these rubberized concretes with a small amount of rubber provided sufficient compressive strength results (greater than 50 MPa). Due to the pozzolanic reaction, we see that compressive strength results after 56 days in glass powder modified samples increased by 11–13% than 28 days com-pressive strengths, while at the same period control samples increased its compressive strength about 2.5%. Experiments have shown that the flexural strength of rubberized concrete with small amounts of CR increased by 3.4–15.8% compared to control mix, due the fact that rubber is an elastic material and it will absorb high energy and perform positive bending toughness. The test results indicated that CR can intercept the tensile stress in concrete and make the deformation more plastic. Fracturing of such conglomerate concrete is not brittle, there is no abrupt post-peak load drop and gradually continues after the maximum load is exceeded. Such concrete requires much higher fracture energy. It was obtained that FCR particles (lower than A300) will entrap more micropores content than coarse rubbers because due to their high specific area. Freezing-thawing results have confirmed that Kf values can be conveniently used to predict freeze-thaw resistance and durability of concrete. The test has shown that modification of concrete with 10 kg fine rubber waste will lead to similar mechanical and durability properties of concrete as was obtained in control concrete with 2 kg of prefabricated air bubbles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号