首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 81 毫秒
1.
Cytoskeletal disruption is a key pathological feature of Alzheimer's disease (AD). We used refined immunocytochemical techniques to define the range of abnormalities affecting the microtubule system in AD hippocampus. Minimal tau and tubulin immunoreactivity was granular and accumulated in otherwise normal neuronal perikarya. As tau-reactive neurofibrillary tangles formed, granular tau and tubulin staining diminished, and ubiquitin reactivity developed. In regions of high neurofibrillary tangle density, microtubule-associated protein 2 (MAP2) histochemical features of remaining nontangled neurons included apical dendritic degeneration with proliferation of basal dendrites. In addition to perisomatic dendritic proliferation, there was massive sprouting of tau-immunoreactive distal dystrophic neurites. Sprouting proximal dendrites and dystrophic neurites often demonstrated growth-cone-like lamellipodia and filopodia. Degeneration of the perisomatic proliferating dendrites was characterized by the accumulation of fibrillar tau immunoreactivity. The colocalization of MAP2 and tau in growth structures recapitulated their codistribution in developing neurites. The data suggest that extensive plasticity and growth response occur in tandem with neuronal degeneration in AD, and that reorganization of the cytoskeletal microtubule system may underlie these proliferative changes.  相似文献   

2.
Amyloid plaques, a well‐known hallmark of Alzheimer's disease (AD), are formed by aggregated β‐amyloid (Aβ). The cellular prion protein (PrPc) accumulates concomitantly with Aβ in amyloid plaques. One type of amyloid plaque, classified as a neuritic plaque, is composed of an amyloid core and surrounding dystrophic neurites. PrPc immunoreactivity reminiscent of dystrophic neurites is observed in neuritic plaques. Proteinase K treatment prior to immunohistochemistry removes PrPc immunoreactivity from amyloid plaques, whereas Aβ immunoreactivity is enhanced by this treatment. In the present study, we used a chemical pretreatment by a sarkosyl solution (0.1% sarkosyl, 75 mM NaOH, 2% NaCl), instead of proteinase K treatment, to evaluate PrPc accumulation within amyloid plaques. Since PrPc within amyloid plaques is removed by this chemical pretreatment, we can recognize that the PrP species deposits within amyloid plaques were PrPc. We could observe that PrPc accumulation in dystrophic neurites occurred differently compared with Aβ or hyperphosphorylated tau aggregation in the AD brain. These results could support the hypothesis that PrPc accumulation in dystrophic neurites reflects a response to impairments in cellular degradation, endocytosis, or transport mechanisms associated with AD rather than a non‐specific cross‐reactivity between PrPc and aggregated Aβ or tau.  相似文献   

3.
Overexpression of mutated human amyloid precursor protein (hAPP717V-->F) under control of the platelet-derived growth factor promoter (PDAPP minigene) in transgenic (tg) mice results in plaque formation and astroglial activation similar to Alzheimer disease (AD). However, the extent of the neurofibrillary pathology in this model is less understood. In order to determine if these mice develop AD-like neurofibrillary pathology, vibratome sections from PDAPP tg mice (4- to 20-months-old) were immunolabeled with antibodies against phosphorylated tau (AT8) and phosphorylated neurofilaments (SMI 312, TA51), and analyzed by laser scanning confocal and electron microscopy. Phosphorylated neurofilament-immunoreactive dystrophic neurites in plaques were first seen in mice at 10 to 12 months of age, while phosphorylated tau-immunoreactive dystrophic neurites were observed after 14 months of age. Immunoelectron microscopic analysis revealed that phosphorylated neurofilament immunoreactivity was diffusely distributed along filamentous aggregates (12-15 nm in diameter) in the plaque dystrophic neurites, and occasionally in neuronal cell bodies. In contrast, phosphorylated tau immunoreactivity was observed as clusters distributed along filamentous structures accumulating in the dystrophic neurites and around neurotubules in the axons. However, no paired helical filaments were observed. Taken together, these studies indicate that the PDAPP tg model recapitulates early cytoskeletal pathology similar to that observed in AD.  相似文献   

4.
Plaque-associated dystrophic neurites are a common pathological feature in the brains of patients with Alzheimer’s disease (AD). In the present study, we investigated the relative abundance and progressive transformation of the amyloid precursor protein (APP), neurofilament (NF) and paired helical filament (PHF) tau-positive dystrophic neurites, within plaques in non-demented controls versus plaque-associated dystrophic neurites in mild or severe AD using double and triple immunolabeling. We also determined the argentophilia of the various sub-populations of dystrophic neurites. In aged non-demented brain, approximately half of the APP-positive plaques contained NF-immunopositive dystrophic neurites; rarely were PHF/tau-positive dystrophic neurites detectable. In contrast, in the AD brain, three-fourths of the APP-positive plaques contained NF-positive dystrophic neurites and half contained PHF/tau neurites. We also observed focal patches of hyper-phosphorylated NF and/or PHF/tau within APP-immunopositive dystrophic neurites, which appeared similar to retrograde degeneration, whereas we never observed focal accumulations of APP within NF- or PHF/tau-positive fibers. We hypothesize that plaque-associated dystrophic neurites within plaques develop in a particular sequence: APP-positive dystrophic neurites appear first and are non-argentophilic. This is followed by the appearance of NF-positive dystrophic neurites, where a subset of NF-positive dystrophic neurites are lightly argentophilic. Over time, PHF/tau-positive dystrophic neurites develop and are strongly argentophilic. These data suggest that dystrophic neurites can develop retrogradely from focal plaque damage to induce somatic and dendritic degeneration and potentially contribute to neurofibrillary tangle formation. Received: 22 September 1997 / Revised, accepted: 15 April 1998  相似文献   

5.
The 70‐kDa ribosomal protein S6 kinase (S6K), a serine/threonine kinase that modulates the phosphorylation of the 40S ribosomal protein S6, regulates cell cycle progression and is known as a tau kinase in Alzheimer's disease (AD). In AD brains, neurofibrillary tangles (NFTs) have been shown to be positively stained with antibodies against S6K proteins phosphorylated at T389 (pT389‐S6K) or T421/S424 (pT421/S424‐S6K) by the mammalian target of rapamycin and mitogen‐activated protein kinase pathways, respectively. However, there is little information available about S6K proteins directly phosphorylated at T229 (pT229‐S6K) by the PI3K‐PDK1 pathway. In the present study, we investigated the distribution of pT229‐S6K in post mortem human brain tissues from elderly (control) and patients with AD using immnunoblotting and immunohistochemistry. pT229‐S6K immunoreactivity was localized to small granular structures in neurons and endothelial cells in control and AD brains. In AD brains, intense pT229‐S6K immunoreactivity was detected in 16.3% of AT8‐positive NFTs, neuropil threads, and dystrophic neurites in the hippocampus and other vulnerable brain areas. In addition, Hirano bodies were also positive for pT229‐S6K but were negative for pT389‐S6K or pT421/S424‐S6K. The present results indicate that S6K phosphorylation via the PI3K‐PD1 pathway is involved in tau pathology in NFTs and abnormal neurites as well as actin pathology in Hirano bodies.  相似文献   

6.
Yoon SY  Choi JE  Huh JW  Hwang O  Nam Hong H  Kim D 《Neuroreport》2005,16(3):223-227
Hyperphosphorylation of tau is a characteristic feature of the neurodegenerative pathology in Alzheimer's disease (AD). Okadaic acid is used as a research model of AD to increase the tau phosphorylation and neuronal death. Using Western blotting, we found that the amounts of activated PKB[pS-473] and inactivated GSK-3beta[pS-9] were increased in proportion to the progress of okadaic acid induced tau phosphorylation. Immunocytochemistry showed that PKB[pS-473] and GSK-3beta[pS-9] immunoreactivity increased in dystrophic neurites and cell bodies in degenerating neurons after okadaic acid treatment. Double staining with phosphospecific tau antibodies showed that PKB[pS-473] and GSK-3beta[pS-9] were colocalized with phosphospecific tau in response to okadaic acid. Taken together, our data suggest that inhibition of protein phosphatase results in the hyperphosphorylation of tau without GSK-3beta overactivation.  相似文献   

7.
Hyperphosphorylation and accumulation of tau in neurons (and glial cells) is one the main pathologic hallmarks in Alzheimer's disease (AD) and other tauopathies, including Pick's disease (PiD), progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease and familial frontotemporal dementia and parkinsonism linked to chromosome 17 due to mutations in the tau gene (FTDP-17-tau). Hyperphosphorylation of tau is regulated by several kinases that phosphorylate specific sites of tau in vitro. GSK-3-immunoprecipitated sarcosyl-insoluble fractions in AD have the capacity to phosphorylate recombinant tau. In addition, GSK-3 phosphorylated at Ser9, that inactivates GSK-3, is found in the majority of neurons with neurofibrillary tangles and dystrophic neurites of senile plaques in AD, and in Pick bodies and other phospho-tau-containing neurons and glial cells in other tauopathies. Increased expression of active kinases, including stress-activated kinase, c-Jun N-terminal kinase (SAPK/JNK) and kinase p38 has been found in brain homogenates in all the tauopathies. Strong active SAPK/JNK and p38 immunoreactivity has been observed restricted to neurons and glial cells containing hyperphosphorylated tau, as well as in dystrophic neurites of senile plaques in AD. Moreover, SAPK/JNK- and p38-immunoprecipitated sub-cellular fractions enriched in abnormal hyperphosphorylated tau have the capacity to phosphorylate recombinant tau and c-Jun and ATF-2 which are specific substrates of SAPK/JNK and p38 in AD and PiD. Interestingly, increased expression of phosphorylated (active) SAPK/JNK and p38 and hyperphosphorylated tau containing neurites have been observed around betaA4 amyloid deposits in the brain of transgenic mice (Tg 2576) carrying the double APP Swedish mutation. These findings suggest that betaA4 amyloid has the capacity to trigger the activation of stress kinases which, in turn, phosphorylate tau in neurites surrounding amyloid deposits. Complementary findings have been reported from the autopsy of two AD patients who participated in an amyloid-beta immunization trial and died during the course of immunization-induced encephalitis. The neuropathological examination of the brain showed massive focal reduction of amyloid plaques but not of neurofibrillary degeneration. Activation of SAPK/JNK and p38 were reduced together with decreased tau hyperphosphorylation of aberrant neurites in association with decreased amyloid plaques in both Tg2576 mice and human brains. These findings support the amyloid cascade hypothesis of tau phosphorylation mediated by stress kinases in dystrophic neurites of senile plaques but not that of neurofibrillary tangles and neuropil threads in AD.  相似文献   

8.
Neurofibrillary tangles (NFT), one of the histopathological hallmarks of Alzheimer’s disease (AD) and progressive supranuclear palsy (PSP), and Pick bodies in Pick’s disease (PiD) are composed of microtubule-associated protein tau, which is the product of alternative splicing of a gene on chromosome 17. Alternative expression of exon 10 leads to formation of three- or four-repeat tau isoforms. To study the differential expression of exon 10, we performed double-labeling immunohistochemistry of the hippocampal formation in nine AD, four PSP and three PiD cases. Cryostat sections were processed with and without formic acid (FA) treatment, and double-stained with anti-tau (Alz-50 or PHF-1) or anti-amyloid P component antibodies and one of two specific anti-exon 10 antibodies (E-10). The effect of proteinase-K treatment was also evaluated. The results suggest the following. First, in AD, E-10 immunoreactivity is present in most intracellular NFT, but not in most dystrophic neurites and neuropil threads, suggesting differential expression of tau isoforms in specific cellular domains. Second, in AD, E-10 immunoreactivity is lost or blocked in most extracellular NFT, possibly due to proteolysis. Third, in PSP, E-10 immunoreactivity is hidden or blocked in NFT and tau-positive glial inclusions, but FA treatment exposes the epitope consistent with the hypothesis that PSP inclusions contain four-repeat tau. Fourth, E-10 immunoreactivity is present in dentate fascia NFT in AD and PSP, but not in Pick bodies in the dentate fascia or other areas. The results suggest that expression of exon 10 in tau is specific for cellular domains in a disease-specific manner. Received: 26 July 1999 / Revised, accepted: 25 November 1999  相似文献   

9.
Summary. Calcium/calmodulin-dependent kinase II (α- and β-CaM kinase II), and phosphorylated mitogen-activated extracellular signal-regulated protein kinase (MAPK/ERK-P), phosphorylated protein kinase of 38 kDa (p38-P) and phosphorylated stress-activated protein kinase (SAPK/JNK-P) expression have been examined in Alzheimer disease (AD), Pick's disease (PiD), progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). The study was carried out to increase understanding of the signals that may regulate tau phosphorylation in tauopathies. MAPK/ERK-P was found in a subset of neurons and glial cells bearing abnormal tau deposition, but rarely in neurofibrillary tangles. Strong p38-P immunoreactivity was observed in about 50–70% of neurons with neurofibrillary tangles and in dystrophic neurites of senile plaques in AD. Strong p38-P immunoreactivity was seen in practically all Pick bodies in PiD, and in most neurons with neurofibrillary degeneration or with tau deposits (pre-tangle neurons) in PSP and CBD, as revealed with single and double-labeling immunohistochemistry to p38-P and tau. In addition, strong p38-P immunoreactivity was present in tau-positive astrocytes and in coiled bodies in PSP and CBD. Single and double-labeling immunohistochemistry to MAPK/ERK-P and p38-P disclosed that MAPK/ERK-P appeared at early stages of tau phosphorylation in neurons and glial cells in tauopathies, and that MAPK/ERK-P and p38-P co-localize only in a subset of neurons and glial cells with phosphorylated tau deposits. SAPK/JNK-P immunoreactivity was seen in a subset of neurons, including many neurons with neurofibrillary degeneration, and in glial cells accumulating abnormal tau, in AD, PiD, PSP and CBD. Double-labeling immunohistochemistry disclosed partial co-localization of SAPK/JNK-P and either MAPK/ERK-P or p-38-P immunoreactivity. These findings indicate that MAPK/ERK-P, SAPK/JNK-P and p-38-P are differentially expressed in association with tau deposits in tauopathies. Finally, CaM kinase II is present in neurons but not in glial cells, thus suggesting no role of CaM kinase II in tau phosphorylation of glial cells. These observations, together with previous results of in vitro studies, support the idea that several MAPK/ERK, SAPK/JNK, p38 and CaM kinase II may participate in tau phosphorylation in tauopathies. Lack of co-localization between MAPK/ERK-P, SAPK/JNK-P and p-38-P over-expression, and staining with the method of in situ end-labeling of nuclear DNA fragmentation in individual cells indicate that over-expression of these kinases is not linked with increased nuclear DNA vulnerability in AD, PiD, PSP and CBD. Received June 26, 2001; accepted August 27, 2001  相似文献   

10.
Tauopathies represent a class of neurodegenerative disorders characterized by abnormal tau phosphorylation and aggregation into neuronal paired helical filaments (PHFs) and neurofibrillary tangles. AMP-activated protein kinase (AMPK) is a metabolic sensor expressed in most mammalian cell types. In the brain, AMPK controls neuronal maintenance and is overactivated during metabolic stress. Here, we show that activated AMPK (p-AMPK) is abnormally accumulated in cerebral neurons in 3R+4R and 3R tauopathies, such as Alzheimer’s disease (AD), tangle-predominant dementia, Guam Parkinson dementia complex, Pick’s disease, and frontotemporal dementia with parkinsonism linked to chromosome 17, and to a lesser extent in some neuronal and glial populations in the 4R tauopathies, progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and argyrophilic grain disease. In AD brains, p-AMPK accumulation decorated neuropil threads and dystrophic neurites surrounding amyloid plaques, and appeared in more than 90% of neurons bearing pre-tangles and tangles. Granular p-AMPK immunoreactivity was also observed in several tauopathies in apparently unaffected neurons devoid of tau inclusion, suggesting that AMPK activation preceded tau accumulation. Less p-AMPK pathology was observed in PSP and CBD, where minimal p-AMPK accumulation was also found in tangle-positive glial cells. p-AMPK was not found in purified PHFs, indicating that p-AMPK did not co-aggregate with tau in tangles. Finally, in vitro assays showed that AMPK can directly phosphorylate tau at Thr-231 and Ser-396/404. Thus, activated AMPK abnormally accumulated in tangle- and pre-tangle-bearing neurons in all major tauopathies. By controlling tau phosphorylation, AMPK might regulate neurodegeneration and therefore could represent a novel common determinant in tauopathies.  相似文献   

11.
Hyperphosphorylation and accumulation of tau in neurons (and glial cells) is one of the main pathologic hallmarks in Alzheimer's disease (AD) and other tauopathies, including Pick's disease (PiD), progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease and familial frontotemporal dementia and parkinsonism linked to chromosome 17 due to mutations in the tau gene (FTDP-17-tau). Recent studies have shown increased expression of select active kinases, including stress-activated kinase, c-Jun N-terminal kinase (SAPK/JNK) and kinase p38 in brain homogenates in all the tauopathies. Strong active SAPK/JNK and p38 immunoreactivity has been observed restricted to neurons and glial cells containing hyperphosphorylated tau, as well as in dystrophic neurites of senile plaques in AD. Moreover, SAPK/JNK- and p38-immunoprecipitated sub-cellular fractions enriched in abnormal hyperphosphorylated tau have the capacity to phosphorylate recombinat tau and c-Jun and ATF-2 which are specific substrates of SAPK/JNK and p38 in AD and PiD. Interestingly, increased expression of phosphorylated SAPK/JNK and p38 in association with hyperphosphorylated tau containing neurites have been observed around betaA4 amyloid deposits in the brain of transgenic mice (Tg2576)carrying the double APP Swedish mutation. These findings suggest that betaA4 amyloid has the capacity to trigger the activation of stress kinases which, in turn, phosphorylate tau in neurites surrounding amyloid deposits. Reduction in the amyloid burden and decreased numbers of amyloid plaques but not of neurofibrillary degeneration has been observed in the brain of two AD patients who participated in an amyloid-beta immunization trial. Activation of stress kinases SAPK/JNK and p38 were reduced together with decreased tau hyperphosphorylation of aberrant neurites in association with decreased amyloid plaques. These findings support the amyloid cascade hypothesis of tau phosphorylation mediated by stress kinases in dystrophic neurites of senile plaques but not that of neurofibrillary tangles and neuropil threads in AD.  相似文献   

12.
13.
目的研究雌激素对冈田酸(OA)诱导的人神经母细胞瘤系(SH-SY5Y)细胞tau蛋白磷酸化的影响。方法 MTT观察OA对SH-SY5Y细胞活力的影响,制备AD时tau蛋白过度磷酸化的细胞模型;Western blot检测OA及雌激素对Thr231位点tau蛋白磷酸化的影响。结果 MTT结果表明:当OA浓度大于40nmol/L时,细胞活力受到明显抑制,低于此浓度的OA对细胞活力的影响不明显;Western blot结果表明,SH-SY5Y细胞经OA(40nmol/L 12h)处理后,tau蛋白磷酸化水平明显增加,这种作用可被雌激素所抑制。结论雌激素抑制了OA诱导的SH-SY5Y细胞的tau蛋白过度磷酸化。  相似文献   

14.
Brain-derived neurotrophic factor (BDNF), and full-length and truncated tyrosin kinase B receptor (TrkB) protein expression were examined by Western blotting and immunohistochemistry in the frontal cortex and hippocampus of individuals affected by long-lasting severe Alzheimer disease (AD) and age-matched controls. Since preliminary processing studies in the brains of rats have shown loss of immunoreactivity depending on the postmortem delay in tissue processing and on the type, duration, and temperature of the fixative solution, only human samples obtained up to 6 hours (h) after death for biochemical and morphological studies and fixed by immersion in 4% paraformaldehyde for 24 h for morphological studies were included in the present series. Decreased BDNF and full-length TrkB expression accompanied by increased truncated TrkB expression, as revealed by Western blotting, was observed in the frontal cortex of patients with AD. Immunohistochemistry disclosed reduced BDNF and full-length TrkB immunoreactivity in neurons. BDNF decrease was equally observed in tangle-bearing and non-tangle-bearing neurons, as revealed with double-labeling immunohistochemistry to BDNF and phosphorylated tau or phosphorylated neurofilament epitopes. Full-length TrkB immunoreactivity was largely decreased in tangle-bearing neurons, whereas only moderate decreases occurred in neurons with granulovacuolar degeneration. Strong BDNF immunoreactivity was observed in dystrophic neurites surrounding senile plaques, whereas strong TrkB expression occurred in reactive glial cells, including those surrounding senile plaques. Finally, truncated TrkB immunoreactivity was observed in individual neurons and in reactive glial cells in the cerebral cortex and white matter in AD. These results show decay in the expression of BDNF and TrkB in AD neurons, accompanied by altered BDNF, and full-length and truncated TrkB expression in dystrophic neurites and reactive glial cells, respectively, in this disease. The present results demonstrate selective decline of the BDNF/TrkB neurotrophic signaling pathway in the frontal cortex and hippocampus in AD and provide supplemental data that may be relevant in discussing the suitability of the use of BDNF as a therapeutic agent in patients with AD.  相似文献   

15.
The microtubule-associated protein tau accumulates as cytoplasmic inclusions in Alzheimer's disease (AD), Pick's disease (PiD), progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). We investigated the immunoreactivity of tau-positive structures using a panel of antibodies to epitopes spanning the entire length of the tau molecule. In ethanol-fixed brain tissues, most antibodies to the microtubule-binding domain (MBD) required formic acid (FA) treatment to stain tau inclusions in PSP and CBD. This is in contrast with the intense labeling of neurofibrillary tangles in AD without FA treatment. Pick bodies (PiB) in PiD showed an intermediate pattern with respect to the immunoreactivity of the MBD because accumulated tau in PiB mostly lacks the insertion of exon 10, and the proportion of tau phosphorylated at Ser262 is smaller than in other abnormal tau structures. Such immunohistochemical profiles appeared to correlate with the occurrence of the smeared tau on immunoblot analysis of brain homogenate. The smeared tau was more abundant in AD and PiD than in PSP and CBD. Since the smeared tau was N-terminally truncated and was characteristic of advanced forms of modified tau, these findings suggest that tau accumulated in AD and PiD was processed more markedly than that in PSP and CBD. The MBD of tau may be masked in the presence of the intact N terminus and require FA treatment for antibody recognition in tissue sections. Advanced modification may expose the MBD in brain tissues of AD and PiD. It is suggested that the processing of abnormally accumulated tau characterizes the pathophysiology of each tauopathy.  相似文献   

16.
Characterization of the earliest neuropathologic features of Alzheimer disease (AD) indicates that synaptic degeneration accompanied by tau hyperphosphorylation and amyloid deposition might be an important feature. The mechanisms involved are unclear; however, dysregulation of signaling cascades such as the extracellular signal-regulated kinase (ERK) pathway might play a role. In this context, the main objective of this study was to determine whether ERK hyperactivation occurs in early stages of AD. We compared the patterns of total and phosphorylated ERK (pERK) expression in the midfrontal cortex of patients clinically and neuropathologically characterized with early, intermediate, or advanced AD. Immunocytochemical and Western blot analysis showed that in early AD, there was extensive activation of ERK in astroglial cells in the white matter accompanied by intense astrogliosis. In contrast, in patients with more advanced AD, pERK immunoreactivity was associated with neuronal cell bodies and dystrophic neurites around plaques. Levels of astroglial pERK immunoreactivity in the white matter were strongly correlated with scores of cognitive performance (Blessed, Mini-Mental Status Examination, and Clinical Dementia Rating) and with the severity of AD neuropathology (Braak stage). These findings suggest that astroglial ERK activation may be an important early response to the onset of AD pathology. Identification of cell signaling events unique to early AD may provide therapeutic targets for the prevention or delay of dementia.  相似文献   

17.
Mutations in the DJ-1 gene are associated with autosomal recessive Parkinson's disease (PD), but its role in disease pathogenesis is unknown. This study examines DJ-1 immunoreactivity (DJ-1 IR) in a variety of neurodegenerative disorders, Alzheimer's disease (AD), frontotemporal lobar degeneration (FTLD) with Pick bodies, FTLD with MAPT mutations, progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD), in which hyperphosphorylated tau inclusions are the major pathological signature. DJ-1 IR was seen in a subset of neurofibrillary tangles (NFTs), neuropil threads (NTs), and neurites in extracellular plaques in AD; tau inclusions in AD contained both 3R and 4R tau. A subset of Pick bodies in FTLD showed DJ-1 IR. In PSP, DJ-1 IR was present in a few NFTs, NTs and glial cell inclusions. In CBD, DJ-1 IR was seen only in astrocytic plaques. In cases of FTLD with MAPT mutations that were 4R tau positive (i.e. N279K and exon 10+16 mutations), DJ-1 IR was present mostly in oligodendroglial coiled bodies. However, in MAPT R406W mutation cases, DJ-1 IR was associated mainly with NFTs and NTs and these were both 3R and 4R tau positive. No DJ-1 IR was present in FTLD with ubiquitin inclusions (FTLD-U). In AD and FTLD with Pick bodies, DJ-1 protein was enriched in the sarkosyl-insoluble fractions of frozen brain tissue containing insoluble hyperphosphorylated tau, thus strengthening the association of DJ-1 with tau pathology. Additionally using two-dimensional gel electrophoresis, we demonstrated accumulation of acidic pI isoforms of DJ-1 in AD brain, which may compromise its normal function. Our observations confirm previous findings that DJ-1 is present in a subpopulation of glial and neuronal tau inclusions in tau diseases and associated with both 3R and 4R tau isoforms.  相似文献   

18.
Neurofibrillary tangles (NFTs) and neuritic plaques (NPs) are two major histopathological lesions in Alzheimer's disease (AD). Although their aetiological relationship is unclear, both NFTs and dystrophic neurites of NPs display immunoreactivity for ubiquitin. This suggests that dysfunction in ubiquitin-mediated proteolysis and the resulting accumulation of ubiquitin-conjugated proteins may contribute to the origination of dystrophic neurites and NFTs. We recently discovered a novel constituent of neuropathological protein aggregates, ubiquitin-binding protein p62, with evidence that the accumulation of ubiquitin-conjugated proteins and p62 into cytoplasmic inclusions might be interconnected. In the present work we examined in detail the role of p62 in AD-type pathology, i.e. NFTs, NPs and neuropil threads. Using immunohistochemistry for p62, ubiquitin and hyperphosphorylated tau, we analysed parietal cortical samples of 15 clinicopathologically verified AD cases and nine nondemented aged subjects with abundant NPs. We found that p62 immunoreactivity appears early during neurofibrillary pathogenesis and is invariably and stably present in NFTs. In contrast, p62 was absent or barely detectable in neuropil threads. Furthermore, NP-associated dystrophic neurites were generally devoid of p62, regardless of their content of hyperphosphorylated tau and/or ubiquitin. The results suggest that early involvement of p62 might be critical in the aggregation of hyperphosphorylated tau into perikaryal aggregates, i.e. NFTs.  相似文献   

19.
A relatively early and substantial loss of basal forebrain cholinergic neurons is a constant feature of Alzheimer's disease (AD). However, the mechanisms that contribute to the selective vulnerability of these neurons are not fully delineated. In the present series of experiments, we determined the possible contribution of apoptotic processes and other pathologic cascades to the degeneration of the cholinergic neurons of the nucleus basalis of Meynert (NBM) in AD. In contrast to neurons in the frontal cortex which showed prominent DNA fragmentation as detected by the TUNEL method, no DNA fragmentation was observed within the NBM in any of the AD or normal brains. Similarly, immunoreactivity for the apoptotic signals Fas, Fas-ligand, Bax, Bcl-x, caspase-8, caspase-9 and caspase-3 was absent from the NBM of AD and control brains. In contrast, a substantial subpopulation of cholinergic neurons within the NBM in AD displayed prominent immunoreactivity for the apoptotic signal Fas-associated death domain (FADD) in the form of tangles. FADD immunoreactivity was also present in dystrophic neurites. FADD-positive tangle-like structures were localized in neurons which contained immunoreactivity for the cholinergic marker choline acetyltransferase (ChAT) and the low affinity neurotrophin receptor p75NTR. While many of the NBM cholinergic neurons in control brains contained immunoreactivity for the calcium binding protein calbindin-D28K (CB), the NBM neurons in AD displayed a substantial loss of CB immunoreactivity. Importantly, most of FADD-immunoreactive cholinergic neurons were devoid of CB immunoreactivity, and, conversely, most CB-positive cholinergic neurons had no FADD immunoreactivity. FADD immunoreactivity within the basal forebrain was colocalized with phosphorylated tau immunoreactive tangles and dystrophic neurites. In contrast, FADD immunoreactivity did not appear to be related to the primarily diffuse amyloid-beta deposits intermingled between cholinergic neurons in AD NBM. Finally, many CD68-positive microglia were observed surrounding the NBM cholinergic neurons in AD. In conclusion, the findings of the present study indicate that, while the FADD apoptotic signaling pathway may be triggered within the basal forebrain cholinergic neurons in AD, the apoptotic cascade is most likely aborted as no DNA fragmentation was detected and the executioner caspase-3 was not up-regulated within these neurons. The findings also suggest possible relationships between loss of CB, FADD expression and phosphorylation of tau within the basal forebrain cholinergic neurons in AD.  相似文献   

20.
Phosphorylated c-Myc (c-Myc-P) expression has been examined by immunohistochemistry, using an antibody that recognizes phosphorylated c-Myc at Thr58 and Ser62, in the brains of Alzheimer disease (AD), Pick's disease (PiD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD) and age-matched control cases, as well as in human medulloblastomas and central neuroblastomas. Strong c-Myc-P immunoreactivity was seen in dystrophic neurites and neurones with neurofibrillary tangles in AD, and in neurones and glial cells bearing abnormal tau deposits in PiD, PSP and CBD. Previous studies have shown active Ras and increased mitogen-activated protein kinase (MAPK/ERK) expression in neurones and glial cells with abnormal tau deposition in AD and other tauopathies. Since MAPKs phosphorylate c-Myc at Thr58 and Ser62, these observations implicate the Ras/MAP kinase pathway in c-Myc phosphorylation and accumulation in AD and other tauopathies. Previous studies have also shown activation of cell cycle associated proteins in neuronal death. The present results have shown colocalization of nuclear c-Myc-P and active, cleaved caspase-3, a major executioner of apoptosis, in medulloblastomas and central neuroblastomas, thus suggesting phosphorylated c-Myc expression in caspase-3-dependent apoptosis of tumour cells. However, no evidence of caspase-3 activation has been observed in neurones and glial cells with strong phosphorylated c-Myc immunoreactivity in AD, PiD, PSP and CBD. Therefore, it is not clear that the activation of the Ras/MAPK/c-Myc subprogramme leads to neuronal death in AD and other tauopathies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号