首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Weber DS  Webb RC 《Pharmacology》2001,63(3):129-133
Increased vasoconstriction is characteristic of hypertension. In this study, we tested the hypothesis that changes in vascular responses during mineralocorticoid hypertension may be due to increased activation of the Rho/Rho-kinase pathway. To test this, relaxation responses to the Rho-kinase inhibitor Y-27632 were determined by measuring isometric force in deendothelialized mesenteric arteries from mineralocorticoid-hypertensive rats and sham-operated controls. Following agonist-induced contraction by serotonin (5-HT, 5-hydroxytryptamine), arteries from hypertensive rats demonstrated a greater relaxation to the Rho-kinase inhibitor Y-27632 (65 +/- 5% vs. 28 +/- 10%). Treatment with an EC50 concentration of Y-27632 following a KCl-induced contraction caused minimal relaxation of arteries in both groups of animals. These findings suggest that augmented Rho-kinase activity in the vasculature of mineralocorticoid hypertensive rats may contribute to the enhanced vascular reactivity of agonist-mediated stimuli characteristic of this model of hypertension.  相似文献   

2.
Hypertension is a cardiovascular disorder characterized by increased peripheral vascular resistance and/or vascular structural remodeling. Recently, rapidly growing evidence from hypertensive animal models suggests that small GTPase Rho and its downstream effector, Rho-kinase, play an important role in the pathogenesis of hypertension. Activation of the Rho/Rho-kinase pathway is essential for smooth muscle contractility in hypertension. A greater RhoA expression and an enhanced RhoA activity have been observed in aortas of hypertensive rats, such as genetic spontaneously hypertensive rats and N(omega)-nitro-L-arginine methyl ester-induced hypertension. The enhanced RhoA expression and activity was already observed in young spontaneously hypertensive rats before the onset of hypertension. These results suggest that both genetic factors and blood pressure can upregulate RhoA expression. Moreover, Y-27632 or fasudil, the specific Rho-kinase inhibitors, markedly decreased blood pressure in various hypertensive model rats, but did not in normotensive animals. In addition, Rho-kinase inhibitors have been shown to inhibit hypertensive vascular lesion formation. Therefore, Rho-kinase inhibitors may have a therapeutic potential for the treatment of hypertensive patients.  相似文献   

3.
Pulmonary hypertension (PH) is a cardiovascular disorder characterized by vasoconstriction and vascular remodeling. Recently, rapidly increasing evidence from various rat models of PH and patients with PH suggest that small GTPase Rho and its downstream effector, Rho-kinase, play a key role in the pathogenesis of PH. Activation of the Rho/Rho-kinase pathway is important for pulmonary endothelial dysfunction, pulmonary vascular smooth muscle cell contractility, proliferation and apoptosis in PH. A greater Rho-kinase expression and an enhanced Rho-kinase activity have been observed in pulmonary arteries of PH rats, such as hypoxia-induced, monocrotaline-induced and genetic spontaneous PH rats. Moreover, Y-27632 or fasudil, the selective Rho-kinase inhibitors, significantly attenuated PH in various pulmonary hypertensive model rats and patients with PH, but did not reduce systemic blood pressure. Therefore, Rho-kinase inhibitors may have therapeutic potential for the treatment of PH.  相似文献   

4.
Among the GTP-binding proteins, Rho is known to function as a molecular switch in various cellular functions. Among the Rho effectors, the cellular function and signal transduction of Rho-kinase have been extensively studied. However, information about its in vivo functions is still limited. With the recent development of a specific Rho-kinase inhibitor such as Y-27632 and fasudil, the understanding of the role of the Rho/Rho-kinase pathway in vitro and in vivo has advanced. However, to date, there have been few studies investigating the role of Rho-kinase in renal disease. Recent studies have shown that Rho-kinase inhibitor significantly attenuated the tubulointerstitial fibrosis in kidney induced by unilateral ureteral obstruction. However, there have been few studies investigating the role of the Rho/Rho-kinase pathway in hypertensive glomerular sclerosis. In this review, we described the role of the Rho/Rho-kinase pathway in the progression of renal glomerulosclerosis in several forms of hypertensive rats. Our results suggest that chronic inhibition of the Rho-kinase pathway may be a new therapeutic approach for hypertensive glomerulosclerosis. Our results also suggest that the mechanism of the renoprotective effect of Rho-kinase inhibitor is partly mediated via inhibition of extracellular matrix gene expression, monocytes/macrophages infiltration, oxidative stress, and upregulation of eNOS gene expression.  相似文献   

5.
The possible contribution of Rho/Rho-kinase signalling in oleic acid (100 mg kg-1, i.v., for 4 h)-induced lung injury was investigated in rats. Furthermore, the possible protective effect of the administration of a Rho-kinase inhibitor, (+)-(R)-trans-4-(1-aminoethyl)-N-(4-pyridyl) cyclohexanecarboxamide dihydrochloride monohydrate (Y-27632, 0.5-5 mg kg-1, i.v., 15 min before the administration of oleic acid), was also examined. Western blot analysis as well as histopathological examination revealed that Rho-kinase (ROCK-1 and ROCK-2) was upregulated in lungs obtained from oleic acid-administrated rats. In addition, the markers of oxidative and nitrosative stress, i.e., malondialdehyde, myeloperoxidase, 3-nitro-L-tyrosine and nitrite/nitrate, in serum and lung tissue were also increased in the injury group. Treatment of rats with 5 mg kg-1 Y-27632 reversed the oleic acid-induced lung damage, which was demonstrated by histopathological assessment and confirmed in Western blot experiments: ROCK-blots were more intense in the oleic acid group than in control and Y-27632 treatment reversed ROCK upregulation. In addition, malondialdehyde, myeloperoxidase, 3-nitro-L-tyrosine and nitrite/nitrate were also normalized after the administration of Y-27632 (0.5 mg kg-1 and 5 mg kg-1). These findings suggest that ROCK-1 and ROCK-2 are involved in oleic acid-induced lung damage in rats, and that inhibition of this enzyme by Y-27632 may have a protective effect against such damage. Consequently, Rho kinase inhibitors may be potential therapeutic agents in the treatment of acute respiratory distress syndrome (ARDS).  相似文献   

6.
Endothelial cells release endothelium-derived hyperpolarizing factor (EDHF), as well as nitric oxide (NO). It has recently been suggested that 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) improve NO-mediated endothelial function, partially independently of their cholesterol-lowering effects. It is, however, unclear whether statins improve EDHF-mediated responses. Eight-month-old stroke-prone spontaneously hypertensive rats (SHRSP) were treated with fluvastatin (10 mg/kg per day) for 1 month. Age-matched, normotensive Wistar Kyoto (WKY) rats served as controls. Both EDHF- and NO-mediated relaxations were impaired in SHRSP compared with WKY rats. Fluvastatin treatment did not affect blood pressure and serum total cholesterol. The acetylcholine (ACh)-induced, EDHF-mediated hyperpolarization in mesenteric arteries did not significantly differ between fluvastatin-treated SHRSP and untreated SHRSP and the responses in both groups were significantly smaller compared with those of WKY rats. Endothelium-derived hyperpolarizing factor-mediated relaxations, as assessed by the relaxation to ACh in mesenteric arteries contracted with noradrenaline in the presence of N(G)-nitro-l-arginine and indomethacin, were virtually absent and similar in both SHRSP groups. In contrast, NO-mediated relaxation, as assessed by the relaxation in response to ACh in rings contracted with 77 mmol/L KCl, was improved in fluvastatin-treated SHRSP compared with untreated SHRSP (maximum relaxation in control and fluvastatin groups 42.0 +/- 5.2 and 61.2 +/- 3.8%, respectively; P < 0.05). Hyperpolarization and relaxation in response to levcromakalim, an ATP-sensitive K(+) channel opener, were similar between the two SHRSP groups. These findings suggest that fluvastatin improves NO-mediated relaxation, but not EDHF-mediated hyperpolarization and relaxation, in SHRSP. Thus, the beneficial effects of the statin on endothelial function may be mainly ascribed to an improvement in the NO pathway, but not EDHF.  相似文献   

7.
BACKGROUND AND PURPOSE: Rho/Rho-kinase signalling is involved in many cellular events, including some in the CNS. However, the role of this pathway in epilepsy has not yet been assessed. Therefore, we determined the effects of two Rho-kinase inhibitors, Y-27632 and fasudil, on seizures induced by pentylenetetrazole (PTZ) or maximal electroconvulsive shock (MES). EXPERIMENTAL APPROACH: Effects of Y-27632 (5-10 mg kg(-1)) and fasudil (5-25 mg kg(-1)) on duration of myoclonic jerks, clonic and tonic convulsions, tonic hindlimb extensions and percentage of tonic convulsion index, as well as recovery latency for righting reflex were investigated in mice stimulated with PTZ (65 mg kg(-1)) or MES (50 Hz, 50 mA and 0.4 s). These inhibitors were also tested on a model of kindling induced by PTZ (35 mg kg(-1), for 11 days). Membrane and cytosolic levels of RhoA protein were measured in brain homogenates from kindled mice. KEY RESULTS: Y-27632 and fasudil diminished onset of myoclonic jerks, clonic convulsions and tonic hindlimb extensions in mice given PTZ. These inhibitors suppressed the percentage of tonic convulsion index and recovery latency for righting reflex in the mice excited with MES. Western blotting demonstrated that Rho translocation to plasma membrane increased in the brain homogenates obtained from PTZ-kindled mice. However, the Rho-kinase inhibitors at the given doses did not change motor coordination of the mice. CONCLUSIONS AND IMPLICATIONS: Rho/Rho-kinase signalling may play a role in epilepsy induced by PTZ and MES. Furthermore, Rho-kinase inhibitors could be novel important antiepileptic agents.  相似文献   

8.
The cerebrovascular remodeling is a prominent feature of hypertension and considered as a major risk of stroke. Statins may suppress the activation of the Rho/Rho-kinase pathway and have pleiotropic actions against the development of vascular remodeling. We hypothesized that the inhibition of the Rho/Rho-kinase pathway by simvastatin during hypertension could recuperate the pathological changes of basilar artery through the downregulation of cell proliferation. To resolve the problem, we used 2-kid, 2-clip rat as a hypertension model and evaluated the effect of simvastatin on the Rho/Rho-kinase pathway. In addition, we assessed the changes of the proliferation rate by CCK-8 assay in basilar artery smooth muscle cells. Our results from this study showed that a continuous increase in the plasma endothelin-1 (ET-1) concentration and the Rho/Rho-kinase activity was positively correlated with changes in blood pressure in the hypertensive rat. Simvastatin ameliorated the upregulated Rho/Rho-kinase activity and cell proliferation during hypertension. Moreover, simvastatin, the RhoA inhibitor C3, and the RhoA-kinase inhibitor Y27632 all attenuated the proliferation rate induced by ET-1 in basilar artery smooth muscle cells via the Rho/Rho-kinase signaling pathway. In conclusion, simvastatin attenuated ET-1-induced proliferation through the Rho/Rho-kinase signaling pathway in hypertensive rat basilar artery, and it may be an excellent reagent to protect vascular remodeling and stroke.  相似文献   

9.
1. Subthreshold concentrations of endothelin (ET)-1 enhance the contractile responses to noradrenaline (NA). We investigated possible mechanisms underlying the ET-1-induced enhancement of vasoconstrictor responses to NA in rat perfused mesenteric arteries. 2. Perfusion of arteries with subpressor dose of ET-1 (3 x 10-10 mol/L) significantly potentiated the pressor responses to NA (10-6, 3 x 10-6 and 10-5 mol/L) and this action of ET-1 was endothelium independent. 3. The protein kinase C (PKC) inhibitors staurosporine (10-8 mol/L) and calphostin C (10-7 mol/L) markedly attenuated the ET-1-induced enhancement of NA responses. Vasoconstrictor responses to NA were potentiated when vessels were perfused with phorbol 12-myristate 13-acetate (10-8 mol/L). 4. The potentiating effect of ET-1 was efficiently suppressed by Y-27632 (10-6 mol/L), a selective Rho-kinase inhibitor. In the presence of both staurosporine and Y-27632, contractile responses to NA alone were decreased markedly and ET-1-induced potentiation was abolished. 5. Both staurosporine and Y-27632 decreased contractile responses to NA in arteries of deoxycorticosterone acetate (DOCA)-salt hypertensive rats to levels observed in normotensive control animals. 6. These findings suggest that ET-1-mediated potentiation of responses to NA occurs through activation of either PKC or Rho-kinase. This mechanism seems to contribute to the enhanced vasoconstrictor responces to NA observed in DOCA-salt hypertensive rats, in which the responses to NA are enhanced tonically by endogenous vascular ET-1.  相似文献   

10.
This study aims to investigate the role of Rho-kinase in phenotype switching and proliferation of bovine tracheal smooth muscle. To induce different phenotypic states, bovine tracheal smooth muscle strips were cultured (8 days) in 10% foetal bovine serum (foetal bovine serum, less contractile phenotype) or insulin (1 microM, hypercontractile phenotype) and compared to strips cultured in serum-free medium. In contraction experiments, the Rho-kinase inhibitor (+)-(R)-trans-4-(1-aminoethyl)-N-(4-pyridyl) cyclohexane carboxamide (Y-27632, 1 microM) decreased sensitivity to methacholine and KCl and lowered maximal responsiveness to KCl in all strips irrespective of the phenotype present. To investigate the effects of Rho-kinase bovine tracheal smooth muscle phenotypic regulation, strips were pretreated with Y-27632 (1 microM) for 8 days. This resulted in a decreased maximal contractility to both methacholine and KCl, quantitatively comparable to the decrease in contractility induced by platelet-derived growth factor (PDGF, 10 ng/ml). The combination of Y-27632 and PDGF responded additively. Y-27632 did not affect basal or PDGF-induced bovine tracheal smooth muscle cell proliferation, determined both as increases in [3H]thymidine incorporation and cell number. Inhibitors of the p42/p44 mitogen-activated protein kinase (MAPK) pathway, the p38 MAPK pathway and the phosphatidyl inositol (PI) 3-kinase pathway all inhibited PDGF-induced proliferation and phenotype changes. These results show that the functional contribution of Rho-kinase to bovine tracheal smooth muscle contraction is not dependent on phenotypic state. In addition, Rho-kinase is not involved in phenotypic modulation or proliferation induced by PDGF, whereas p42/p44 MAPK, p38 MAPK and PI 3-kinase are. Rho-kinase is, however, a major regulator involved in the basal maintenance of contractility in bovine tracheal smooth muscle.  相似文献   

11.
The concentrations in blood of plasminogen activator inhibitor-1 (PAI-1), an inhibitor of fibrinolysis and proteolysis, are elevated in obese and insulin-resistant subjects, predispose them to the risk of thrombosis, and may accelerate atherogenesis. Adipose tissue is a prominent source. Accordingly, intracellular signaling pathways that may influence PAI-1 expression in adipocytes have been the focus of considerable study. Rho, a small GTP binding and GTPase protein, when activated in turn activates its target, Rho-associated coiled-coil forming protein, to yield an active kinase, Rho-kinase, an effector in the Rho pathway. Rho-kinase exerts calcium-sensitizing effects in vascular smooth muscle cells and inhibitory effects on transforming growth factor-beta (TGF-beta) expression in chicken embryonic heart cells. Because TGF-beta is a powerful agonist of PAI-1 expression, we characterized the effects of inhibition of Rho-kinase in 3T3-L1 adipocytes. PAI-1 mRNA was determined by Northern blotting, and PAI-1 protein was determined by Western blotting. The Rho-kinase inhibitor, Y-27632 [(R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide], increased PAI-1 expression markedly. Although genistein, a flavonoid tyrosine kinase, attenuated the increase of PAI-1 induced by Y-27632, other non-flavonoid tyrosine kinase inhibitors did not. However, another flavonoid, daidzein, which lacks tyrosine kinase activity, decreased basal PAI-1 expression and attenuated the induction of PAI-1 expression by Y-27632. Thus, the Rho/Rho-kinase system inhibits PAI-1 expression by a flavonoid-sensitive mechanism in adipocytes. Therefore, flavonoids may be useful in decreasing elevated PAI-1 expression in adipose tissue and its consequent pathophysiologic sequelae.  相似文献   

12.
Hindlimb unweighting (HLU) in rats mimics the fluid shift experienced by astronauts and may serve as a model for ground-based orthostatic hypotension. It has been shown that the abdominal aorta of HLU rats exhibits a deficit in contractile response to adrenergic agonists. The hypothesis of the present study was that decreased activity in the RhoA/Rho-kinase pathway could contribute to that deficit. Wistar rats were subjected to 20 days of HLU treatment. Abdominal aorta rings from HLU and control rats were suspended in baths for measurement of contraction. Concentration response curves were obtained to the alpha adrenergic agonist, phenylephrine and the thromboxane-mimetic, U46619. HLU treatment caused decreased contraction in response to both. The Rho-kinase inhibitor, Y27632, caused a reduction in the phenylephrine-induced contraction in control, but not HLU aorta. Other rings were frozen after stimulation 1 microM U46619 or phenylephrine. Western analysis revealed a decreased expression of RhoA, but increased expression of both Rho kinase and MYPT1, the regulatory subunit of myosin light chain (MLC) phosphatase. MYPT1 and MLC phosphorylation was decreased by HLU in phenylephrine stimulated aorta. Decreased activity in the RhoA/Rho-kinase pathway may be involved in the decreased contraction seen in the HLU abdominal aorta.  相似文献   

13.
Sphingosylphosphorylcholine (SPC) is a vasoconstricting lysosphingolipid, and the RhoA/Rho-kinase pathway plays an important role in SPC-induced contraction. Since RhoA/Rho-kinase-mediated signaling is involved in the generation and/or maintenance of hypertension, we compared the effect of SPC on the contractility of endothelium-denuded small mesenteric arteries in spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY). Fura-2 Ca2+ signals, contractile responses, and phosphorylation of 20-kDa myosin light chains (MLC20) were measured. Ten μM SPC induced a gradual and sustained vasoconstriction, which was greater in arteries of the SHR (82.5±4.3%, n=9) than in those of the WKY (26.7±4.5%, n=10). In Ca2+-free media, SPC gradually increased vascular tone in the SHR, but caused little vasoconstriction in the WKY. In the SHR and WKY, SPC evoked a greater vasoconstriction than did high K+depolarization at a given Ca2+ ratio, and the Ca2+ ratio–tension curve induced by SPC was significantly shifted to the left compared with that induced by high K+ depolarization. However, the magnitude of shift to the left was greater in the SHR than in the WKY. The Rho-kinase inhibitor Y-27632 significantly inhibited SPC-induced contractions, but neither the protein kinase C inhibitor calphostin-C nor PD98059, which inhibits activation of some mitogen-activated protein kinases, had any effect on the SHR or the WKY. SPC significantly increased the phosphorylation of MLC20 in both the SHR and the WKY, and Y-27632 inhibited the SPC-induced increase in MLC20 phosphorylation in the SHR. Our results suggest that SPC induces greater vascular tone in the SHR than in the WKY. Furthermore, our results indicate that activation of the Rho-kinase pathway plays an important role in the SPC-induced Ca2+ sensitization in the SHR.  相似文献   

14.
Effects of bacterial lipopolysaccharide (Escherichia coli serotype, 055:B5, 20 mg kg(-1), i.p., for 6 h) and a Rho-kinase inhibitor, (+)-(R)-trans-4-(1-aminoethyl)-N-(4-pyridyl) cyclohexanecarboxamide dihydrochloride monohydrate, Y-27632 (10(-9)-10(-5) M) were investigated on the contractile responses of the rat mesenteric artery to phenylephrine (10(-9)-3 x 10(-5) M), angiotensin-2 (10(-10)-10(-6) M) and endothelin-1 (10(-10)-10(-7) M). Moreover, alteration in the level of Rho-kinase (ROCK-2) expression was examined in the superior mesenteric artery obtained from saline- and lipopolysaccharide-treated rats by Western blotting. Endotoxemic rat mesenteric rings exhibited no different contractions to phenylephrine and angiotensin-2 but augmented contractile activity to endothelin-1. In the mesenteric artery obtained from the endotoxemic rats, acetylcholine-induced vasorelaxation did not differ; pD2 value for acetylcholine was 7.85+/-0.12 in the endotoxemic rings; however, it was 7.81+/-0.15 in the control rings (P>0.05). Y-27632 induced relaxation, which was the same in the control arteries as in endotoxemic ones when contracting agent was phenylephrine. However, when endothelin-1 was used to precontract the rings, Y-27632 produced enhanced relaxation in endotoxemic vessels. pD2 values for Y-27632 were, respectively, 7.69+/-0.12 and 8.20+/-0.10 in control and endotoxemic rings precontracted by endothelin-1 (10(-8) M) (P<0.01). Moreover, Y-27632 (10(-5) M) suppressed the contraction induced by angiotensin-2 (10(-10)-10(-6) M). Western blot analysis revealed that Rho-kinase was upregulated significantly in the mesenteric artery obtained from the rats treated with LPS for 6 h. In addition, serum NO2-/NO3- level, which was detected by Griess method, was 10.0+/-1.4 microM in endotoxemic rats; however, it was 6.6+/-0.5 microM in control (P<0.05). Taken together, these results show that the expression of the contractile protein Rho-kinase could be upregulated in endotoxemic mesenteric artery and this upregulation may be coincided with an enhanced contraction to endothelin-1 but not phenylephrine and angiotensin-2.  相似文献   

15.
Rho-kinase is an effector molecule of RhoA, a monomeric GTP-binding protein, and causes Ca(2+) sensitization via inactivation of myosin phosphatase. The major physiological functions of Rho-kinase include contraction, migration, and proliferation in cells. These actions are thought to be related to the pathophysiological features of asthma, i.e., airflow limitation, airway hyperresponsiveness, beta-adrenergic desensitization, eosinophil recruitment and airway remodeling. Here, the roles of RhoA/Rho-kinase in the pathophysiology and treatment of asthma were investigated. In airway smooth muscle, pre-exposure to chemical mediators released from inflammatory cells markedly enhances methacholine-induced contraction without elevating intracellular concentrations of Ca(2+). This augmented responsiveness to methacholine involves the phosphorylation of myosin phosphatase targeting protein 1 (MYPT1) via Rho-kinase, however, it is attenuated by pre-treatment with Rho-kinase inhibitors such as Y-27632 and HA-1077. Airway smooth muscle contraction due to asthma-related substances such as contractile agonists and reactive oxygen species is suppressed by these Rho-kinase inhibitors. Reduced responsiveness to beta-adrenergic receptor agonists occurs via Ca(2+) sensitization, after exposure to lysophospholipids and proteases released from inflammatory cells. This beta-adrenergic desensitization is also attenuated in the presence of Y-27632. Furthermore, the proliferation of airway smooth muscle cells is elevated by Rho-kinase, however, it is markedly suppressed by Y-27632. Antigen challenges cause hyperresponsiveness and eosinophilia in the airways; however, these reactions are markedly suppressed by these Rho-kinase inhibitors. These findings indicate that RhoA/Rho-kinase is involved in the pathophysiology of asthma, and suggest that Rho-kinase inhibitors have therapeutic potential for prohibiting these features. In conclusion, RhoA/Rho-kinase is a novel target molecule for the treatment of asthma.  相似文献   

16.
In airway smooth muscle (ASM), full and partial muscarinic receptor agonists have been described to have large differences in their ability to induce signal transduction, including Ca2+-mobilization. Despite these differences, partial agonists are capable of inducing a submaximal to maximal ASM contraction. To further elucidate transductional differences between full and partial muscarinic receptor agonists, we investigated the contribution of Rho-kinase (an important regulator of Ca2+-sensitization) to methacholine-, pilocarpine- and McN-A-343-induced bovine tracheal smooth muscle (BTSM) contraction, using the selective Rho-kinase inhibitor Y-27632. In addition, we measured Ca2+-mobilization and -influx in BTSM cells in response to these agonists in the absence and presence of Y-27632. Whereas treatment with Y-27632 (1 microM) significantly decreased potency (pEC50) for all agonists, maximal contraction (Emax) was reduced by 23.4+/-2.8 and 50.4+/-7.9% for the partial agonists pilocarpine and McN-A-343, respectively, but was unaffected for the full agonist methacholine. However, Emax of methacholine became Rho-kinase dependent after taking away its receptor reserve using the irreversible muscarinic receptor antagonist propylbenzilylcholine mustard. Pilocarpine and McN-A-343 induced a very small Ca2+-mobilization and -influx as compared to methacholine. In addition, an inverse relationship of these two parameters with the Rho-kinase dependency was observed. Interestingly, no inhibitory effects of Y-27632 were observed on Ca2+-mobilization and-influx for all three agonists, indicating that the effects of Y-27632 on contraction are most likely on the level of Ca2+-sensitization. In conclusion, in contrast to the full agonist methacholine, the partial muscarinic receptor agonists pilocarpine and McN-A-343 are dependent on Rho-kinase for their maximal contractile effects, presumably as a consequence of differences in transductional reserve, indicating an agonist-dependent role for Rho-kinase in ASM contraction. Moreover, an inverse relationship exists between Rho-kinase dependency and both Ca2+-mobilization and Ca2+-influx for these agonists.  相似文献   

17.
1. Repeated allergen challenge has been shown to increase the role of Rho-kinase in airway smooth muscle (ASM) contraction. We considered the possibility that active allergic sensitization by itself, that is, without subsequent allergen exposure, could be sufficient to enhance Rho-kinase-mediated ASM contraction. 2. Guinea pigs were actively IgE-sensitized to ovalbumin (OA), using Al(OH)(3) as adjuvant. Contractile responsiveness to G(q)-coupled receptor agonists (methacholine, histamine or PGF(2alpha)) was investigated in tracheal rings. No effect of sensitization was observed on basal- and methacholine-induced myogenic tone. In contrast, potency of histamine and PGF(2alpha) increased, that is, EC(50) decreased, after OA-sensitization by 2.6- and 4.7-fold, respectively, without effect on maximal contraction (E(max)). 3. Basal tone in preparations from both control and OA-sensitized animals was strongly decreased in the presence of the Rho-kinase inhibitor (+)-(R)-trans-4-(1-aminoethyl)-N-(4-pyridyl) cyclohexane carboxamide (Y-27632) (1 microm). In control preparations, the E(max) and potency of histamine were unaffected by Y-27632, but were decreased for PGF(2alpha) (by 38.2% and 2.0-fold, respectively). However, in preparations from OA-sensitized animals, Y-27632 induced a significant reduction in E(max) (33.5%) and potency (2.3-fold) of histamine and of PGF(2alpha) (48.3% and 6.6-fold, respectively), normalizing the OA-sensitization-induced increase in sensitivity toward these agonists. 4. We also investigated the contribution of Rho-kinase in vivo by measuring airway responsiveness toward inhaled histamine in permanently instrumented, unanaesthetized control and OA-sensitized guinea pigs. Treatment with Y-27632 by inhalation (5 mm, nebulizer concentration) decreased airway responsiveness toward histamine both in control and OA-sensitized animals. However, the histamine PC(100) ratio pre/post Y-27632 inhalation was significantly smaller in OA-sensitized animals as compared to control animals, indicating an enhanced contribution of Rho-kinase. 5. Expression of RhoA, an upstream activator of Rho-kinase, was significantly increased (2.6-fold) in lung homogenates of OA-sensitized guinea pigs compared to control animals, as determined by Western analysis. 6. In conclusion, the results show a receptor-dependent role of Rho-kinase in agonist-induced ASM contraction. The contribution of Rho-kinase to contractile airway responsiveness, both in vivo and ex vivo, is augmented after active allergic sensitization, as a consequence of increased expression of RhoA presumably. Inhibition of the RhoA/Rho-kinase pathway may be considered a useful pharmacotherapeutical target in allergy and asthma.  相似文献   

18.
We aimed to compare the expression and function of molecular components of the RhoA/Rho-kinase signaling pathway in the contractile responses of detrusor, trigonal and urethral smooth muscle, using selective Rho-kinase inhibitors. Contractility studies and molecular approaches were employed to demonstrate the expression patterns and functional activity of the RhoA/Rho-kinase signaling pathway in the lower urinary tract. Frequency-response curves (1-32 Hz) and concentration-response curves (CRC) to carbachol (CCh, 0.01-30 microM), phenylephrine (PE, 0.01-300 microM) and endothelin-1 (ET-1, 0.01-100 nM) were significantly attenuated (p<0.01) following incubation with the Rho-kinase inhibitors H-1152 (0.1-1 microM), Y-27632 (1-10 microM) or HA-1077 (10 microM). Addition of Rho-kinase inhibitors also markedly reduced (p<0.01) the contractions evoked by either KCl (80 mM) or alpha,beta-methylene ATP (alpha,beta-mATP, 10 microM). Among the Rho-kinase inhibitors tested, H-1152 was approximately 9-16 times more potent than Y-27632 or HA-1077. In addition, basal tone of detrusor and trigonal strips was reduced following addition of Y-27632 (10 microM), H-1152 (1 microM) and HA-1077 (10 microM). The expression of RhoA, RhoGDI, leukemia-associated RhoGEF (LARG) and p115RhoGEF was similar among the detrusor, trigone and urethra, whereas Rho-kinase alpha, Rho-kinase beta and PDZ-RhoGEF protein levels were significantly lower in the urethra. Components of the RhoA/Rho-kinase signaling are expressed in detrusor, trigonal and urethral smooth muscle and dynamically regulate contraction and tone. Manipulation of RhoGEF expression may provide further understanding of mechanisms involving Ca(2+) sensitization in the lower urinary tract.  相似文献   

19.
Rho/Rho-kinase-mediated pathway has been involved in a variety of physiological processes, including Ca2+ sensitization, which enhances smooth muscle contraction. In this study, first of all we investigated the expression of Rho-kinase (ROCK-2) and then the role of this protein in the control of smooth muscle contraction in the isolated human gallbladder. For this purpose, we examined the effects of a selective Rho-kinase inhibitor, (+)- (R)-trans-4-(1-aminoethyl)-N-(4-pyridyl) cyclohexanecarboxamide dihydrochloride monohydrate (Y-27632, 10− 8 − 3 × 10− 5 M) on carbachol (10− 8–10− 4 M), cholecystokinin-8 (10− 8 M), endothelin-1 (10− 8 M), histamine (10− 5 M), neurokinin A (10− 7–10− 6 M), 5-hydroxytryptamine (10− 6–10− 5 M) and potassium chloride (KCl, 25–50 mM)-induced contractions as well as spontaneous contractile activity. Y-27632 (10− 5 M) significantly reduced 5-hydroxytryptamine, neurokinin A and KCl-induced contractions. Moreover, this Rho-kinase inhibitor (10− 8 − 3 × 10− 5 M, cumulatively) relaxed the contractions produced by cholecystokinin-8, endothelin-1 and histamine in a concentration-dependent manner, being the pEC50 values for Y-27632 5.74 ± 0.12, 5.33 ± 0.09 and 5.95 ± 0.18, respectively. Carbachol (10− 8–10− 4 M) pfroduced concentration-dependent contractions, which were also inhibited significantly by Y-27632. In addition, the spontaneous contractile activity was suppressed in the presence of Y-27632 (10− 6–10− 5 M). Moreover, Western blot analysis has revealed that Rho-kinase is expressed in homogenates of the human gallbladder. Taken together, these results show that Rho-kinase is expressed in the human gallbladder, and it has an essential role in agonists and depolarization-induced contractions as well as spontaneous contractile activity.  相似文献   

20.
BACKGROUND: The chronic effects of interleukin 1-beta (IL-beta) on vascular reactivity include augmentation of contraction and relaxation. Few studies have assessed the acute effects of IL-1beta in vessels from hypertensive and normotensive rats. We hypothesized that IL-1beta would enhance constriction in aorta from stroke prone spontaneously hypertensive rats (SHRSP). METHODS: Endothelium denuded aortic rings from 12 week-old SHRSP and Wistar Kyoto (WKY) rats were mounted in a myograph and incubated with IL-1beta (20 ng/ml) for 1 h before construction of a phenylephrine dose response curve. Indomethacin (1 microM) and PP-2 (1 microM) were utilized to inhibit cyclooxygenase (COX) and Src-kinase respectively. RESULTS: In aorta from SHRSP, IL-1beta caused a significant increase in the force generated over the hour incubation; inhibition of COX or Src-kinase prevented this. The maximum phenylephrine-induced contraction was greater in aorta from SHRSP incubated with IL-1beta than control. COX or Src-kinase inhibition prevented this. IL-1beta had no effect on the vessels from WKY rats. CONCLUSIONS: These novel data suggest that IL-1beta has rapid effects on vascular smooth muscle from hypertensive rats to produce constriction and to enhance phenylephrine-induced constriction. The COX and Src-kinase pathways appear to be involved in this response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号