首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Group 3 of outer membrane proteins (OMPs) of Brucella includes Omp25 and Omp31, which share 34% identity. Omp25 is highly conserved in Brucella species, and Omp31 is present in all Brucella species, except Brucella abortus. Antibodies to Brucella melitensis Omp31 have been sought only in infected sheep, and Western blotting of sera from infected sheep did not reveal anti-Omp31 reactivity. We obtained recombinant purified Omp31 (B. melitensis) and tested its recognition by sera from humans and animals suffering from brucellosis by an indirect enzyme-linked immunosorbent assay (ELISA). Serum samples from 74 patients, 57 sheep, and 47 dogs were analyzed; brucellosis was confirmed by bacteriological isolation in all ovine and canine cases and 31 human cases of brucellosis. Thirty-five patients (47%) were positive for antibodies to Omp31, including seven cases of Brucella suis infection, two cases of B. abortus infection, and three cases of B. melitensis infection. Of 39 sheep naturally infected with B. melitensis (biovars 1 and 3), 23 (59%) were positive for antibodies to Omp31. Anti-Omp31 antibodies were also detected in 12 of 18 rams (67%) in which Brucella ovis was isolated from semen. Antibodies to Omp31 were also found in 41 (87%) of the 47 dogs, including 13 with recent infection. These results suggest that an indirect ELISA using recombinant purified Omp31 from B. melitensis would be of limited value for the diagnosis of human and animal brucellosis. Nevertheless, the potential usefulness of this antigen in combination with other recombinant proteins from Brucella should not be dismissed.  相似文献   

2.
The nucleotide sequences encoding the major 25-kDa outer membrane protein (OMP) (omp25 genes) of Brucella ovis 63/290, Brucella melitensis 16M, Brucella suis 1330, Brucella canis RM6/66, and Brucella neotomae 5K33 (all reference strains) were determined and compared with that of Brucella abortus 544 (P. de Wergifosse, P. Lintermans, J. N. Limet, and A. Cloeckaert, J. Bacteriol. 177:1911-1914, 1995). The major difference found was between the omp25 gene of B. ovis and those of the other Brucella species; the B. ovis gene had a 36-bp deletion located at the 3' end of the gene. The corresponding regions of other Brucella species contain two 8-bp direct repeats and two 4-bp inverted repeats, which could have been involved in the genesis of the deletion. The mechanism responsible for the genesis of the deletion appears to be related to the "slipped mispairing" mechanism described in the literature. Expression of the 25-kDa outer membrane protein (Omp25) in Brucella spp. or expression from the cloned omp25 gene in Escherichia coli cells was studied with a panel of anti-Omp25 monoclonal antibodies (MAbs). As shown by enzyme-linked immunosorbent assay (ELISA) and immunoelectron microscopy, Omp25 was exported to the outer membrane in E. coli expressing either the truncated omp25 gene of B. ovis or the entire omp25 genes of the other Brucella species. Size and antigenic shifts due to the 36-bp deletion were demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting and by the differences in binding patterns in ELISA of the anti-Omp25 MAbs at the cell surface of E. coli cells harboring the appropriate gene and of cells of B. ovis and other Brucella species. In particular, MAbs directed against discontinuous epitopes of the entire Omp25 showed the absence of, or a significant reduction in, antibody reactivity with the B. ovis truncated Omp25. The results indicated that, as defined by the MAbs, exported Omp25 probably presents similar topologies in the outer membranes of E. coli and Brucella spp. and that the short deletion found in the omp25 gene of B. ovis has important consequences for the expression of surface B-cell epitopes which should be considered for the development of vaccines against B. ovis infection.  相似文献   

3.
A panel of monoclonal antibodies (MAbs) to seven Brucella outer membrane proteins were characterized. These antibodies were obtained by immunizing mice with sodium dodecyl sulfate-insoluble (SDS-I) fractions, cell walls, or whole bacterial cells of Brucella abortus or B. melitensis. Enzyme-linked immunosorbent assays were used to screen the hybridoma supernatants and to determine their binding at the surface of rough and smooth B. abortus and B. melitensis cells. The outer membrane proteins (OMPs) recognized by these antibodies were the proteins with molecular masses of 25 to 27 kDa and 36 to 38 kDa (porin) (major proteins) and the proteins with molecular masses of 10, 16.5, 19, 31 to 34, and 89 kDa (minor proteins). Surface exposure of these OMPs was visualized by electron microscopy by using the MAbs and immunogold labeling. Binding of the MAbs on whole rough bacterial cells indicates that the 10-, 16.5-, 19-, 25- to 27-, 31- to 34-, 36- to 38-, and 89-kDa OMPs are exposed at the cell surface. However, enzyme-linked immunosorbent assay results indicate a much better binding of the anti-OMP MAbs on rough strains than on the corresponding smooth strains except for the anti-19-kDa MAb. Immunoelectron microscopy showed that on smooth B. abortus cells only the 89- and 31- to 34-kDa OMPs were not accessible to the MAbs tested. Binding of the anti-31- to 34-kDa MAb at the cell surface was observed for the rough B. abortus cells and for the rough and smooth B. melitensis cells. These results indicate the importance of steric hindrance due to the presence of the long lipopolysaccharide O side chains in the accessibility of OMPs on smooth Brucella strains and should be considered when undertaking vaccine development.  相似文献   

4.
Impairment of the omp25 gene in Brucella spp. leads to attenuated strains and confers protection to the host. Omp25 and Omp31, whose functions remain unknown, were the first characterized members of group 3 outer membrane proteins (Omps) (25 to 34 kDa). Recently, genomic and proteomic approaches identified five new putative members of this family, some of which are produced in B. melitensis or B. abortus. In the present study, using protein microsequencing, we identified new members of group 3 Omps proteins produced in B. suis. Since several monoclonal antibodies (MAbs) against Omp25 cross-reacted with other members of group 3 Omps, we also performed Western immunoblotting to compare wild-type B. suis with mutants systematically having B. suis omp25-related genes knocked out. We demonstrate the production of three paralogs of Omp31 and/or Omp25 in B. suis, and the existence of a common site of signal peptide cleavage (AXAAD), which is very similar to that present in the five homologous Omps of Bartonella quintana. The seven group 3 Omps were classified in four-subgroups on the basis of percentage amino acid sequence identities: Omp25 alone, the Omp25b-Omp25c-Omp25d cluster, the Omp31/31b subgroup, and the less related Omp22 protein (also called Omp3b). Together with previous data, our results demonstrate that all new members of group 3 Omps are produced in B. suis or in other Brucella species and we propose a nomenclature that integrates all of these proteins to facilitate the understanding of future Brucella interspecies study results.  相似文献   

5.
Seven surface-exposed outer membrane proteins (OMPs) in Brucella supp. have been previously described (A. Cloeckaert, P. de Wergifosse, G. Dubray, and J. N. Limet, Infect. Immun. 58:3980-3987, 1990). OMPs were shown to be more accessible to monoclonal antibodies (MAbs) on rough (R) Brucella melitensis and B. abortus strains than to MAbs on their smooth (S) counterparts. In this work, we have extended this study to representatives of the main Brucella species, using MAbs specific for OMPs and S and R lipopolysaccharides (S-LPS and R-LPS). Enzyme-linked immunosorbent assay (ELISA), flow cytometry, and immunoelectron microscopy showed important differences between strains in the binding of OMP- and R-LPS-specific MAbs which were in part related to the particular expression of S-LPS, irrespective of the species. Results indicated that both the amount and the length of O polysaccharide on S-LPS greatly influenced the accessibility of OMP and R-LPS epitopes to MAbs. S-R B. melitensis EP and S B. suis 40, for instance, which express O-polysaccharide chains in small amounts and with short mean length, respectively, bound a greater number of OMP- and R-LPS-specific MAbs than the other S Brucella strains. The major 31- to 34-kDa OMP was the most exposed OMP on S strains of B. melitensis and B. suis. In most cases, flow cytometry results agreed with those of ELISA and supplied additional data, such as the homogeneity or heterogeneity of OMP expression at the strain level. However, there were some discordances between flow cytometry and ELISA results concerning the surface exposure of the 25- to 27-kDa and 31- to 34-kDa OMPs on S strains and that of minor OMPs in vaccine strain B. melitensis Rev.1. Immunoelectron microscopy confirmed the poor accessibility of OMPs to MAbs on the surface of S Brucella strains. The naturally R pathogenic species B. ovis and B. canis bound the majority of OMP-specific MAbs as well as the R-LPS-specific MAbs. Therefore, the conserved OMP and R-LPS epitopes could play a role as targets of protective antibody-mediated immunity in infections caused by naturally R B. ovis and B. canis.  相似文献   

6.
The gene coding for the major outer membrane protein Omp31 was sequenced in five Brucella species and their biovars. Although the omp31 genes appeared to be highly conserved in the genus Brucella, nine nucleotide substitutions were detected in the gene of Brucella ovis compared to that of Brucella melitensis. As shown by differential binding properties of monoclonal antibodies (MAbs) to the two Brucella species, these nucleotide substitutions result in different antigenic properties of Omp31. The antigenic differences were also evidenced when sera from B. ovis-infected rams were tested by Western blotting with the recombinant B. melitensis or B. ovis Omp31 proteins. Twelve available sera reacted with recombinant B. ovis Omp31, but only four of them reacted with recombinant B. melitensis Omp31. These results validate previous evidence for the potential of Omp31 as a diagnostic antigen for B. ovis infection in rams and demonstrate that B. ovis Omp31, instead of B. melitensis Omp31, should be used to evaluate this point. The antigenic differences between the B. melitensis and B. ovis Omp31 proteins should also be taken into account when Omp31 is evaluated as a candidate for the development of subcellular vaccines against B. ovis infection. No reactivity against recombinant B. melitensis Omp31 was detected, by Western blotting, with sera from B. melitensis-infected sheep. Accordingly, Omp31 does not seem to be a good diagnostic antigen for B. melitensis infections in sheep. Two immunodominant regions were identified on the B. ovis Omp31 protein by using recombinant DNA techniques and specific MAbs. Sera from B. ovis-infected rams that reacted with the recombinant protein were tested by Western blotting against one of these immunodominant regions shown to be exposed at the bacterial surface. Only 4 of the 12 sera reacted, but with strong intensity.  相似文献   

7.
Available vaccines against Brucella spp. are live attenuated Brucella strains. In order to engineer a better vaccine to be used in animals and humans, our laboratory aims to develop an innocuous subunit vaccine. Particularly, we are interested in the outer membrane proteins (OMPs) of B. abortus: Omp16 and Omp19. In this study, we assessed the use of these proteins as vaccines against Brucella in BALB/c mice. Immunization with lipidated Omp16 (L-Omp16) or L-Omp19 in incomplete Freund's adjuvant (IFA) conferred significant protection against B. abortus infection. Vaccination with unlipidated Omp16 (U-Omp16) or U-Omp19 in IFA induced a higher degree of protection than the respective lipidated versions. Moreover, the level of protection induced after U-Omp16 or U-Omp19 immunization in IFA was similar to that elicited by live B. abortus S19 immunization. Flow cytometric analysis showed that immunization with U-Omp16 or U-Omp19 induced antigen-specific CD4(+) as well as CD8(+) T cells producing gamma interferon. In vivo depletion of CD4(+) or CD8(+) T cells in mice immunized with U-Omp16 or U-Omp19 plus IFA resulted in a loss of the elicited protection, indicating that both cell types are mediating immune protection. U-Omp16 or U-Omp19 vaccination induced a T helper 1 response, systemic protection in aluminum hydroxide formulation, and oral protection with cholera toxin adjuvant against B. abortus infection. Both immunization routes exhibited a similar degree of protection to attenuated Brucella vaccines (S19 and RB51, respectively). Overall these results indicate that U-Omp16 or U-Omp19 would be a useful candidate for a subunit vaccine against human and animal brucellosis.  相似文献   

8.
Brucella abortus is a causative agent of brucellosis, a zoonosis affecting the endemic areas, which infects domestic animals as well as humans, thus, posing a potential bioterror threat. Outer membrane protein 25 is conserved among the Brucella species. Omp25 mutant strain of Brucella is shown to be attenuated in mice emphasizing on the role of Omp25 in Brucella virulence. Moreover, Omp25 has been shown to inhibit TNF-α production in human macrophages, thereby, abrogating cell mediated immunity. In this study, we evaluated the immunogenic potential of recombinant Omp25 and its protective efficacy against virulent B. abortus challenge in Balb/c mice. Recombinant Omp25 was administered via two routes of immunization: intraperitoneal and intradermal. Dosage reduction was observed with intradermal immunization when compared with intraperitoneal immunization. A higher IgG1:IgG2b ratio suggested a strong Th2 bias of immune response in both the routes of immunization. In vitro stimulation of splenocytes from immunized mice resulted in high level of IL-4 along with increasing levels of IL-12 and IFN-γ indicating a mixed Th1 and Th2 type of immune response. Immunized mice were challenged with virulent B. abortus and splenic colonization of B. abortus reduced significantly in intradermally immunized mice. Intradermal immunization gave protection comparable to that of B. abortus S-19 strain. Cytokine levels in spleen homogenate after challenge revealed a cell mediated immune response with elevated levels of IL-12 and IFN-γ but no detectable amount of IL-4. This can be a possible reason behind the protection observed in mice after rOmp25 immunization. Thus, our study proposes recombinant Omp25 to be a potential subunit vaccine candidate against brucellosis.  相似文献   

9.
The gene coding for the major outer membrane protein (OMP) of 31 to 34 kDa, now designated Omp31, of Brucella melitensis 16M was cloned and sequenced. A B. melitensis 16M genomic library was constructed in lambda GEM-12 XhoI half-site arms, and recombinant phages expressing omp31 were identified by using the anti-Omp31 monoclonal antibody (MAb) A59/10F09/G10. Subcloning of insert DNA from a positive phage into pGEM-7Zf allowed the selection of a plasmid bearing a 4.4-kb EcoRI fragment that seemed to contain the entire omp31 gene under control of its own promoter. omp31 was localized within a region of the EcoRI insert of approximately 1.1 kb. Sequencing of this region revealed an open reading frame of 720 bp encoding a protein of 240 amino acids and a predicted molecular mass of 25,307 Da. Cleavage of the first 19 amino acids, showing typical features of signal peptides for protein export, leaves a mature protein of 221 amino acids with a predicted molecular mass of 23,412 Da. The predicted amino acid sequence of B. melitensis 16M Omp31 showed 35.2% identity with the RopB OMP of Rhizobium leguminosarum bv. viciae 248 and 34.3% identity with Omp25 of B. abortus 544. As in Brucella spp., Omp31 was located in the outer membrane of recombinant Escherichia coli, but its reported peptidoglycan association in Brucella cells was not detected in E. coli. The ability of Omp31 to form oligomers resistant to sodium dodecyl sulfate denaturation at low temperatures, a characteristic described for several bacterial porins, was observed in both B. melitensis and recombinant E. coli. The epitope recognized by the anti-Omp31 MAb A59/10F09/G10, for which a protective activity has been suggested, has been delimited to a region of 36 amino acids of Omp31 covering the most hydrophilic part of the protein. The availability of recombinant Omp31 and the identification of the antigenic determinant recognized by MAb A59/10F09/G10 will allow the evaluation of their potential protective activity and their potential for the development of subcellular vaccines against brucellosis.  相似文献   

10.
Hapten polysaccharides of Brucella smooth M and A serotypes were prepared from Brucella sp. and Yersinia enterocolitica O:9 by previously described hydrolytic (O chain) or nonhydrolytic (native hapten [NH]) procedures. The purified polysaccharides differed only in the presence (O chain) or absence (NH) of lipopolysaccharide core sugars. The polysaccharides were compared by reverse radial immunodiffusion for the diagnosis of brucellosis in cattle (Brucella abortus biotype 1 [A serotype] and Brucella melitensis biotype 3 [AM serotype]), sheep (B. melitensis biotypes 1 [M serotype] and 3), and goats (B. melitensis biotype 1). The reverse radial immunodiffusion test with the NH from B. melitensis 16 M (serotype M) showed the highest sensitivity (89.6 to 97.3%), regardless of the host species and the serotype of the infecting Brucella sp. Y. enterocolitica O:9 NH (A serotype) was useful for diagnosing disease in cattle infected with B. abortus biotype 1, but not in cattle infected with B. melitensis biotype 3, sheep, or goats. The different results obtained with the serotype M and A polysaccharides and the sera from animals infected with M, A, and AM serotypes of Brucella spp. showed that in naturally infected animals, a large proportion of the antibodies are directed to or react with a previously defined common epitope(s) (J. T. Douglas and D. A. Palmer, J. Clin. Microbiol. 26:1353-1356, 1988) different from the A or M epitopes. By using the radial immunodiffusion test with B. melitensis 16M NH, it was possible to differentiate infected from vaccinated cattle, sheep, and goats with a sensitivity and specificity similar to that of the complement fixation test.  相似文献   

11.
Hot saline extracts of Brucella ovis were composed of vesicles with outer membrane proteins (OMPs), lipopolysaccharide, and phospholipid as constituents. Extraction with petroleum ether-chloroform-phenol yielded a protein fraction free of detectable lipopolysaccharide, in which group 3 OMPs (28,500 apparent molecular weight [28.5K], 27.0K, and 25.5K) represented 81% of the total. Group 1 OMPs and 67.0K, 22.5K to 21.5K, and 19.5K to 18.0K proteins were also detected. Adsorption of immune sera with whole bacteria suggested that group 3 OMPs and 67.0K, 22.5K to 21.5K, and 19.5K to 18.0K proteins had antigenic determinants exposed on the surfaces of both B. ovis and rough B. melitensis cells but not on smooth B. melitensis cells. Antibodies to group 3 OMPs and the 67.0K protein in the sera of 93 and 87%, respectively, of B. ovis-infected rams were found by immunoblotting. Antibodies to other proteins were present in 67% of these animals. Compared with B. ovis-infected rams which had not developed lesions, rams with epididymo-orchitis had antibodies to a larger variety of proteins. Although ewes infected with B. melitensis also showed antibodies to OMPs, the immunoblot reactions were less intense.  相似文献   

12.
Sera from Brucella-infected bovines were analyzed by immunoblotting by using sonicated cell extracts of B. melitensis or B. abortus and a competitive enzyme-linked immunosorbent assay (ELISA) with monoclonal antibodies against outer membrane proteins (OMPs) with molecular masses of 10, 16.5, 19, 25 to 27, 36 to 38, and 89 kDa. Antibody responses against OMPs were compared with antibody responses against smooth lipopolysaccharide. Immunoblot analysis indicated that the antibody response in infected animals was largely different from one animal to another. The antigens of concern were OMPs with molecular masses of 10, 16.5, 19, 25 to 27, 36 to 38, and 89 kDa and other proteins with molecular masses of between 40 and 80 kDa. According to the specificity of the competitive ELISA, OMPs useful for the detection of infected animals are the OMPs of 10, 16.5, 19, 25 to 27, and 36 to 38 kDa. A competitive ELISA with the anti-89 kDa monoclonal antibody was not specific. Results of the competitive ELISA confirmed the individual variability of the humoral immune response against OMPs. It therefore seems that a combination of several protein antigens is necessary for the development of an immunoassay with a sensitivity comparable to that of the smooth lipopolysaccharide ELISA.  相似文献   

13.
The Brucella abortus virB operon, consisting of 11 genes, virB1 to virB11, and two putative genes, orf12 (virB12) and orf13, encodes a type IV secretion system (T4SS) that is required for intracellular replication and persistent infection in the mouse model. This study was undertaken to determine whether orf12 (virB12) encodes an essential part of the T4SS apparatus. The virB12 gene was found to encode a 17-kDa protein, which was detected in vitro in B. abortus grown to stationary phase. Mice infected with B. abortus 2308 produced an antibody response to the protein encoded by virB12, showing that this gene is expressed during infection. Expression of virB12 was not required for survival in J774 macrophages. VirB12 was also dispensable for the persistence of B. abortus, B. melitensis, and B. suis in mice up to 4 weeks after infection, since deletion mutants lacking virB12 were recovered from splenic tissue at wild-type levels. These results show that VirB12 is not essential for the persistence of the human-pathogenic Brucella spp. in the mouse and macrophage models of infection.  相似文献   

14.
Brucella spp. can establish themselves and cause disease in humans and animals. The mechanisms by which Brucella spp. evade the antibacterial defenses of their host, however, remain largely unknown. We have previously reported that live brucellae failed to induce tumor necrosis factor alpha (TNF-alpha) production upon human macrophage infection. This inhibition is associated with a nonidentified protein that is released into culture medium. Outer membrane proteins (OMPs) of gram-negative bacteria have been shown to modulate macrophage functions, including cytokine production. Thus, we have analyzed the effects of two major OMPs (Omp25 and Omp31) of Brucella suis 1330 (wild-type [WT] B. suis) on TNF-alpha production. For this purpose, omp25 and omp31 null mutants of B. suis (Deltaomp25 B. suis and Deltaomp31 B. suis, respectively) were constructed and analyzed for the ability to activate human macrophages to secrete TNF-alpha. We showed that, in contrast to WT B. suis or Deltaomp31 B. suis, Deltaomp25 B. suis induced TNF-alpha production when phagocytosed by human macrophages. The complementation of Deltaomp25 B. suis with WT omp25 (Deltaomp25-omp25 B. suis mutant) significantly reversed this effect: Deltaomp25-omp25 B. suis-infected macrophages secreted significantly less TNF-alpha than did macrophages infected with the Deltaomp25 B. suis mutant. Furthermore, pretreatment of WT B. suis with an anti-Omp25 monoclonal antibody directed against an epitope exposed at the surface of the bacteria resulted in substancial TNF-alpha production during macrophage infection. These observations demonstrated that Omp25 of B. suis is involved in the negative regulation of TNF-alpha production upon infection of human macrophages.  相似文献   

15.
Immunological cross-reactions between Brucella spp. and Ochrobactrum anthropi were investigated in animals and humans naturally infected by Brucella spp. and in experimentally infected rams (Brucella ovis infected), rabbits (Brucella melitensis infected), and mice (B. melitensis and Brucella abortus infected). In the animals tested, O. anthropi cytosolic proteins evoked a delayed-type hypersensitivity reaction of a frequency and intensity similar to that observed with B. melitensis brucellin. O. anthropi cytosolic proteins also reacted in gel precipitation tests with antibodies in sera from Brucella natural hosts with a frequency similar to that observed with B. melitensis proteins, and absorption experiments and immunoblotting showed antibodies to both Brucella-specific proteins and proteins common to Brucella and O. anthropi. No antibodies to O. anthropi cytosolic proteins were detected in the sera of Brucella-free hosts. Immunoblotting with sera of Brucella-infected sheep and goats showed immunoglobulin G (IgG) to Brucella group 3 outer membrane proteins and to O. anthropi proteins of similar molecular weight. No IgG to the O-specific polysaccharide of O. anthropi lipopolysaccharide was detected in the sera of Brucella-infected hosts. The sera of sheep, goats, and rabbits infected with B. melitensis contained IgG to O. anthropi rough lipopolysaccharide and lipid A, and B. ovis and O. anthropi rough lipopolysaccharides showed equal reactivities with IgG in the sera of B. ovis-infected rams. The findings show that the immunoresponse of Brucella-infected hosts to protein antigens is not necessarily specific for brucellae and suggest that the presence of O. anthropi or some related bacteria explains the previously described reactivities to Brucella rough lipopolysaccharide and outer membrane proteins in healthy animals.  相似文献   

16.
The genes coding for the five outer membrane proteins (OMPs) of the Omp25/Omp31 family expected to be located in the outer membrane (OM) of rough virulent Brucella ovis PA were inactivated to evaluate their role in virulence and OM properties. The OM properties of the mutant strains and of the mutants complemented with the corresponding wild-type genes were analyzed, in comparison with the parental strain and rough B. abortus RB51, in several tests: (i) binding of anti-Omp25 and anti-Omp31 monoclonal antibodies, (ii) autoagglutination of bacterial suspensions, and (iii) assessment of susceptibility to polymyxin B, sodium deoxycholate, hydrogen peroxide, and nonimmune ram serum. A tight balance of the members of the Omp25/Omp31 family was seen to be essential for the stability of the B. ovis OM, and important differences between the OMs of B. ovis PA and B. abortus RB51 rough strains were observed. Regarding virulence, the absence of Omp25d and Omp22 from the OM of B. ovis PA led to a drastic reduction in spleen colonization in mice. While the greater susceptibility of the Deltaomp22 mutant to nonimmune serum and its difficulty in surviving in the stationary phase might be on the basis of its dramatic attenuation, no defects in the OM able to explain the attenuation of the Deltaomp25d mutant were found, especially considering that the fully virulent Deltaomp25c mutant displayed more important OM defects. Accordingly, Omp25d, and perhaps Omp22, could be directly involved in the penetration and/or survival of B. ovis inside host cells. This aspect, together with the role of Omp25d and Omp22 in the virulence both of B. ovis in rams and of other Brucella species, should be thoroughly evaluated in future studies.  相似文献   

17.
The Brucella melitensis sucB gene encoding the dihydrolipoamide succinyltransferase (E2o) enzyme (previously identified as an immunogenic protein in infected sheep) was cloned and sequenced. The amino acid sequence predicted from the cloned gene revealed 88.8 and 51.2% identity to the dihydrolipoamide succinyltransferase SucB protein from Brucella abortus and Escherichia coli, respectively. Sera from naturally infected sheep showed antibody reactivity against the recombinant SucB protein.  相似文献   

18.
The immunogenicity and protective efficacy of the recombinant 31-kDa outer membrane protein from Brucella melitensis (rOmp31), administered with incomplete Freund's adjuvant, were evaluated in mice. Immunization of BALB/c mice with rOmp31 conferred protection against B. ovis and B. melitensis infection. rOmp31 induced a vigorous immunoglobulin G (IgG) response, with higher IgG1 than IgG2 titers. In addition, spleen cells from rOmp31-immunized mice produced interleukin 2 (IL-2) and gamma interferon, but not IL-10 or IL-4, after in vitro stimulation with rOmp31, suggesting the induction of a T helper 1 (Th1) response. Splenocytes from rOmp31-vaccinated animals also induced a specific cytotoxic-T-lymphocyte activity, which led to the in vitro lysis of Brucella-infected macrophages. In vitro T-cell subset depletion indicated that rOmp31 immunization elicited specific CD4+ T cells that secrete IL-2 and gamma interferon, while CD8+ T cells induced cytotoxic-T-lymphocyte activity. In vivo depletion of T-cell subsets showed that the rOmp31-elicited protection against B. melitensis infection is mediated by CD4+ T cells while the contribution of CD8+ T cells may be limited. We then evaluated the immunogenicity and protective efficacy of a known exposed region from Omp31 on the Brucella membrane, a peptide that contains amino acids 48 to 74 of Omp31. Immunization with the synthetic peptide in adjuvant did not elicit a specific humoral response but elicited a Th1 response mediated by CD4+ T cells. The peptide in adjuvant induced levels of protection similar to those induced by rOmp31 against B. melitensis but less protection than was induced by rOmp31 against B. ovis. Our results indicate that rOmp31 could be a useful candidate for the development of subunit vaccines against B. melitensis and B. ovis.  相似文献   

19.
A thus far unknown gene encoding a Brucella abortus protein has been isolated from a lambda gt11 expression library probed with sera from Brucella-infected sheep. Sequence analysis of the cloned gene revealed the presence of an open reading frame of 158 amino acids encoding a protein of 17.3 kDa (calculated molecular mass). The recombinant B. abortus protein, expressed in Escherichia coli, and the corresponding Brucella melitensis protein migrated at the same apparent molecular masses as shown by Western blotting (immunoblotting). Among a series of serum samples from B. melitensis- or B. abortus-infected sheep and cows, 51 and 39%, respectively, showed a signal at 17 kDa on Western blot analysis of total protein extract from Brucella bacteria. These figures amount to 70 and 61% for sheep and cattle, respectively, in a competitive enzyme-linked immunosorbent assay with a specific monoclonal antibody. These data indicate that the 17-kDa antigen may be useful for serological diagnosis of Brucella infection.  相似文献   

20.
Lipopolysaccharides (LPS) were extracted from rough strains of Brucella abortus and Brucella melitensis and from strains of the naturally occurring rough species Brucella ovis and Brucella canis. Brucella rough lipopolysaccharides (R-LPS) were readily distinguished from Brucella smooth lipopolysaccharides (S-LPS) and enterobacterial R-LPS, by their chemical, physical, and serological characteristics. B. ovis R-LPS was differentiated from B. abortus, B. melitensis, and B. canis R-LPS by its reaction of partial identity in immunodiffusion. Monospecific mouse sera against B. ovis R-LPS agglutinated only the homologous bacteria but not R cells of other species of Brucella. B. ovis R-LPS contained more 2-keto, 3-deoxyoctonate, and glucosamine as a percentage of dry weight than any other R-LPS tested. B. abortus R-LPS was identified by the absence of an unidentified sugar present in the other R-LPS molecules, and B. melitensis R-LPS could be differentiated from B. canis R-LPS by its higher content of fatty acids. In contrast to S-LPS, all of the R-LPS studied lacked quinovosamine. In electron micrographs, Brucella R-LPS had a granular appearance, in contrast to typical lamellar structures formed by Brucella S-LPS and Escherichia coli R-LPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号