首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 865 毫秒
1.
This study was carried out to characterize [3H]nitrendipine binding to cardiac membranes and to test the hypothesis that high affinity binding of Ca++ channel antagonists and agonists is to Ca++ channels. Binding was specific, rapid, reversible and stereoselective. The relative order of potency of nifedipine analogs for inhibition of binding was the same as that for inhibition of smooth and cardiac muscle contraction. Results with diltiazem, verapamil and lidoflazine were consistent with the hypothesis that nondihydropyridine Ca++ channel antagonists act at one or more sites allosterically linked to the 1,4-dihydropyridine site in cardiac cells. The Ca++ channel agonist Bay K 8644 [methyl-1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoromethylphenyl)-pyr idine- 5-carboxylate] displaced specifically bound [3H]nitrendipine in an apparently competitive manner with an IC50 value of 5 nM. The results suggest that organic antagonists do not act by physically blocking the Ca++ channel. The data also support the hypothesis that the high affinity binding sites for [3H]nitrendipine in isolated cardiac membranes are associated with Ca++ channels that are inactivated or are otherwise unavailable for opening.  相似文献   

2.
The present study reports the existence of high-affinity [3H]nitrendipine ([3H]NIT) binding sites in rat spinal cord. Characterization studies revealed [3H]NIT binding to synaptosomes to be specific, rapid and saturable, occurring at a single population of sites. The Bmax was 51 fmol/mg of protein and Kd 0.22 nM with a Hill slope of 0.96. Studies with nifedipine and verapamil demonstrated that the latter binds to a site allosterically linked to the 1,4-dihydropyridine binding sites in spinal cord. The Ca++ channel agonist methyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoromethylphenyl)-pyridine-5 carboxylate acted competitively at the 1,4-dihydropyridine binding site and inhibited specific [3H]NIT binding completely. Organic Ca++ antagonists inhibited binding to various degrees. Treatment with EDTA reduced specific [3H]NIT binding in spinal cord by 83%. This was restored by externally added Ca++. The effect of various mono-, di- and trivalent cations on specific [3H]NIT binding as well as its restoration in EDTA-treated preparations was tested. Na+, K+, Li+, Ca++, Mg++, Mn++ and Ba++ were found to have no significant effect. Other cations inhibited binding of [3H]NIT in the sequence La greater than Cd++ greater than Cu++ greater than Co++. Regional studies in rat spinal cord demonstrated 3-fold higher specific [3H]NIT binding sites in the dorsal cord compared to the ventral cord. Moreover, further variations were also found in cervical, thoracic and lumbar regions of the spinal cord. The results demonstrate that binding of the labeled calcium antagonist in spinal cord membranes is of high affinity and completely reversible.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The binding of [3H]BAY K 8644 [methyl-1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoromethylphenyl)- pyridine-5-carboxylate] to high and low affinity sites in rabbit ventricular membranes was characterized. Binding affinities were 0.66 and 138 nM at 15 degrees C and 9.1 and 72 nM at 37 degrees C, for the high and low affinity sites, respectively, and binding site densities were 0.3 and 14 pmol/mg at 15 degrees C and 0.41 and 1.4 pmol/mg at 37 degrees C, for the respective sites. The modification of high affinity [3H]BAY K 8644 binding by verapamil, diltiazem, tiapamil, Ca++ and EDTA appeared to be the same as that for nitrendipine binding, consistent with the hypothesis that the high affinity binding site for [3H]BAY K 8644 on isolated membranes is the same as the 1,4-dihydropyridine antagonist binding site. The binding of [3H]BAY K 8644 to a low affinity binding site was modified by temperature, Ca++ and diltiazem, but the lack of stereoselectivity, lack of denaturation by heat and the large number of sites indicated that most of the low affinity binding sites were not associated with Ca++ channels. It is concluded that the high affinity binding site for BAY K 8644 is associated with Ca++ channels, and is modified by at least some of the factors that modify the binding site for Ca++ channel antagonists, whereas many or all of the low affinity binding sites detected are not related to Ca++ channels.  相似文献   

4.
The mechanism of calcium channel antagonism by phenytoin was studied by comparing the effects of phenytoin and classical calcium channel antagonists on K+-stimulated 45Ca uptake and [3H]nitrendipine binding in the PC12 pheochromocytoma cell line. Inhibition of K+-stimulated 45Ca uptake occurred at clinically relevant concentrations of phenytoin (IC50 = 9.6 +/- 2.1 microM) and was not significantly modified by Na channel blockade with tetrodotoxin, K channel blockade with tetraethylammonium or depolarization with carbachol rather than K+. Phenytoin, verapamil and diltiazem inhibited 45Ca uptake with Hill coefficients of less than 0.7, whereas values for nimodipine and flunarizine were close to 1.0. Phenytoin inhibited binding of the dihydropyridine Ca channel antagonist [3H]nitrendipine to PC12 membranes (Ki = 31 +/- 3 microM) by decreasing binding affinity, with no change in the maximal number of binding sites. Phenytoin and nimodipine reduced [3H]nitrendipine binding without altering the first-order rate constant for dissociation; this rate was increased by verapamil and flunarizine and decreased by diltiazem. Diltiazem enhanced inhibition of [3H]nitrendipine binding by phenytoin, reversed inhibition by verapamil and flunarizine and had no effect on inhibition by nimodipine. These findings suggest that phenytoin and classical Ca channel antagonists inhibit voltage-gated Ca++ flux by distinct but functionally linked mechanisms.  相似文献   

5.
Calcium channel receptor sites for (+)-[3H]PN 200-110 in coronary artery   总被引:2,自引:0,他引:2  
The receptor sites for 1,4-dihydropyridine (DHP) Ca++ channel antagonists in porcine coronary artery were identified and characterized by a binding assay using (+)-[3H]PN 200-110 as a radioligand. Specific (+)-[3H]PN 200-110 binding in porcine coronary artery was saturable, reversible and of high affinity (Kd = 0.24 nM) and it showed a pharmacological specificity as well as stereoselectivity which characterized the receptor sites for DHP Ca++ channel antagonists. DHP antagonists competed for the (+)-[3H]PN 200-110 binding in order: PN 200-110 greater than mepirodipine greater than nisoldipine greater than nicardipine greater than nitrendipine greater than nimodipine greater than nifedipine greater than (-)-PN 200-110. (+)-PN 200-110 was approximately 140 times as potent as the (-)-isomer. The potencies (PKi) of these eight DHP Ca++ channel antagonists in competing for (+)-[3H]PN 200-110 binding sites in porcine coronary artery correlated well with their pharmacological potencies. Specific (+)-[3H]PN 200-110 binding in the coronary artery was enhanced by d-cis-diltiazem and was inhibited incompletely by verapamil and D-600. In EDTA-pretreated coronary artery, the maximal number of binding sites for specific (+)-[3H]PN 200-110 binding was reduced (80%) markedly, and it was restored to the untreated level by the addition of Ca++ and Mg++.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Binding of the dihydropyridine calcium channel antagonist [3H]nitrendipine to an intact rat brain mitochondrial-synaptosomal fraction (P2) was specific, saturable, temperature-dependent and of high affinity (Kd = 115-467 pM). The effects of the calcium channel antagonists verapamil and diltiazem on [3H]nitrendipine binding and their temperature dependence were investigated. At 0 and 25 degrees C, verapamil inhibited [3H]nitrendipine binding incompletely in a manner consistent with an allosteric modulation and nearly independent of the incubation temperature. The effects of diltiazem, however, were found to be highly temperature-dependent. At 25 and 37 degrees C, 10 microM diltiazem enhanced [3H]nitrendipine binding to values of 140 and 200% of control, respectively. At 0 degrees C, 10 microM diltiazem inhibited [3H]nitrendipine binding to a value of 68% of control. Analysis of saturation isotherms at steady state demonstrated that at all temperatures studied the effects of verapamil and diltiazem on [3H]nitrendipine binding were due to alterations in the ligand dissociation constant (Kd). At 25 degrees C, these alterations were mediated by changes in the rate of ligand-receptor complex dissociation. Competition studies of verapamil and diltiazem at 25 and 0 degrees C indicate that the effects of these two drugs on [3H]nitrendipine binding are mutually exclusive. We conclude that the binding of [3H]nitrendipine is allosterically modulated by spacially related binding sites for verapamil and diltiazem.  相似文献   

7.
This report provides direct evidence for a dihydropyridine receptor/calcium channel in the insulin-secreting beta-cell line RINm5F. The receptor/channel can modulate the intracellular Ca++ concentration and the resultant insulin secretion by regulating the influx of extracellular Ca++ through dihydropyridine-sensitive voltage-dependent L-type Ca++ channels. Elevated extracellular K+ or the dihydropyridine Ca++ channel agonist, BAY k 8644 [methyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoromethyl- phenyl)pyridine-5-carboxylate], stimulated the uptake of 45Ca++, raised [Ca++]i, and increased insulin secretion in a concentration-dependent manner. These actions were inhibited by L-type Ca++ channel blockers including nitrendipine, verapamil and diltiazem. (+)-[3H]PN200-110 bound specifically with high affinity to RINm5F cell membranes (Kd approximately 200 pM). Specific binding was inhibited competitively by dihydropyridines whereas phenylalkylamines inhibited incompletely (+)-[3H]PN200-110 binding, consistent with an allosteric interaction. The benzothiazepine diltiazem had no effect on (+)-[3H]PN200-110 binding in the presence of Ca++, but increased binding allosterically in the absence of Ca++ (in the presence of EGTA). Maximal (+)-[3H]PN200-110 binding required divalent cations, with Mg++, Mn++ and Ba++ essentially as effective as Ca++ in reversing the effects of EGTA, whereas binding was not supported by Cd++ or La . Specific high affinity (+)-[3H]PN200-110 binding was also demonstrated in intact RINm5F cells and shown to be modulated by membrane potential. Depolarization of the cells by raising extracellular K+ from 5 to 80 mM increased the affinity of (+)-[3H]PN200-110 4- to 5-fold (decreased Kd) with no significant effect on the maximum number of binding sites.  相似文献   

8.
Ten known calcium channel blockers were studied for inhibition of K+-induced 45Ca++ uptake into rabbit aortic smooth muscle cells in culture, and for displacement of [3H]nitrendipine [2,6-dimethyl-3-carbomethoxy-5-carbomethoxy-4-(3-nitro)phenyl-1, 4-dihydroxypyridine] binding to rat ventricular membrane preparations, in order to relate their effects on receptor binding with their inhibitory activities on 45Ca++ uptake and on contractile responses of vascular smooth muscle. Steady-state 45Ca++ uptake increased with K+ concentration in a dose-dependent manner. With 25 to 50 mM K+, Ca++ uptake was 0.6 nmol of Ca++ per one million cells. All calcium channel blockers inhibited K+-induced 45Ca++ uptake and [3H]nitrendipine binding in a dose-dependent fashion. The enatiomeric dihydropyridines 202-791 [isopropyl-4-(2,1,3-benzoxadiazol-4-yl)-1,4-dihydro-2, 6-dimethyl-5-nitro-3-pyridinecarboxylate] exhibited marked stereoselectivity in both studies, the agonist (+)-202-791 significantly enhancing 45Ca++ uptake at 15 to 50 mM K+. The similarity between the order of potency in inhibiting 45Ca++ uptake and displacing [3H]nitrendipine resulted in a highly significant linear (1:1) correlation. An equally significant correlation was also established for the 10 blockers between their inhibitory potencies on 45Ca++ uptake and the contractile response of rabbit aortic strips as cited in the literature. These findings support the hypothesis that calcium channel blockers block contraction of vascular muscle by inhibiting cellular calcium uptake through voltage-dependent calcium channels as a result of binding to receptors associated with these channels. The aortic cells possess channels that are functionally similar to those found in intact vascular tissue.  相似文献   

9.
In membranes from the rat cerebral cortex, the benzothiazepine [3H]diltiazem and the dihydropyridine [3H]nitrendipine label distinct but allosterically interacting calcium channel antagonist recognition sites. In the present study we evaluated the relationship between Ca++ and calcium channel antagonists binding sites within the voltage-dependent Ca++ channel. [3H]Nitrendipine binding to the rat cerebral cortex at 37 degrees C is not inhibited by Ca++, studied as CaCl2, in concentrations up to 10 mM. In contrast, [3H]diltiazem binding under these conditions is inhibited by Ca++ with an IC50 of 0.31 mM. The inhibition of diltiazem binding by Ca++ is reflected in an increase in the EC50 of diltiazem for enhancement of [3H]nitrendipine binding at 37 degrees C but not in the magnitude of its maximal heterotropic positive cooperative effect. Similarly, Ca++ increases the IC50 of verapamil for inhibition of [3H]nitrendipine binding at 37 degrees C without affecting the magnitude of its heterotropic negative cooperative effect. Schild analyses of these data indicate that Ca++ is an essentially competitive antagonist of the allosteric effects of diltiazem (KB = 0.32 mM) and verapamil (KB = 0.33 mM). At 0 degrees C, Ca++ is a negative allosteric inhibitor of the [3H]nitrendipine binding site (IC50 = 0.1 mM) and selectively increases the IC50 of diltiazem and verapamil for the inhibition of [3H]nitrendipine binding to membranes from the rat cerebral cortex. It may thus be suggested that the diltiazem and verapamil recognition sites are closely linked or identical with Ca++ binding site within the slow voltage-dependent Ca++ channel.  相似文献   

10.
Local anesthetics were used to probe differences in the binding of [3H]nitrendipine to dihydropyridine calcium antagonist binding sites on rat brain and cardiac membranes. Local anesthetics inhibited [3H]nitrendipine binding to brain and cardiac membranes with the rank order of potency, dibucaine = proadifen much greater than tetracaine greater than meproadifen greater than RAC-109 (S) greater than RAC-109 (R) greater than benzocaine. Lidocaine, procaine, piperocaine and bupivacaine produced either a small potentiation or inhibition of [3H]nitrendipine binding. Dibucaine inhibited [3H]nitrendipine binding to brain membranes (IC50, 4.9 +/- 0.5 microM) by increasing the Kd, whereas in cardiac membranes (IC50, 8.5 +/- 0.9 microM) it both increased the Kd and decreased the maximum binding site capacity of [3H]nitrendipine. The potency of dibucaine to inhibit [3H]nitrendipine binding was reduced in both tissues by monovalent (Li+ greater than Na+ = K+ = Rb+; EC50, 40-50 mM) and divalent (Ca++, Mg++ and Mn++; EC50, 10-50 microM) cations. These cations reduced the effect of dibucaine on the Kd of [3H]nitrendipine in brain and on the maximum binding site capacity of [3H]nitrendipine in cardiac membranes. Inhibition of [3H]nitrendipine binding by dibucaine was best described by high (2 microM) and low (50 microM) affinity sites. The apparent affinities of these sites, but not the fractional occupancies, were similar in brain and cardiac membranes. Na+ modulated the occupancies of these sites in brain, but not in cardiac membranes, whereas Ca++ inhibited occupancy of the high affinity site in both tissues. The effects of Li+ were similar to those of Ca++. These findings indicate that brain and cardiac dihydropyridine calcium antagonist binding sites are coupled to different allosteric effectors or exist in a different membrane environment.  相似文献   

11.
Studies show [3H]PZ identified selectively a subpopulation of muscarinic binding sites compared to classical antagonists like (-)-[3H]QNB in many central and peripheral tissues. We characterized the binding and regulation of selected antagonists to high-affinity [3H]PZ (putative M1) and low-affinity PZ (putative M2) sites in rat cerebral cortex (predominantly M1) and heart (predominantly M2). Saturation isotherms of [3H]PZ and (-)-[3H]QNB were performed under various conditions. Guanyl-5'-yl-imidodiphosphate (30 microM) showed little effect on Kd (dissociation constant) or total binding capacity (total receptor density) values. Higher ionic strength buffers yielded lower affinity values for [3H]PZ and (-)-[3H]QNB. Kinetic studies confirmed high affinity Kd values seen in steady-state assays. We conducted inhibition studies of selected muscarinic antagonists including the reportedly cardioselective (putative M2) drug, AF-DX 116 (11-[(2-(diethylamino)methyl-1-piperidinyl)-acetyl]-5, 11-dihydro-6H-pyrido(2,3-b)(1,4)-benzodiazepine-6-one], the reportedly M1 selective compound, PZ, and the classical antagonist (-)QNB, using [3H]PZ and (-)-[3H]QNB-labeled cerebral cortical and cardiac homogenates. Assays were done with and without guanyl-5'-yl-imidophosphate at 25 degrees C in 10 mM Na-K-phosphate, 50 mM Na-K-phosphate and modified Krebs-phosphate buffer. Studies showed antagonists generally had higher affinity in 10 mM Na-K-phosphate buffer, were insensitive to guanyl-5'-yl imidodiphosphate and had Hill values (nH) nearly equal to one. Cardiac PZ/[3H]QNB curves were steep.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Whereas arginine vasopressin binds to its receptor subtypes V(1)R and V(2)R with equal affinity of approximately 2 nM, nonpeptide antagonists interact differently with vasopressin receptor subtypes. The V(2)R antagonist binding site was mapped by site-directed mutagenesis at six selected amino acid positions, K100D, A110W, M120V, L175Y, R202S, and F307I, predicted to be involved in antagonist binding differences between V(2) R and V(1)R. These mutations did not alter the affinity for arginine vasopressin. However, the affinity for six nonpeptide receptor antagonists SR121463B [1-[4-(N-tert-butylcarbamoyl)-2-methoxybenzenesulfonyl]-5-ethoxy-3-spiro-[4[(2 morpholinoethoxy)cy-clohexane]indoline-2-one, phosphate monohydrate cis-isomer], SR49059 [(2S)1-[(2R3S)-(5-chloro-3-(2 chlorophenyl)-1-(3,4-dimethoxybenzene-sulfonyl)-3-hydroxy-2,3-dihydro-1H-indole-2-carbonyl]-pyrrolidine-2-carboxamide], SSR149415 [(2S,4R)-1-[5-chloro-1-[(2,4-dimethoxyphenyl)sulfonyl]-3-(2-methoxyphenyl)-2-oxo-2,3-dihydro-1H-indol-3-yl]-4-hydroxy-N,N-dimethyl-2pyrrolidine carboxamide, isomer(-)], OPC21268 [1-[1-[4-(3-acetylaminopropoxy)benzoyl]-4-piperidyl]-3,4-dihydro-2(1H)-quinolinone], OPC41061 [(+/-)-4'-[(7-chloro-2,3,4,5-tetrahydro-5-hydroxy-1H-1-benzazepin-1-yl)carbonyl]-o-tolu-m-toluidide], and OPC31260, [(+/-)-5-dimethylamino-1-[4-(2-methylbenzoylamino)benzoyl]-1,2, 3,4,5-tetrahydro-1H-benzazepine monohydrochloride], was altered to varying degrees, resulting in differences up to 6000-fold. Replacement of the small alanine for the bulky tryptophan in position 110 resulted in a reduced affinity for all six antagonists. In contrast, replacement of the large methionine for the smaller valine in position 120 caused a dramatic increase in affinity, up to a K(i) of 7 fM for OPC31260. Molecular modeling revealed that the binding sites for arginine vasopressin and the nonpeptide antagonists are partially overlapping. Whereas arginine vasopressin binds on the extracellular surface of V(2) R, the nonpeptide antagonists penetrate deeper into the transmembrane region of the receptor, in particular OPC21268. The mutagenesis data point to significant differences in the shape of the V(1)R and V(2)R antagonist binding pockets. The most important factor determining the specificity of nonpeptide antagonists seems to be the shape of the binding pocket on the receptor.  相似文献   

13.
The binding properties of a series of muscarinic antagonists were compared with their ability to antagonize muscarinic receptor mediated inhibition of adenylate cyclase activity in homogenates of the corpus striatum and heart of rats. When measured by the competitive inhibition of the binding of the muscarinic antagonist N-[3H]methylscopolamine, the binding properties of selective muscarinic antagonists in the corpus stratum and cerebral cortex were consistent with a model incorporating a minimum of three populations of muscarinic receptors, a high affinity site for pirenzepine (M1), a high affinity site for AF-DX 116 [11] [2-[ (diethylamino)methyl]-1-piperidinyl] acetyl] -5, 11-dihydro-6H-pyrido [2,3-b] 1,4] benzodiazepine-6-one (M2) and a third population (non-Ml, non-M2 sites) displaying low affinity for the latter antagonists. The results of similar experiments on the heart showed that this tissue contained a uniform population of M2 muscarinic receptors. The binding properties of the M2 receptor in cerebral cortex and corpus stratum were also investigated directly in antagonist [3H] AF-DX 116 competition experiments and, although the high affinity AF-DX 116 site in brain (M2) exhibited selectivity for the cardioselective antagonists AF-DX 116 and gallamine, some differences were noted between M2 sites in brain and heart. The muscarinic adenylate cyclase response in the corpus striatum was relatively insensitive to the M2 selective antagonists AF-DX 116 and gallamine as well as the M1 selective antagonist pirenzepine, suggesting that non-M1, non-M2 sites inhibit adenylate cyclase activity in the corpus striatum. In contrast, the effects of muscarinic antagonists on the muscarinic adenylate cyclase response in the heart were consistent with the postulate that M2 receptors inhibit adenylate cyclase activity in this tissue.  相似文献   

14.
Phenylalkylamines, benzothiazepines, and dihydropyridines bind noncompetitively to the L-type calcium channel. The molecular mechanisms of this interaction were investigated in enzymatically isolated rat ventricular myocytes using the whole-cell patch-clamp technique. When applied alone, felodipine, verapamil, and diltiazem inhibited the L-type calcium current with values of inhibitory constant (K(B)) of 11, 246, and 512 nM, respectively, whereas 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-[trifluoromethyl]phenyl)-3-pyridine carboxylic acid methyl ester (Bay K8644) activated I(Ca) with activation constant (K(A)) of 33 nM. Maximal activation of I(Ca) by 300 nM Bay K8644 strongly reduced the inhibitory potency of felodipine (apparent K(B) of 165 nM), significantly reduced the inhibitory potency of verapamil (apparent K(B) of 737 nM), but significantly increased the inhibitory potency of diltiazem (apparent K(B) of 310 nM). In terms of a new pseudoequilibrium two-drug binding model, the interaction between the dihydropyridine agonist Bay K8644 and the antagonist felodipine was found purely competitive. The interaction between Bay K8644 and verapamil or diltiazem was found noncompetitive, and it could be described only by inclusion of a negative interaction factor nu = -0.60 for verapamil and a positive interaction factor nu = +0.24 for diltiazem. These results suggest that at physiological membrane potentials, the L-type calcium channel cannot be simultaneously occupied by a dihydropyridine agonist and antagonist, whereas it can simultaneously bind a dihydropyridine agonist and a nondihydropyridine antagonist. Generally, the effects of the drugs on the L-type calcium channel support a concept of a channel domain responsible for binding of calcium channel antagonists and agonists changing dynamically with the membrane voltage and occupancy of individual binding sites.  相似文献   

15.
16.
Summary— The alkaloid cycleanine ([12aR-(12aR,24aR)]-2,3,12a,13,14,15,24,24a-octahydro-5,6,17,18-tetramethoxy-1,13-dimethyl-8,11: 20,23-dietheno-1H,12H [1,10]dioxacyclooctadecino[2,3,4-ij: 11,12,13-i'j']diisoquinoline) was extracted from the bulbs of Stephania glabra (Roxb) Miers and its effects on cardiac and smooth muscle preparations were studied and compared to those of nifedipine (1,4-dihydro-2,6-dimethyl-4-(2-nitrophenyl)-3,5-pyridine dicarboxylic acid dimethylesther). Cycleanine inhibited the KCl-induced contraction of rabbit aortic rings with higher potency than nifedipine. IC50s for cycleanine and nifedipine were 0.8 and 7·10−9 M respectively. Cycleanine had minor effects on the norepinephrine-induced contraction of rabbit aortic rings. Cycleanine and nifedipine also depressed the contraction of rat ventricular preparations but with lower potency (IC50 = 3 and 0.03·10−6 M respectively). Action potential duration of rat right ventricular strips was decreased by both compounds. L-type Ca-current (ICaL) of single rat ventricular cardiomyocytes was inhibited by cycleanine in a voltage- and frequency-dependent manner. With a higher potency nifedipine inhibited ICaL in a tonic and almost frequency-independent manner. The results suggest that cycleanine can act as a potent vascular selective Ca-antagonist.  相似文献   

17.
Binding of the new benzothiazepine calcium channel blocker, (+)-(2S,3S)-3-acetoxy-8-chloro-5-(2-(dimethylamino)ethyl)-2,3-dihydro-2- (4- methoxyphenyl)-1,5-benzothiazepine-4-(5H)-one maleate, [3H]TA-3090), was characterized and its specificity for rat myocardial benzothiazepine receptors described. Scatchard plots and nonlinear regression analysis of specific [3H]TA-3090 binding best fit a one-site binding model (Kd = 8.8 +/- 2.7 nM, Bmax = 132 +/- 38 fmol/mg protein). Kinetically derived affinity constants were in close agreement (Kd = 7.86 nM) with those obtained from analysis of equilibrium binding data. In comparison, under identical conditions [3H]diltiazem exhibited a Kd of 38 nM and Bmax, 106 fmol/mg protein. Specific binding was saturable, reversible and stereoselective (d-cis-TA-3090 Ki = 14 nM; 1-cis-TA-3090 Ki = 2700 nM). Competitions for [3H]TA-3090 binding were conducted with nifedipine, propranolol, prazosin, quinuclidinyl benzilate, verapamil and yohimbine. Only the calcium channel blockers nifedipine and verapamil inhibited specific [3H]TA-3090 binding. Nifedipine could maximally inhibit only 52% of specifically bound [3H]TA-3090 at 10 microM. In contrast, however, 10 microM verapamil completely inhibited specific radioligand binding (Ki = 93 +/- 28 nM) but with six times less efficacy than TA-3090. Thus, these data demonstrate that [3H]TA-3090 is a potent radioligand selective for the benzothiazepine binding site and is consistent with the hypothesis that [3H]TA-3090 interacts with a myocardial benzothiazepine receptor site.  相似文献   

18.
The antidiarrheal opiates loperamide, fluperamide, diphenoxylate and fetoxylate inhibited binding of [3H]nitrendipine to membranes from guinea-pig cerebral cortex with Ki values of 0.5 to 10 microM. Loperamide and fluperamide reversed the tiapamil elicited lowering of [3H]nitrendipine binding with IC50 values of 0.2 to 0.5 microM, indicating a verapamil-like action of these drugs. An oral dose of 1 mg/kg of loperamide reduced gastrointestinal motility and gave concentrations of 0.45 +/- 0.19, 0.38 +/- 0.22 and 0.49 +/- 0.25 microM in the duodenum, jejunum and ileum, respectively. The apparent Ki for loperamide in preventing calcium-induced contractions of guinea-pig ileum depolarized with 80 mM potassium was 0.10 microM. We propose that calcium channel antagonism is responsible at least in part for the antidiarrheal actions of loperamide and related agents. Evidence includes the calcium antagonist actions of loperamide at antidiarrheal doses, the constipating effects of certain calcium antagonists and the failure of opiate antagonists to prevent some intestinal effects of loperamide.  相似文献   

19.
A procedure for the isolation of primate skeletal microsomal membranes was initiated. Membranes exhibited specific enzymatic markers such as 5'-nucleotidase, Ca++,Mg(++)-adenosine triphosphatase and an ATP-dependent calcium uptake. Baboon skeletal microsomes bound specifically with high-affinity potent Ca++ channel blockers such as dihydropyridine, phenylalkylamine and benzothiazepine derivatives. Scatchard analysis of equilibrium binding assays with [3H](+)-PN 200-110, [3H](-)-desmethoxyverapamil [( 3H](-)-D888) and [3H]-d-cis-dilitiazem were consistent with a single class of binding sites for the three radioligands. The pharmacological profile of SR 33557, an original compound with calcium antagonist properties, was investigated using radioligand binding studies. SR 33557 totally inhibited the specific binding of the three main classes of Ca++ channel effectors and interacted allosterically with them. In addition, SR 33557 bound with high affinity to a homogeneous population of binding sites in baboon skeletal muscle.  相似文献   

20.
The 1,4-dihydropyridine BAY-K-8644 [methyl-1,4-dihydro-2, 6-dimethyl-3-nitro-4-(2-trifluoromethylphenyl)-pyridine-5-carboxylate] acts as both a calcium channel agonist and antagonist by stimulating or inhibiting inward calcium current. In AtT-20 mouse pituitary tumor cells, BAY-K-8644 both stimulates and blocks adrenocorticotropin (ACTH) secretion. Because in several cell systems the cytoplasmic enzyme guanylate cyclase is activated, presumably by calcium entry, the effect of BAY-K-8644 on cyclic GMP (cGMP) synthesis in AtT-20 cells was assessed. BAY-K-8644 increased cGMP accumulation in a time-dependent manner. The concentrations of BAY-K-8644, however, required to increase cGMP formation were not associated with its stimulatory effects on secretion but rather with its ability to antagonize basal and (-)-isoproterenol-induced ACTH secretion. The inhibitory effect of BAY-K-8644 on ACTH secretion was not mimicked by 8-Br-cGMP. The cGMP response to BAY-K-8644 was not mimicked by the cationophore, A-23187, or depolarizing concentrations of K+. Other calcium channel antagonists such as nifedipine or verapamil had markedly smaller effects on cGMP formation compared to BAY-K-8644. Sodium nitroprusside and sodium azide both increased cGMP synthesis in AtT-20 cells and both inhibited, to a lesser extent than BAY-K-8644, both basal- and (-)-isoproterenol-stimulated ACTH release. The data suggest that BAY-K-8644 stimulates cGMP synthesis by binding to sites less accessible or poorly activated by other dihydropyridines, and that stimulation of guanylate cyclase is independent of inward calcium current.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号