首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: A poorly characterized phagocyte-type NADPH oxidase, which is reportedly NADH- rather than NADPH-dependent, is a major source of endothelial reactive oxygen species (ROS) production. We investigated the molecular nature of this oxidase and the characteristics of NADPH- versus NADH-dependent O(2)(-) production in endothelial cells of three different species. METHODS: NADPH oxidase expression in human, bovine and porcine endothelial cells was studied by RT-PCR and immunoblotting. O(2)(-) production was assessed by lucigenin chemiluminescence and cytochrome c reduction assay. RESULTS: The NADPH oxidase subunits p47-phox, p67-phox, p22-phox, gp91-phox, and rac1 were all expressed in endothelial cells. NADPH-dependent O(2)(-) production by endothelial cells was readily detectable using lucigenin 5 micromol/l, was minimally affected by increasing lucigenin dose up to 400 micromol/l, and was abolished by diphenyleneiodonium. In contrast, NADH-dependent O(2)(-) production was only detectable with lucigenin > or =50 micromol/l, increased substantially with higher lucigenin dose, and was unaffected by diphenyleneiodonium. Predominance of NADPH- over NADH-dependent O(2)(-) production was confirmed in cell homogenates and by cytochrome c reduction assay. CONCLUSION: Endothelial cells express all components of a phagocyte-type NADPH oxidase. Like the neutrophil enzyme, the endothelial oxidase is preferentially NADPH- rather than NADH-dependent. NADH-dependent O(2)(-) production appears to be an artefact related to the use of lucigenin doses > or =50 micromol/l.  相似文献   

2.
de Mendez  I; Leto  TL 《Blood》1995,85(4):1104-1110
The phagocyte NADPH oxidase system, as previously defined by cell-free reconstitution, is comprised of five essential components, three of which are produced during late phagocytic differentiation--namely, two cytosolic proteins, p47- and p67-phox--and the large subunit of cytochrome b558, gp91-phox. To confirm that these are the only phagocyte-specific components necessary for oxidase activity in whole cells, the recombinant NADPH oxidase was reconstituted in a heterologous cell line. An undifferentiated multipotent leukemic cell line, K562, which expresses endogenous Rac and the small subunit of the flavocytochrome b558 (p22-phox), was cotransfected with episomal expression vectors containing cDNAs for the three other oxidase components. After 4 days of selection, the complete oxidase system was functionally reconstituted in transfected cells stimulated with phorbol myristate acetate or calcium ionophore. These easily transfected cells provide an ideal model system in which several oxidase components can be genetically manipulated and readily expressed. This system can be used to test the effects of mutations associated with any of the genes affected in chronic granulomatous disease and will facilitate studies on structure-function relationships within several oxidase components. This system will also aid in delineation of upstream regulators functioning through various signaling pathways.  相似文献   

3.
We have shown that intracellular superoxide (O(2)(*-)) production in CNS neurons plays a key role in the pressor, bradycardic, and dipsogenic actions of Ang II in the brain. In this study, we tested the hypothesis that a Rac1-dependent NADPH oxidase is a key source of O(2)(*-) in Ang II-sensitive neurons and is involved in these central Ang II-dependent effects. We performed both in vitro and in vivo studies using adenoviral (Ad)-mediated expression of dominant-negative Rac1 (AdN17Rac1) to inhibit Ang II-stimulated Rac1 activation, an obligatory step in NADPH oxidase activation. Ang II induced a time-dependent increase in Rac1 activation and O(2)(*-) production in Neuro-2A cells, and this was abolished by pretreatment with AdN17Rac1 or the NADPH oxidase inhibitors apocynin or diphenylene iodonium. AdN17Rac1 also inhibited Ang II-induced increases in NADPH oxidase activity in primary neurons cultured from central cardiovascular control regions. In contrast, overexpression of wild-type Rac1 (AdwtRac1) caused more robust NADPH oxidase-dependent O(2)(*-) production to Ang II. To extend the in vitro studies, the pressor, bradycardic, and drinking responses to intracerebroventricularly (ICV) injected Ang II were measured in mice that had undergone gene transfer of AdN17Rac1 or AdwtRac1 to the brain. AdN17Rac1 abolished the increase in blood pressure, decrease in heart rate, and drinking response induced by ICV injection of Ang II, whereas AdwtRac1 enhanced these physiological effects. The exaggerated physiological responses in AdwtRac1-treated mice were abolished by O(2)(*-) scavenging. These results, for the first time, identify a Rac1-dependent NADPH oxidase as the source of central Ang II-induced O(2)(*-) production, and implicate this oxidase in cardiovascular diseases associated with dysregulation of brain Ang II signaling, including hypertension.  相似文献   

4.
Chronic granulomatous disease (CGD) is a congenital disorder in which phagocytes cannot generate superoxide (O2-) and other microbial oxidants due to mutations in any one of four components of the O2(-)-generating complex, NADPH oxidase. We report here a female CGD patient in whom a missense mutation in one of these components, the p22-phox subunit of the neutrophil membrane cytochrome b [where phox indicates phagocyte oxidase (used to designate protein components of the phagocyte NADPH oxidase)] results in a nonfunctional oxidase and failure of neutrophils to produce O2- in response to phorbol 12-myristrate 13-acetate. Cytochrome b in the patient's neutrophils was normal in appearance and abundance as determined by visible spectroscopy and by immunoblots of the gp91 and p22 subunits. However, the neutrophil plasma membranes were devoid of activity in the cell-free oxidase activation system, whereas the cytosol functioned normally. We postulated that the patient was homozygous for a mutation in p22 that results in the synthesis of normal levels of a nonfunctional cytochrome b. A single-base substitution (C----A) was found in the patient's mononuclear cell p22-phox cDNA that predicts a nonconservative Pro----Gln substitution at residue 156. The same mutation was also identified in all clones sequenced from patient genomic DNA, demonstrating homozygosity for the mutant allele. An antipeptide antibody against p22 residues 153-164 was found to bind only to permeabilized neutrophils, indicating that the mutation occurs in a cytoplasmic domain. These studies establish that this domain of p22-phox is cytoplasmic and that mutations in this region can have profound effects on cytochrome b function.  相似文献   

5.
Abstract: The mechanisms used by phagocytic leukocytes in the process of bacterial killing are regulated by GTP-binding proteins of the Ras superfamily. In particular, the formation of toxic oxygen metabolites via the NADPH oxidase requires the action of both Rac and Rap1A proteins. Rac2 forms a third cytosolic component of the human neutrophil NADPH oxidase. Rac2 is active in its GTP-bound form, and requires post-translational processing (isoprenylation) in order to interact with regulatory proteins which stimulate the exchange of GTP for GDP. In the resting neutrophil, Rac is localized to the cytosol in the form of a complex with a GDP dissociation inhibitor (GDI) protein. Upon cell activation, this complex is disrupted to enable Rac to translocate to the active oxidase at the plasma membrane. The Rac-GDI complex may be regulated by the release of specific lipids known to be generated during phagocyte activation.  相似文献   

6.
The NADPH oxidase responsible for generation of superoxide anion and related microbicidal oxidants by phagocytes is assembled from at least five distinct proteins. Two are cytosolic components (p47-phox and p67-phox) that contain Src homology 3 (SH3) domains and associate with a transmembrane cytochrome b558 upon activation. We show here that the SH3 domains of p47-phox bind to proline-rich sequences in p47-phox itself and the p22-phox subunit of cytochrome b558. Binding of the p47-phox SH3 domains to p22-phox was abolished by a mutation in one proline-rich sequence (Pro156-->Gln) noted in a distinct form of chronic granulomatous disease and was inhibited by a short proline-rich synthetic peptide corresponding to residues 149-162 of p22-phox. Expression of mutated p22-phox did not restore oxidase activity to p22-phox-deficient B cells and did not enable p22-phox-dependent translocation of p47-phox to membranes in phorbol ester-stimulated cells. We also show that the cytosolic oxidase components associate with one another through the C-terminal SH3 domain of p67-phox and a proline-rich C-terminal sequence in p47-phox. These SH3 target sites conform to consensus features deduced from SH3 binding sites in other systems. We propose a model in which the oxidase complex assembles through a mechanism involving SH3 domains of both cytosolic proteins and cognate proline-rich targets in other oxidase components.  相似文献   

7.
8.
The phosphorylation-dependent mechanisms regulating activation of the human neutrophil respiratory-burst enzyme, NADPH oxidase, have not been elucidated. We have shown that phosphatidic acid (PA) and diacylglycerol (DG), products of phospholipase activation, synergize to activate NADPH oxidase in a cell-free system. We now report that activation by PA plus DG involves protein kinase activity, unlike other cell-free system activators. NADPH oxidase activation by PA plus DG is reduced approximately 70% by several protein kinase inhibitors [1-(5-isoquinolinesulfonyl)piperazine, staurosporine, GF-109203X]. Similarly, depletion of ATP by dialysis reduces PA plus DG-mediated NADPH oxidase activation by approximately 70%. Addition of ATP, but not a nonhydrolyzable ATP analog, to the dialyzed system restores activation levels to normal. In contrast, these treatments have little effect on NADPH oxidase activation by arachidonic acid or SDS plus DG. PA plus DG induces the phosphorylation of a number of endogenous proteins. Phosphorylation is largely mediated by PA, not DG. A predominant substrate is p47-phox, a phosphoprotein component of NADPH oxidase. Phosphorylation of p47-phox precedes activation of NADPH oxidase and is markedly reduced by the protein kinase inhibitors. In contrast, arachidonic acid alone or SDS plus DG is a poor activator of protein phosphorylation in the cell-free system. Thus, PA induces activation of one or more protein kinases that regulate NADPH oxidase activation in a cell-free system. This cell-free system will be useful for identifying a functionally important PA-activated protein kinase(s) and for dissecting the phosphorylation-dependent mechanisms responsible for NADPH oxidase activation.  相似文献   

9.
The expression of the various GTP-binding proteins and protein kinase C (PKC) in the platelet-like particles produced by MEG-01 cells was analyzed by RT-PCR and immunoblotting. We selected 14 human low Mr GTPbinding proteins (LMW-GPs) and nine PKCs expressed in platelets and/or megakaryocytes, and designed specific primer pairs for the proteins. RT-PCR analysis revealed that the particles express the mRNAs of many LMW-GPs such as rap 1A, rap 1B, rap 2B, ral A, rho A, rac 1, rac 2, Cdc 42, rab 1, rab 3B, rab 6, ram/rab 27 and ran . By immunoblotting analysis, Rap1, RhoA, Rac, Cdc42, Rab6 and Rab8 were identified in the particles. As for PKCs, the particles were observed to express the mRNAs of PKC- alpha ,- beta I,- beta -II,- delta , epsilon , eta and theta , but not- gamma and zeta . Using immunoblot analysis, PKC- beta I,- beta II and zeta were shown to exist in the particles, although the contents were lower than those in platelets. Furthermore, the presence of Gi2- alpha , a heterotrimeric G protein that is the major pertussis toxin substrate in human platelets, and beta subunits was observed in the particles. Taken together, the particles possess some similarity to human platelets based on the expression profiles of GTP-binding proteins and PKCs.  相似文献   

10.
During assembly of the phagocyte NADPH oxidase, cytosolic p47-phox translocates to the plasma membrane and binds to flavocytochrome b, and binding domains for p47-phox have been identified on the C-terminal tails of both flavocytochrome b subunits. In the present report, we further examine the interaction of these two oxidase components by using random-sequence peptide phage display library analysis. Screening p47-phox with the peptide libraries identified five potential sites of interaction with flavocytochrome b, including three previously reported regions of interaction and two additional regions of interaction of p47-phox with gp91-phox and p22-phox. The additional sites were mapped to a domain on the first predicted cytosolic loop of gp91-phox encompassing residues S86TRVRRQL93 and to a domain near the cytosolic C-terminal tail of gp91-phox encompassing residues F450EWFADLL457. The mapping also confirmed a previously reported binding domain on gp91-phox (E554SGPRGVHFIF564) and putative Src homology 3 domain binding sites on p22-phox (P156PRPP160 and G177GPPGGP183). To demonstrate that the additional regions identified were biologically significant, peptides mimicking the gp91-phox sequences F77LRGSSACCSTRVRRQL93 and E451WFADLLQLLESQ463 were synthesized and assayed for their ability to inhibit NADPH oxidase activity. These peptides had EC50 values of 1 microM and 230 microM, respectively, and inhibited activation when added prior to assembly but did not affect activity of the preassembled oxidase. Our data demonstrate the usefulness of phage display library analysis for the identification of biologically relevant sites of protein-protein interaction and show that the binding of p47-phox to flavocytochrome b involves multiple binding sites along the C-terminal tails of both gp91- and p22-phox and other regions of gp91-phox nearer to the N terminus.  相似文献   

11.
The production of reactive oxygen species (ROS) within endothelial cells may have several effects, including alterations in the activity of paracrine factors, gene expression, apoptosis, and cellular injury. Recent studies indicate that a phagocyte-type NAD(P)H oxidase is a major source of endothelial ROS. In contrast to the high-output phagocytic oxidase, the endothelial enzyme has much lower biochemical activity and a different substrate specificity (NADH>NADPH). In the present study, we (1) cloned and characterized the cDNA and predicted amino acid structures of the 2 major subunits of rat coronary microvascular endothelial cell NAD(P)H oxidase, gp91-phox and p22-phox; (2) undertook a detailed comparison with phagocytic NADPH oxidase sequences; and (3) studied the subcellular location of these subunits in endothelial cells. Although these studies revealed an overall high degree of homology (>90%) between the endothelial and phagocytic oxidase subunits, the endothelial gp91-phox sequence has potentially important differences in a putative NADPH-binding domain and in putative glycosylation sites. In addition, the subcellular location of the endothelial gp91-phox and p22-phox subunits is significantly different from that reported for the neutrophil oxidase, in that they are predominantly intracellular and collocated in the vicinity of the endoplasmic reticulum. This first detailed characterization of gp91-phox and p22-phox structure and location in endothelial cells provides new data that may account, in part, for the differences in function between the phagocytic and endothelial NAD(P)H oxidases.  相似文献   

12.
OBJECTIVE: Mechanical forces and angiotensin II influence the structure and function of vascular cells, and play an important role in reactive oxygen species production. In this study, we examined the effects of mechanical stretch and angiotensin II on the expression of p22-phox and Nox-1, essential membrane components of NADPH oxidase, and superoxide production in rat vascular smooth muscle cells (VSMCs). METHODS AND RESULTS: Neither a stretch force nor angiotensin II alone altered p22-phox and Nox-1 expression in VSMCs. Combined stimulation markedly increased p22-phox and Nox-1 mRNA, however, which was associated with increased NADPH oxidase activity, superoxide production and total 8-iso-prostaglandin F2alpha concentration. The increases in p22-phox mRNA levels induced by a stretch force in combination with angiotensin II were prevented by treatment with an angiotensin type I (AT1) receptor antagonist, RNH-6270 (100 nmol/l). Protein expression of the AT1 receptor was upregulated by a stretch force. CONCLUSIONS: These data indicate that mechanical stretch and angiotensin II synergistically increase NADPH oxidase expression in VSMCs, and suggest that part of this mechanism is mediated through an upregulation of the AT1 receptor induced by mechanical stretch. The combined effects of mechanical strain and angiotensin II might promote vascular damage through the production of superoxide in a hypertensive state.  相似文献   

13.
Nagata K  Okano Y  Nozawa Y 《Platelets》1998,9(5):291-296
The expression of the various GTP-binding proteins and protein kinase C (PKC) in the platelet-like particles produced by MEG-01 cells was analyzed by RT-PCR and immunoblotting. We selected 14 human low Mr GTPbinding proteins (LMW-GPs) and nine PKCs expressed in platelets and/or megakaryocytes, and designed specific primer pairs for the proteins. RT-PCR analysis revealed that the particles express the mRNAs of many LMW-GPs such as rap 1A, rap 1B, rap 2B, ral A, rho A, rac 1, rac 2, Cdc 42, rab 1, rab 3B, rab 6, ram/rab 27 and ran . By immunoblotting analysis, Rap1, RhoA, Rac, Cdc42, Rab6 and Rab8 were identified in the particles. As for PKCs, the particles were observed to express the mRNAs of PKC-alpha,-beta I, -beta-II, -delta, epsilon, eta and theta, but not-gamma and zeta. Using immunoblot analysis, PKC-beta I, -beta II and zeta were shown to exist in the particles, although the contents were lower than those in platelets. Furthermore, the presence of Gi2-alpha, a heterotrimeric G protein that is the major pertussis toxin substrate in human platelets, and beta subunits was observed in the particles. Taken together, the particles possess some similarity to human platelets based on the expression profiles of GTP-binding proteins and PKCs.  相似文献   

14.
Kaneda M  Sakuraba H  Ohtake A  Nishida A  Kiryu C  Kakinuma K 《Blood》1999,93(6):2098-2104
Chronic granulomatous disease (CGD) is a disorder of host defense due to genetic defects of the superoxide (O2-) generating NADPH oxidase in phagocytes. A membrane-bound cytochrome b558, a heterodimer consisting of gp91-phox and p22-phox, is a critical component of the oxidase. The X-linked form of the disease is due to defects in the gp91-phox gene. We report here biochemical and genetic analyses of patients with typical and atypical X-linked CGD. Immunoblots showed that neutrophils from one patient had small amounts of p22-phox and gp91-phox and a low level of O2- forming oxidase activity, in contrast to the complete absence of both subunits in two patients with typical CGD. Using polymerase chain reactions (PCR) on cDNA and genomic DNA, we found novel missense mutations of gp91-phox in the two typical patients and a point mutation in the variant CGD, a characteristic common to two other patients with similar variant CGD reported previously. Spectrophotometric analysis of the neutrophils from the variant patient provided evidence for the presence of heme of cytochrome b558. Recently, we reported another variant CGD with similar amounts of both subunits, but without oxidase activity or the heme spectrum. A predicted mutation at amino acid 101 in gp91-phox was also confirmed in this variant CGD by PCR of the genomic DNA. These results on four patients, including those with two variant CGD, are discussed with respect to the missense mutated sites and the heme binding ligands in gp91-phox.  相似文献   

15.
rap1/Krev-1 is a p21ras-related GTP-binding protein that has been implicated in the reversion of the ras-transformed cell phenotype. We have identified a GTPase-activating protein (GAP) specific for rap in plasma membranes isolated from differentiated HL60 cells. The rap GAP activity remained quantitatively associated with the membrane following washes with buffered 1 M LiCl containing 20 mM EDTA but was solubilized with the detergents Nonidet P-40 and deoxycholate. On the basis of size-exclusion chromatography, the membrane-associated rap GAP (rap GAPm) appeared distinct from the rap GAP detected in the cytosolic fraction from HL60 cells. The molecular sizes of the membrane and cytosolic forms were estimated to be 36 and 54 A, respectively. rap GAPm was solubilized and purified to near homogeneity by successive column chromatographies in the presence of detergent. The rap GAPm activity corresponded to a single polypeptide that migrated with a molecular mass of approximately 88 kDa on SDS/polyacrylamide gels. The purified rap GAPm was inactive toward the GTP-bound forms of p21ras, rho, G25K, and rac-1 and did not stimulate dissociation of guanine nucleotide from rap.  相似文献   

16.
OBJECTIVE: The present research was designed to study the involvement of ERK and p38 MAP-kinase in cytosolic phospholipase A2 (cPLA2) and NADPH-oxidase activation by angiotensin II (Ang II) in human neutrophils. METHODS: NADPH-oxidase activity was measured by reduction of cytochrome C. cPLA2 activity was measured in cell lysate using sonicated dispersions of 1-stearoyl-2-[C]arachidonyl phosphatidylcholine. Cells were incubated with MEK inhibitor UO126 or with p38 MAP-kinase inhibitor SB202190 prior to stimulation with Ang II. Translocation of p47, p67 and cPLA2 and phosphorylation of ERK and p38 MAP-kinase were measured by immunoblot analysis. RESULTS: Ang II induced a dose-dependent activation of NADPH oxidase in neutrophils and monocytes as well as in differentiated PLB-985 cells towards neutrophil or monocyte lineages, but not in cPLA2-deficient differentiated PLB-985 cells. An immediate activation of both ERK and p38 MAP-kinase and of cPLA2 was induced by Ang II in human neutrophils. In addition, Ang II induced translocation of the cytosolic oxidase components, detected by translocation of p47, which preceded the translocation of cPLA2 induced by this agonist. The p38 MAP-kinase inhibitor SB202190 or the MEK-ERK pathway inhibitor UO126 totally inhibited the activation of both NADPH oxidase and cPLA2 as well as the translocation of cytosolic oxidase components and of cPLA2 to the membrane fractions. CONCLUSIONS: These results suggest that either ERK or p38 MAP-kinase are involved in the activation of both cPLA2 and NADPH oxidase, and that cPLA2 is required for activation of the NADPH oxidase by Ang II in human neutrophils.  相似文献   

17.
The superoxide-forming nicotinamide adenine dinucleotide phosphate reduced (NADPH) oxidase of human phagocytes comprises membrane-bound and cytosolic proteins, which, upon cell activation, assemble on the plasma membrane to form the active enzyme. Patients with chronic granulomatous disease (CGD) are defective in one of the phagocyte oxidase (phox) components, p47-phox or p67-phox, which reside in the cytosol of resting phagocytes, or gp91-phox or p22-phox, which constitute the membrane-bound cytochrome b(558). In four X-linked CGD patients we have identified novel missense mutations in CYBB, the gene encoding gp91-phox. These mutations were associated with normal amounts of nonfunctional cytochrome b(558) in the patients' neutrophils. In phorbol-myristate-stimulated neutrophils and in a cell-free translocation assay with neutrophil membranes and cytosol, the association of p47-phox and p67-phox with the membrane fraction of the cells with Cys369-->Arg, Gly408-->Glu, and Glu568--> Lys substitutions was strongly disturbed. Only a Thr341-->Lys substitution, residing in a region of gp91-phox involved in flavin adenine dinucleotide (FAD) binding, supported a normal translocation. Thus, the introduction or reversal of charge at residues 369, 408, and 568 in gp91-phox destroys the correct binding of p47-phox and p67-phox to cytochrome b(558). Based on mutagenesis studies of structurally related flavin-dependent oxidoreductases, we propose that the Thr341-->Lys substitution results in impaired hydride transfer from NADPH to FAD. Because we found no electron transfer in solubilized neutrophil plasma membranes from any of the four patients, we conclude that all four amino acid replacements are critical for electron transfer. Apparently, an intimate relation exists between domains of gp91-phox involved in electron transfer and in p47/p67-phox binding. (Blood. 2000;95:666-673)  相似文献   

18.
Chronic granulomatous disease (CGD) results from defects in the phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, central to which is the membrane-bound cytochrome b-245. The cytochrome is composed of two protein subunits, the larger (gp91-phox) being deficient in X-linked CGD. In this study, we have analyzed expression of the cytochrome subunits in B-cell lines from two autosomal CGD patients for whom the disease is caused by deficiency of p22-phox, the smaller subunit. We report the presence of a 65-kD precursor of gp91- phox in the membrane fraction of both p22-phox-deficient cell lines, corresponding to the core protein with N-linked carbohydrate side chains in the high mannose form. Expression of p22-phox in these cells resulted in functional correction of NADPH oxidase. In addition, gp91- phox in the reconstituted cells was processed to its terminally glycosylated form. These data suggest that the association of the 65-kD gp91-phox precursor with p22-phox is a prerequisite for processing of the carbohydrate side chains to the complex form in the Golgi. The detection of this precursor will enable characterization of mutations disrupting the subunit interaction (either naturally occurring or derived by in vitro mutagenesis) and so aid in structure-function analysis of cytochrome b-245. Reconstitution of p22-phox-deficient cells shows the potential of gene therapy for this autosomal form of CGD.  相似文献   

19.
Although hypertension is a major risk factor for atherosclerosis, its underlying mechanisms remain to be delineated. We have recently reported that both endothelin-1 (ET-1) and vascular cellular adhesion molecule-1 (VCAM-1) levels, key early markers of atherosclerosis, are significantly elevated in carotid arteries of deoxycorticosterone acetate (DOCA)-salt hypertensive rats, a model known for its suppressed plasma renin levels. This study tested the hypothesis that ET-1 augments arterial VCAM-1 expression through NADPH oxidase-derived superoxide (O2-). Carotid arteries of DOCA-salt or sham-operated rats were transduced ex vivo with extracellular superoxide dismutase (EC-SOD), dominant negative HA-tagged N17Rac1 that inhibits Rac1, the small GTPase component of NADPH oxidase, or beta-galactosidase (beta-gal) reporter gene (5x10(10) plaque formation units [pfu]/mL), and the effect of transgene expression on O2- and VCAM-1 levels was assayed 24 hours afterward. The arterial activity of NADPH oxidase but not xanthine oxidase was significantly higher in DOCA-salt than in sham rats, which was abolished by the selective ETA receptor antagonist ABT-627 (3x10(-8) mol/L), NADPH oxidase inhibitor apocynin (10(-4) mol/L), or dominant negative Rac1 gene transfer. The levels of O2- and VCAM-1 were significantly increased in arteries of DOCA-salt rats, an effect that was ameliorated after EC-SOD or dominant negative Rac1 but not beta-gal reporter gene transfer. ABT-627 and apocynin also significantly reduced elevated VCAM-1 levels in ET-1-treated arteries of normal rats and arteries of DOCA-salt rats. The results of this study indicate that ET-1 stimulates arterial VCAM-1 expression by producing O2- from an ETA receptor/NADPH oxidase pathway in low-renin mineralocorticoid hypertension.  相似文献   

20.
Regulation of neutrophil function by Rac GTPases   总被引:6,自引:0,他引:6  
Rac plays a central role in regulating neutrophil responses to inflammatory signals, including actin remodeling, chemotaxis, and superoxide production by the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Rac-GTP is a component of the membrane-assembled NADPH oxidase complex, and new evidence suggests that Rac-GTP interacts directly with the oxidase flavocytochrome, in addition to binding to the regulatory p67 subunit, to regulate electron transfer both independently and cooperatively from NADPH to molecular oxygen. Other new studies suggest that Rac-GTP plays a dual role in NADPH oxidase activation, and can initiate signaling pathways leading to translocation of cytosolic oxidase subunits in addition to functioning in the assembled enzyme complex. Rac activation in response to neutrophil chemoattractants may be regulated in large part by a newly identified guanine nucleotide exchange factor, P-Rex1, which is activated by either phosphatidylinositols or Gbetagamma subunits. Multiple Rac GTPase activating proteins are present in neutrophils and may also modulate levels of Rac-GTP. The importance of Rac in a broad range of neutrophil functions is shown by the variety of defects seen in neutrophils from Rac2 knockout mice and from a patient with recurrent infections and a dominant-negative mutation in Rac2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号