首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background: Because exposure to low temperature can modify the effect of volatile anesthetics on airway smooth muscle contraction, this study was conducted to investigate low-temperature modifications of the inhibitory effects of isoflurane and sevoflurane on canine tracheal smooth muscle tone by simultaneously measuring the muscle tension and intracellular concentration of Ca2+ ([Ca2+]i) and by measuring voltage-dependent Ca2+ channel activity.

Methods: [Ca2+]i was monitored by the 500-nm light emission ratio of preloaded fura-2, a Ca2+ indicator. Isometric tension was measured simultaneously. Whole cell patch clamp recording techniques were used to observe voltage-dependent Ca2+ channel activity in dispersed muscle cells. Isoflurane (0-3.0%) or sevoflurane (0-3%) was introduced to a bath solution at various temperatures (37, 34, or 31[degrees]C).

Results: Low temperature (34 or 31[degrees]C) reduced high-K+-induced (72.7 mm) muscle contraction and increased [Ca2+]i, but it enhanced carbachol-induced (1 [mu]m) muscle contraction with a decrease in [Ca2+]i. The volatile anesthetics tested showed significant inhibition of both high-K+-induced and carbachol-induced airway smooth muscle contraction, with a concomitant decrease in [Ca2+]i. The inhibition of the carbachol-induced muscle contraction by volatile anesthetics was abolished partially by exposure to low temperature. Volatile anesthetics and low-temperature exposure significantly inhibited voltage-dependent Ca2+ channel activity of the smooth muscle.  相似文献   


2.
BACKGROUND: Although propofol directly inhibits uterine smooth muscle contraction, the mechanisms of this effect are still unknown. The current study aimed to clarify the mechanisms of the inhibitory effect of propofol on oxytocin-induced uterine smooth muscle contraction by measuring (1) the concentration of intracellular free Ca(2+) ([Ca(2+)](i)) simultaneously with muscle tension, (2) the amount of intracellular inositol 1,4,5-triphosphate ([IP(3)](i)), and (3) voltage-dependent Ca(2+) channel (VDCC) activity. METHODS: Uterine smooth muscle tissues were obtained from pregnant rats (in late gestation). [Ca(2+)](i) with isometric tension was monitored by the 500-nm light emission ratio of preloaded Ca(2+) indicator fura-2. [IP(3)](i) and VDCC activity were measured by radioimmunoassay and patch clamp techniques, respectively. The uterine smooth muscle was stimulated by 20 nm oxytocin and exposed to propofol (10(-7) approximately 10(-4) m). RESULTS: Propofol had significant inhibitory effects on oxytocin-induced uterine smooth muscle contraction and increased [Ca(2+)](i) in pregnant rats in a dose-dependent manner, without affecting the agonist-receptor binding affinity. Propofol inhibited the increase in [IP(3)](i) induced by oxytocin. Propofol also inhibited VDCC activity in both activated and inactivated states. The solvent Intralipid had no effects on these parameters. CONCLUSIONS: Propofol inhibits oxytocin-induced uterine smooth muscle contraction, at least in part, by decreasing [Ca(2+)](i) without affecting agonist-receptor binding; the inhibitory effect of propofol on [Ca(2+)](i) might be mediated both by a decrease in [IP(3)](i) and by inhibition of VDCC activity.  相似文献   

3.
BACKGROUND: Because exposure to low temperature can modify the effect of volatile anesthetics on airway smooth muscle contraction, this study was conducted to investigate low-temperature modifications of the inhibitory effects of isoflurane and sevoflurane on canine tracheal smooth muscle tone by simultaneously measuring the muscle tension and intracellular concentration of Ca2+ ([Ca2+]i) and by measuring voltage-dependent Ca2+ channel activity. METHODS: [Ca2+]i was monitored by the 500-nm light emission ratio of preloaded fura-2, a Ca2+ indicator. Isometric tension was measured simultaneously. Whole cell patch clamp recording techniques were used to observe voltage-dependent Ca2+ channel activity in dispersed muscle cells. Isoflurane (0-3.0%) or sevoflurane (0-3%) was introduced to a bath solution at various temperatures (37, 34, or 31 degrees C). RESULTS: Low temperature (34 or 31 degrees C) reduced high-K+-induced (72.7 mm) muscle contraction and increased [Ca2+]i, but it enhanced carbachol-induced (1 microm) muscle contraction with a decrease in [Ca2+]i. The volatile anesthetics tested showed significant inhibition of both high-K+-induced and carbachol-induced airway smooth muscle contraction, with a concomitant decrease in [Ca2+]i. The inhibition of the carbachol-induced muscle contraction by volatile anesthetics was abolished partially by exposure to low temperature. Volatile anesthetics and low-temperature exposure significantly inhibited voltage-dependent Ca2+ channel activity of the smooth muscle. CONCLUSIONS: Exposure of airway smooth muscle to low temperature leads to an increase in agonist-induced muscle contractility, with a decrease in [Ca2+]i. The inhibition of voltage-dependent Ca2+ channel activity by exposure to low temperature and by volatile anesthetics cam be attributed, at least in part, to the decrease in [Ca2+]i.  相似文献   

4.
Background : Although propofol directly inhibits uterine smooth muscle contraction, the mechanisms of this effect are still unknown. The current study aimed to clarify the mechanisms of the inhibitory effect of propofol on oxytocin-induced uterine smooth muscle contraction by measuring (1) the concentration of intracellular free Ca2+ ([Ca2+]i) simultaneously with muscle tension, (2) the amount of intracellular inositol 1,4,5-triphosphate ([IP3]i), and (3) voltage-dependent Ca2+ channel (VDCC) activity.

Methods : Uterine smooth muscle tissues were obtained from pregnant rats (in late gestation). [Ca2+]i with isometric tension was monitored by the 500-nm light emission ratio of preloaded Ca2+ indicator fura-2. [IP3]i and VDCC activity were measured by radioimmunoassay and patch clamp techniques, respectively. The uterine smooth muscle was stimulated by 20 nm oxytocin and exposed to propofol (10-7 ~ 10-4 m).

Results : Propofol had significant inhibitory effects on oxytocin-induced uterine smooth muscle contraction and increased [Ca2+]i in pregnant rats in a dose-dependent manner, without affecting the agonist-receptor binding affinity. Propofol inhibited the increase in [IP3]i induced by oxytocin. Propofol also inhibited VDCC activity in both activated and inactivated states. The solvent Intralipid(R) had no effects on these parameters.  相似文献   


5.
We investigated the direct interaction between the volatile anesthetics, isoflurane and sevoflurane, and hypoxia in porcine tracheal smooth muscle in vitro by simultaneously measuring muscle tension and intracellular concentration of free Ca(2+) ([Ca2+]i). Muscle tension was measured by using an isometric transducer, and [Ca2+]i was measured by using fura-2, an indicator of Ca2+. Under the condition of bubbling with 95% O2/5% CO2, [Ca2+]i was increased by 1 microM carbachol with a concomitant contraction. Volatile anesthetics significantly inhibited both carbachol-induced muscle contraction and increase in [Ca2+]i. Hypoxia bubbled with 95% N(2)/5% CO2 inhibited the muscle contraction by 30% with an increase in [Ca2+]i by 20%. Exposure to hypoxia substantially enhanced the inhibitory effects of these anesthetics on carbachol-induced muscle contraction, whereas the decreases in [Ca2+]i were significantly prevented by hypoxia. Under Ca2+-free conditions, hypoxia significantly decreased the muscle contraction by 20%; however, it still increased [Ca2+]i by 15%. Exposure to the anesthetics significantly enhanced the inhibitory effect of hypoxia on the muscle contraction; however, it appeared to have little effect on [Ca2+]i. Hypoxia inhibits airway smooth muscle contraction independently of intracellular Ca2+, and it substantially potentiates the inhibitory effects of volatile anesthetics on airway smooth muscle contraction. Implications: Hypoxia inhibits agonist-induced tracheal smooth muscle contraction with an increase in free Ca2+ [Ca2+]i, which comes from intracellular Ca2+ stores. Hypoxia also potentiates the inhibitory effect of volatile anesthetics on airway smooth muscle contraction. Conversely, there is a possibility that the treatment of asthmatic patients with oxygen partially attenuates the inhibitory effect of volatile anesthetics on airway smooth muscle contractility.  相似文献   

6.
Background: Volatile anesthetic actions on intracellular Ca2+ stores (i.e., sarcoplasmic reticulum [SR]) of vascular smooth muscle have not been fully elucidated.

Methods: Using isometric force recording method and fura-2 fluorometry, the actions of four volatile anesthetics on SR were studied in isolated endothelium-denuded rat mesenteric arteries.

Results: Halothane (>= 3%) and enflurane (>= 3%), but not isoflurane and sevoflurane, increased the intracellular Ca2+ concentration ([Ca2+]i) in Ca2+-free solution. These Ca2+-releasing actions were eliminated by procaine. When each anesthetic was applied during Ca2+ loading, halothane (>= 3%) and enflurane (5%), but not isoflurane and sevoflurane, decreased the amount of Ca2+ in the SR. However, if halothane or enflurane was applied with procaine during Ca2+ loading, both anesthetics increased the amount of Ca2+ in the SR. The caffeine-induced increase in [Ca2+]i was enhanced in the presence of halothane (>= 1%), enflurane (>= 1%), and isoflurane (>= 3%) but was attenuated in the presence of sevoflurane (>= 3%). The norepinephrine-induced increase in [Ca2+]i was enhanced only in the presence of sevoflurane (>= 3%). Not all of these anesthetic effects on the [Ca2+]i were parallel with the simultaneously observed anesthetic effects on the force.  相似文献   


7.
BACKGROUND: Volatile anesthetic actions on intracellular Ca2+ stores (ie., sarcoplasmic reticulum [SR]) of vascular smooth muscle have not been fully elucidated. METHODS: Using isometric force recording method and fura-2 fluorometry, the actions of four volatile anesthetics on SR were studied in isolated endothellum-denuded rat mesenteric arteries. RESULTS: Halothane (> or = 3%) and enflurane (> or = 3%), but not isoflurane and sevoflurane, increased the intracellular Ca2+ concentration ([Ca2+]i) in Ca2+-free solution. These Ca2+-releasing actions were eliminated by procaine. When each anesthetic was applied during Ca2+ loading, halothane (> or = 3%) and enflurane (5%), but not isoflurane and sevoflurane, decreased the amount of Ca2+ in the SR. However, if halothane or enflurane was applied with procaine during Ca2+ loading, both anesthetics increased the amount of Ca2+ in the SR. The caffeine-induced increase in [Ca2+], was enhanced in the presence of halothane (> or = 1%), enflurane (> or = 1%), and isoflurane (> or = 3%) but was attenuated in the presence of sevoflurane (> or = 3%). The norepinephrine-induced increase in [Ca2+], was enhanced only in the presence of sevoflurane (> or = 3%). Not all of these anesthetic effects on the [Ca2+]i were parallel with the simultaneously observed anesthetic effects on the force. CONCLUSIONS: In systemic resistance arteries, the halothane, enflurane, isoflurane, and sevoflurane differentially influence the SR functions. Both halothane and enflurane cause Ca2+ release from the caffeine-sensitive SR. In addition, both anesthetics appear to have a stimulating action on Ca2+ uptake in addition to the Ca2+-releasing action. Halothane, enflurane, and isoflurane all enhance, while sevoflurane attenuates, the Ca2+-induced Ca2+-release mechanism. However, only sevoflurane stimulates the inositol 1,4,5-triphosphate-induced Ca2+ release mechanism. Isoflurane and sevoflurane do not stimulate Ca2+ release or influence Ca2+ uptake.  相似文献   

8.
Background: Although halothane and isoflurane inhibit receptor agonist-induced smooth muscle contraction by inhibiting Calcium2+ influx via the L-type voltage-dependent Calcium2+ channels, their effects on pharmacomechanical coupling remained to be clarified. The intracellular action of both anesthetics was studied during agonist-induced contractions using the Calcium2+ channel blocker verapamil.

Methods: Isolated spiral strips of rat thoracic aorta with endothelium removed were suspended for isometric tension recordings in physiologic salt solution. Cytosolic concentration of Calcium2+ ([Ca sup 2+]i) was measured concomitantly using fura-2-Calcium2+ fluorescence. Muscle contraction was evoked by the receptor agonists with 30 nM norepinephrine or 10 micro Meter prostaglandin F2 alpha (PGF2 alpha), followed by exposure to halothane, at 0%, 1%, 2%, and 3% or isoflurane, at 2% and 4%. The effects of the anesthetics were compared with those of 0.1-1 micro Meter verapamil (n = 8 for each condition). To clarify the intracellular action of the volatile anesthetics on agonist-induced contractions, this procedure was repeated for the anesthetics only in the presence of 1 micro Meter verapamil (n = 8 for each condition). The effects of both anesthetics were also examined in nonreceptor-mediated contractions evoked with a 1-micro Meter dose of the protein kinase C activator, 12-deoxyphorbol 13-isobutylate, which increases the Calcium2+ sensitivity of the contractile elements (n = 8 for each).

Results: Halothane, isoflurane, and verapamil suppressed norepinephrine- and PGF2 alpha-induced increases in muscle tension and [Ca sup 2+]i in a concentration-dependent manner. The Calcium2+ -tension regression lines suggested that the volatile anesthetics reduced Calcium2+ sensitivity of the contractile elements during PGF2 alpha-induced contraction. Pretreatment of the muscle strip with verapamil revealed that halothane and isoflurane released Calcium2+ during norepinephrine-induced contraction and that [Ca2+]i -tension relationship was modulated during PGF2 alpha-induced contractions. Halothane at 2% and 3% and isoflurane at 4% suppressed 12-deoxyphorbol 13-isobutylate-induced increases in muscle tension, whereas they enhanced increases in [Ca2+]i, indicating that both anesthetics suppressed Calcium2+ sensitivity during 12-deoxyphorbol 13-isobutylate-induced contraction.  相似文献   


9.
Yoo KY  Lee JC  Yoon MH  Shin MH  Kim SJ  Kim YH  Song TB  Lee J 《Anesthesia and analgesia》2006,103(2):443-7, table of contents
We examined the effects of equianesthetic concentrations of sevoflurane, desflurane, isoflurane, and halothane on the spontaneous contractility of isolated human pregnant uterine muscles. We also determined if their action was related to potassium channels. Uterine specimens were obtained from normal full-term pregnant women undergoing elective lower-segment cesarean delivery. Longitudinal muscle strips were mounted vertically in tissue chambers. Their isometric tension was recorded while they were exposed to 0.5-3 minimum alveolar concentration (MAC) of volatile anesthetics in the absence and presence of the high conductance calcium-activated potassium channel blocker, tetraethylammonium, or the adenosine triphosphate-sensitive potassium channel (K(ATP))-blocker, glibenclamide. The anesthetics examined produced a dose-dependent depression of contractility. The inhibitory potency of sevoflurane and desflurane was comparable to, whereas that of isoflurane was smaller than, that of halothane: concentrations causing 50% inhibition of the contractile amplitude (ED(50)) were 1.72, 1.44, 2.35, and 1.66 MAC (P < 0.05), respectively. Tetraethylammonium and glibenclamide did not affect the uterine response to the anesthetics, except for glibenclamide, which attenuated the response to isoflurane. These results indicate that the volatile anesthetics have inhibitory effects on the contractility of the human uterus. The inhibitory effect of isoflurane may in part be mediated through activation of K(ATP) channels.  相似文献   

10.
Background: Volatile anesthetics are known to ameliorate experimental ischemic brain injury. A possible mechanism is inhibition of excitotoxic cascades induced by excessive glutamatergic stimulation. This study examined interactions between volatile anesthetics and excitotoxic stress.

Methods: Primary cortical neuronal-glial cultures were exposed to N-methyl-d-aspartate (NMDA) or glutamate and isoflurane (0.1-3.3 mm), sevoflurane (0.1-2.9 mm), halothane (0.1-2.9 mm), or 10 [mu]m (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohepten-5,10-imine hydrogen maleate (MK-801). Lactate dehydrogenase release was measured 24 h later. In other cultures, effects of volatile anesthetics on Ca++ uptake and mitochondrial membrane potential were determined in the presence or absence of NMDA (0-200 [mu]m).

Results: Volatile anesthetics reduced excitotoxin induced lactate dehydrogenase release by up to 52% in a dose-dependent manner. At higher concentrations, this protection was reversed. When corrected for olive oil solubility, the three anesthetics offered equivalent protection. MK-801 provided near-complete protection. Ca++ uptake was proportionally reduced with increasing concentrations of anesthetic but did not account for reversal of protection at higher anesthetic concentrations. Given equivalent NMDA-induced Ca++ loads, cells treated with volatile anesthetic had greater lactate dehydrogenase release than those left untreated. At protective concentrations, volatile anesthetics partially inhibited NMDA-induced mitochondrial membrane depolarization. At higher concentrations, volatile anesthetics alone were sufficient to induce mitochondrial depolarization.  相似文献   


11.
BACKGROUND: In airway smooth muscle (ASM), volatile anesthetics deplete sarcoplasmic reticulum (SR) Ca(2+) stores by increasing Ca(2+) "leak." Accordingly, SR replenishment becomes dependent on Ca(2+) influx. Depletion of SR Ca(2+) stores triggers Ca(2+) influx via specific plasma membrane channels, store-operated Ca(2+) channels (SOCC). We hypothesized that anesthetics inhibit SOCC triggered by increased SR Ca(2+) "leak," preventing SR replenishment and enhancing ASM relaxation. METHODS: In porcine ASM cells, SR Ca was depleted by cyclopiazonic acid or caffeine in 0 extracellular Ca(2+), nifedipine and KCl (preventing Ca(2+) influx through L-type and SOCC channels). Extracellular Ca(2+) was rapidly introduced to selectively activate SOCC. After SOCC activation, SR was replenished and the protocol repeated in the presence of 1 or 2 minimum alveolar concentration halothane, isoflurane, or sevoflurane. In other cells, characteristics of SOCC and interactions between acetylcholine (Ach) and volatile anesthetics were examined. RESULTS: Cyclopiazonic acid produced slow SR leak, whereas the caffeine response was transient in ASM cells. Reintroduction of extracellular Ca(2+) rapidly increased [Ca(2+)]i. This influx was insensitive to nifedipine, SKF-96365, and KBR-7943, inhibited by Ni and blockade of inositol 1,4,5-triphosphate-induced SR Ca(2+) release, and enhanced by ACh. Preexposure to 1 or 2 minimum alveolar concentration halothane completely inhibited Ca(2+) influx when extracellular Ca(2+) was reintroduced, whereas isoflurane and sevoflurane produced less inhibition. Only halothane and isoflurane inhibited ACh-induced augmentation of Ca(2+) influx. CONCLUSION: Volatile anesthetics inhibit a Ni/La-sensitive store-operated Ca(2+) influx mechanism in porcine ASM cells, which likely helps maintain anesthetic-induced bronchodilation.  相似文献   

12.
BACKGROUND: Volatile anesthetics are known to ameliorate experimental ischemic brain injury. A possible mechanism is inhibition of excitotoxic cascades induced by excessive glutamatergic stimulation. This study examined interactions between volatile anesthetics and excitotoxic stress. METHODS: Primary cortical neuronal-glial cultures were exposed to N-methyl-D-aspartate (NMDA) or glutamate and isoflurane (0.1-3.3 mM), sevoflurane (0.1-2.9 mM), halothane (0.1-2.9 mM), or 10 microM (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohepten-5,10-imine hydrogen maleate (MK-801). Lactate dehydrogenase release was measured 24 h later. In other cultures, effects of volatile anesthetics on Ca++ uptake and mitochondrial membrane potential were determined in the presence or absence of NMDA (0-200 microM). RESULTS: Volatile anesthetics reduced excitotoxin induced lactate dehydrogenase release by up to 52% in a dose-dependent manner. At higher concentrations, this protection was reversed. When corrected for olive oil solubility, the three anesthetics offered equivalent protection. MK-801 provided near-complete protection. Ca++ uptake was proportionally reduced with increasing concentrations of anesthetic but did not account for reversal of protection at higher anesthetic concentrations. Given equivalent NMDA-induced Ca++ loads, cells treated with volatile anesthetic had greater lactate dehydrogenase release than those left untreated. At protective concentrations, volatile anesthetics partially inhibited NMDA-induced mitochondrial membrane depolarization. At higher concentrations, volatile anesthetics alone were sufficient to induce mitochondrial depolarization. CONCLUSIONS: Volatile anesthetics offer similar protection against excitotoxicity, but this protection is substantially less than that provided by selective NMDA receptor antagonism. Peak effects of NMDA receptor antagonism were observed at volatile anesthetic concentrations substantially greater than those used clinically.  相似文献   

13.
BACKGROUND: Halothane inhibits airway smooth muscle contraction in part by inhibiting the functional coupling between muscarinic receptors and one of its cognate heterotrimeric G proteins, Galphaq. Based on previous studies indicating a more potent effect of halothane and sevoflurane on airway smooth muscle contraction compared with isoflurane, the current study hypothesized that at anesthetic concentrations of 2 minimum alveolar concentration (MAC) or less, halothane and sevoflurane but not isoflurane inhibit acetylcholine-promoted Galphaq guanosine nucleotide exchange. METHODS: Galphaq guanosine nucleotide exchange was measured in crude membranes prepared from COS-7 cells transiently coexpressing the human M3 muscarinic receptor and human Galphaq. A radioactive, nonhydrolyzable analog of guanosine-5'-triphosphate, [35S]GTPgammaS, was used as a reporter for nucleotide exchange at Galphaq. RESULTS: Acetylcholine caused a concentration-dependent increase in Galphaq [35S]GTPgammaS-GDP exchange. Neither anesthetic affected constitutive Galphaq [35S]GTPgammaS-GDP exchange in the absence of acetylcholine. Conversely, each anesthetic caused a concentration-dependent and reversible inhibition of Galphaq [35S]GTPgammaS-GDP exchange when promoted by acetylcholine. At concentrations of 3 MAC or less, the effect of halothane and sevoflurane were significantly greater than that of isoflurane, with only a minimal inhibition by isoflurane observed at 2 MAC. CONCLUSION: The differential effects of volatile anesthetics on acetylcholine-promoted guanosine nucleotide exchange at Galphaq are consistent with the apparent more potent direct effect of halothane and sevoflurane compared with isoflurane on muscarinic receptor-mediated contraction of isolated airway smooth muscle. These differential effects also suggest a mode of anesthetic action that could be due to anesthetic-protein interactions and not simply anesthetic accumulation in the lipid membrane.  相似文献   

14.
Background: The distal airway is more important in the regulation of airflow resistance than is the proximal airway, and volatile anesthetics have a greater inhibitory effect on distal airway muscle tone. The authors investigated the different reactivities of airway smooth muscles to volatile anesthetics by measuring porcine tracheal or bronchial (third to fifth generation) smooth muscle tension and intracellular concentration of free Ca2+ ([Ca2+]i) and by measuring inward Ca2+ currents (ICa) through voltage-dependent Ca2+ channels (VDCs).

Methods: Intracellular concentration of free Ca2+ was monitored by the 500-nm light emission ratio of Ca2+ indicator fura-2. Isometric tension was measured simultaneously. Whole-cell patch clamp recording techniques were used to investigate the effects of volatile anesthetics on ICa in dispersed smooth muscle cells. Isoflurane (0-1.5 minimum alveolar concentration) or sevoflurane (0-1.5 minimum alveolar concentration) was introduced into a bath solution.

Results: The volatile anesthetics tested had greater inhibitory effects on carbachol-induced bronchial smooth muscle contraction than on tracheal smooth muscle contraction. These inhibitory effects by the anesthetics on muscle tension were parallel to the inhibitory effects on [Ca2+]i. Although tracheal smooth muscle cells had only L-type VDCs, some bronchial smooth muscle cells (~30%) included T-type VDC. Each of the two anesthetics significantly inhibited the activities of both types of VDCs in a dose-dependent manner; however, the anesthetics had greater inhibitory effects on T-type VDC activity in bronchial smooth muscle.  相似文献   


15.
Background: Volatile anesthetics produce bronchodilation in part by depleting sarcoplasmic reticulum Ca2+ stores in airway smooth muscle (ASM). Other bronchodilatory drugs are known to act via cyclic nucleotides (cyclic adenosine 3',5'-cyclic monophosphate, cyclic guanosine 3',5'-cyclic monophosphate). Intracellular Ca2+ regulation in ASM involves plasma membrane Ca2+ influx, including that triggered by sarcoplasmic reticulum Ca2+ depletion (store-operated Ca2+ entry [SOCE]). The authors hypothesized that anesthetics and bronchodilatory agents interact in inhibiting SOCE, thus enhancing ASM relaxation.

Methods: In enzymatically dissociated porcine ASM cells imaged using fluorescence microscopy, sarcoplasmic reticulum Ca2+ was depleted by 1 [mu]m cyclopiazonic acid in 0 extracellular Ca2+, nifedipine, and potassium chloride (preventing Ca2+ influx through L-type channels and SOCE). Extracellular Ca2+ was rapidly reintroduced to selectively activate SOCE in the presence or absence of 1 minimum alveolar concentration (MAC) halothane, isoflurane, or sevoflurane. Anesthetic interference with SOCE regulation by cyclic nucleotides was examined by activating SOCE in the presence of (1) 1 [mu]m acetylcholine, (2) 100 [mu]m dibutryl cyclic adenosine 3',5'-cyclic monophosphate, or (3) 100 [mu]m 8-bromo-cyclic guanosine 3',5'-cyclic monophosphate.

Results: SOCE was enhanced by acetylcholine, whereas volatile anesthetics and both cyclic nucleotides partially inhibited Ca2+ influx. Preexposure to 1 or 2 MAC anesthetic (halothane > isoflurane > sevoflurane) inhibited SOCE. Only halothane and isoflurane inhibited acetylcholine-induced augmentation of Ca2+ influx, and significantly potentiated cyclic nucleotide inhibition such that no influx was observed in the presence of anesthetics and cyclic nucleotides.  相似文献   


16.
BACKGROUND: The distal airway is more important in the regulation of airflow resistance than is the proximal airway, and volatile anesthetics have a greater inhibitory effect on distal airway muscle tone. The authors investigated the different reactivities of airway smooth muscles to volatile anesthetics by measuring porcine tracheal or bronchial (third to fifth generation) smooth muscle tension and intracellular concentration of free Ca2+ ([Ca2+]i) and by measuring inward Ca2+ currents (ICa) through voltage-dependent Ca2+ channels (VDCs). METHODS: Intracellular concentration of free Ca2+ was monitored by the 500-nm light emission ratio of Ca2+ indicator fura-2. Isometric tension was measured simultaneously. Whole-cell patch clamp recording techniques were used to investigate the effects of volatile anesthetics on ICa in dispersed smooth muscle cells. Isoflurane (0-1.5 minimum alveolar concentration) or sevoflurane (0-1.5 minimum alveolar concentration) was introduced into a bath solution. RESULTS: The volatile anesthetics tested had greater inhibitory effects on carbachol-induced bronchial smooth muscle contraction than on tracheal smooth muscle contraction. These inhibitory effects by the anesthetics on muscle tension were parallel to the inhibitory effects on [Ca2+]i. Although tracheal smooth muscle cells had only L-type VDCs, some bronchial smooth muscle cells (approximately 30%) included T-type VDC. Each of the two anesthetics significantly inhibited the activities of both types of VDCs in a dose-dependent manner; however, the anesthetics had greater inhibitory effects on T-type VDC activity in bronchial smooth muscle. CONCLUSIONS: The existence of the T-type VDC in bronchial smooth muscle and the high sensitivity of this channel to volatile anesthetics seem to be, at least in part, responsible for the different reactivities to the anesthetics in tracheal and bronchial smooth muscles.  相似文献   

17.
BACKGROUND: Volatile anesthetics produce bronchodilation in part by depleting sarcoplasmic reticulum Ca stores in airway smooth muscle (ASM). Other bronchodilatory drugs are known to act via cyclic nucleotides (cyclic adenosine 3',5'-cyclic monophosphate, cyclic guanosine 3',5'-cyclic monophosphate). Intracellular Ca regulation in ASM involves plasma membrane Ca influx, including that triggered by sarcoplasmic reticulum Ca depletion (store-operated Ca entry [SOCE]). The authors hypothesized that anesthetics and bronchodilatory agents interact in inhibiting SOCE, thus enhancing ASM relaxation. METHODS: In enzymatically dissociated porcine ASM cells imaged using fluorescence microscopy, sarcoplasmic reticulum Ca was depleted by 1 microm cyclopiazonic acid in 0 extracellular Ca, nifedipine, and potassium chloride (preventing Ca influx through L-type channels and SOCE). Extracellular Ca was rapidly reintroduced to selectively activate SOCE in the presence or absence of 1 minimum alveolar concentration (MAC) halothane, isoflurane, or sevoflurane. Anesthetic interference with SOCE regulation by cyclic nucleotides was examined by activating SOCE in the presence of (1) 1 microm acetylcholine, (2) 100 microm dibutryl cyclic adenosine 3',5'-cyclic monophosphate, or (3) 100 microm 8-bromo-cyclic guanosine 3',5'-cyclic monophosphate. RESULTS: SOCE was enhanced by acetylcholine, whereas volatile anesthetics and both cyclic nucleotides partially inhibited Ca influx. Preexposure to 1 or 2 MAC anesthetic (halothane > isoflurane > sevoflurane) inhibited SOCE. Only halothane and isoflurane inhibited acetylcholine-induced augmentation of Ca influx, and significantly potentiated cyclic nucleotide inhibition such that no influx was observed in the presence of anesthetics and cyclic nucleotides. CONCLUSIONS: These data indicate that volatile anesthetics prevent sarcoplasmic reticulum refilling by inhibiting SOCE and enhancing cyclic nucleotide blunting of Ca influx in ASM. Such interactions likely result in substantial airway relaxation in the presence of both anesthetics and bronchodilatory agents such as beta agonists or nitric oxide.  相似文献   

18.
BACKGROUND: The aim of this study was to describe and compare the effects of isoflurane, sevoflurane, and halothane at selected concentrations (i.e., concentrations that led to equivalent depression of the electrically evoked Ca2+ transient) on myofilament Ca2+ sensitivity, sarcoplasmic reticulum (SR) Ca2+ content, and the fraction of SR Ca2+ released during electrical stimulation (fractional release) in rat ventricular myocytes. METHODS: Single rat ventricular myocytes loaded with fura-2 were electrically stimulated at 1 Hz, and the Ca2+ transients and contractions were recorded optically. Cells were exposed to each anesthetic for 1 min. Changes in myofilament Ca2+ sensitivity were assessed by comparing the changes in the Ca2+ transient and contraction during exposure to anesthetic and low Ca2+. SR Ca2+ content was assessed by exposure to 20 mm caffeine. RESULTS: Isoflurane and halothane caused a depression of myofilament Ca2+ sensitivity, unlike sevoflurane, which had no effect on myofilament Ca2+ sensitivity. All three anesthetics decreased the electrically stimulated Ca2+ transient. SR Ca2+ content was reduced by both isoflurane and halothane but was unchanged by sevoflurane. Fractional release was reduced by both isoflurane and sevoflurane, but was unchanged by halothane. CONCLUSIONS: Depressed myofilament Ca2+ sensitivity contributes to the negative inotropic effects of isoflurane and halothane but not sevoflurane. The decrease in the Ca2+ transient is either responsible for or contributory to the negative inotropic effects of all three anesthetics and is either primarily the result of a decrease in fractional release (isoflurane and sevoflurane) or primarily the result of a decrease in SR Ca2+ content (halothane).  相似文献   

19.
This study was conducted to determine the effects of volatile anesthetics (potent bronchodilators) on membrane potentials in porcine tracheal and bronchial smooth muscle cells. We used a current-clamp technique to examine the effects of the volatile anesthetics isoflurane (1.5 minimum alveolar anesthetic concentration [MAC]) and sevoflurane (1.5 MAC) on membrane potentials of porcine tracheal and bronchial (third- to fifth-generation) smooth muscle cells depolarized by a muscarinic agonist, carbachol (1 microM). The effects of volatile anesthetics on muscarinic receptor binding affinity were also investigated by using a radiolabeled receptor assay technique. The volatile anesthetics isoflurane and sevoflurane induced significant repolarization of the depolarized cell membranes in the trachea (from -19.8 to -23.6 mV and to -24.8 mV, respectively) and bronchus (from -24.7 to -29.3 mV and -30.4 mV, respectively) without affecting carbachol binding affinity to the muscarinic receptor. The repolarizing effect was abolished by a Ca(2+)-activated Cl(-) channel blocker, niflumic acid. These results indicate that volatile anesthetic-induced repolarization of airway smooth muscle cell membranes might be caused by a change in Ca(2+)-activated Cl(-) channel activity and that the different repolarized effects of the volatile anesthetics could in part contribute to the different effects of volatile anesthetics on tracheal and bronchial smooth muscle contractions. IMPLICATIONS: By use of a current-clamp technique, the volatile anesthetics isoflurane and sevoflurane repolarized porcine airway smooth muscle cell membranes depolarized by a muscarinic agonist. This effect might be caused mainly by change in Ca(2+)-activated Cl(-) channel activity, not in K(+) channel activity.  相似文献   

20.
BACKGROUND: K+ and Ca2+-activated Cl- (ClCa) channel currents have been shown to contribute to the alteration of membrane electrical activity in airway smooth muscle. This study was conducted to investigate the effects of volatile anesthetics, which are potent bronchodilators, on the activities of these channels in porcine tracheal and bronchial smooth muscles. METHODS: Whole-cell patch clamp recording techniques were used to investigate the effects of superfused isoflurane (0-1.5 minimum alveolar concentration) or sevoflurane (0-1.5 minimum alveolar concentration) on K+ and ClCa channel currents in dispersed smooth muscle cells. RESULTS: Isoflurane and sevoflurane inhibited whole-cell K+ currents to a greater degree in tracheal versus bronchial smooth muscle cells. More than 60% of the total K+ currents in tracheal smooth muscle appeared to be mediated through delayed rectifier K+ channels compared with less than 40% in bronchial smooth muscle. The inhibitory effects of the anesthetics were greater on the delayed rectifier K+ channels than on the remaining K+ channels. Cl- currents through ClCa channels were significantly inhibited by the anesthetics. The inhibitory potencies of the anesthetics on the ClCa channels were not different in tracheal and bronchial smooth muscle cells. CONCLUSIONS: Volatile anesthetics isoflurane and sevoflurane significantly inhibited Cl- currents through ClCa channels, and the inhibitory effect is consistent with the relaxant effect of volatile anesthetics in airway smooth muscle. Different distributions and different anesthetic sensitivities of K+ channel subtypes could play a role in the different inhibitory effects of the anesthetics on tracheal and bronchial smooth muscle contractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号