首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
NO regulates bone remodeling in cellular and animal models. We examined the effect of administering ISMO, a NO donor, on bone turnover in 144 postmenopausal women. After 3 months, women randomized to ISMO had a greater decrease in bone resorption and a greater increase in bone formation compared with placebo. NO donors may prevent postmenopausal bone loss. INTRODUCTION: NO both stimulates bone formation and inhibits bone resorption in vitro. NO donors (nitrates) are inexpensive and widely available, but their value for postmenopausal osteoporosis has never been evaluated in a randomized trial. MATERIALS AND METHODS: We randomly assigned 144 healthy postmenopausal women with a hip BMD T score between 0 and -2.5 to 5 or 20 mg/day of isosorbide mononitrate (ISMO) or placebo for 12 weeks. We measured urine N-telopeptide (NTx), a marker of bone resorption, and serum bone-specific alkaline phosphatase (BSALP), a marker of bone formation. Markers were measured immediately before randomization and after 12 weeks of treatment. We calculated the percent change in NTx and BSALP for each of the treatment groups (placebo, 5 mg ISMO, and 20 mg ISMO). Our primary outcome was the percent change in NTx and BSALP in the 5- and 20-mg ISMO groups compared with placebo. RESULTS AND CONCLUSIONS: Compared with women randomized to placebo, women randomized to 20 mg of ISMO had a 45.4% decrease in NTx (95% CI, 25.8-64.9) and a 23.3% increase (95% CI, 8.9-37.8) in BSALP. Women randomized to 5 mg of ISMO had a 36.3% decrease in NTx (95% CI, 14.8-57.8) and a 15.9% increase in BSALP (95% CI, 1.1-30.7). ISMO decreases bone resorption and increases bone formation. These findings suggest that nitrates may be useful for the prevention of postmenopausal osteoporosis.  相似文献   

2.
3.
4.
Metabolic acidosis increases urine calcium excretion without an increase in intestinal calcium absorption, resulting in a net loss of bone mineral. In vitro, metabolic acidosis has been shown to initially induce physicochemical mineral dissolution and then enhance cell-mediated bone resorption. Acidic medium stimulates osteoblastic prostaglandin E(2) production, which mediates the subsequent stimulation of osteoclastic bone resorption. Glucocorticoids are also known to decrease bone mineral density, and metabolic acidosis has been shown to increase glucocorticoid production. This study tested the hypothesis that glucocorticoids would exacerbate acid-induced net calcium efflux from bone. Neonatal mouse calvariae were cultured in acid (Acid; pH = 7.06 +/- 0.01; [HCO(3)(-)] = 10.6 +/- 0.3 mM) or neutral (Ntl; pH = 7.43 +/- 0.01; [HCO(3)(-)] = 26.2 +/- 0.5 mM) medium, with or without 1 microM cortisol (Cort), and net calcium efflux and medium prostaglandin E(2) (PGE(2)) levels and osteoclastic beta-glucuronidase activity were determined. Compared with Ntl, Cort alone decreased calcium efflux, medium PGE(2), and osteoclast activity; Acid led to an increase in all three parameters. The addition of Cort to Acid led to a reduction of calcium efflux, medium PGE(2) levels and beta-glucuronidase activity compared with Acid alone. There was a significant direct correlation between medium PGE(2) concentration and net calcium efflux (r = 0.944; n = 23; P < 0.0001), between osteoclastic beta-glucuronidase activity and net calcium efflux (r = 0.663; n = 40; P < 0.001), and between medium PGE(2) concentration and beta-glucuronidase activity (r = 0.976; n = 4; P < 0.01). Thus, in vitro cortisol inhibits acid-induced, cell-mediated osteoclastic bone resorption through a decrease in osteoblastic PGE(2) production. These results suggest that the osteopenia observed in response to metabolic acidosis in vivo is not due to an increase in endogenous cortisol production.  相似文献   

5.
6.
7.
S 12911-2 inhibits osteoclastic bone resorption in vitro.   总被引:13,自引:0,他引:13  
The potential anti-osteoporotic activity of the strontium compound, S12911, was tested on osteoclast-like cells and on cultured fetal mouse long bones. From 1 mM Sr2+, S12911 reduced both basal and stimulated bone resorption by decreasing osteoclast activity and ruffled border formation. The aim of this study was to evaluate the effects of S 12911-2 on osteoclastic bone resorption using in vitro systems. Osteoclast-like cells, produced in vitro by co-culture of mouse bone marrow cells with primary osteoblasts, were allowed to settle on dentine slices, and the area of resorption pits formed after 48 h was measured using an image analysis system. S 12911-2, at a minimal active concentration of 1 mM Sr2+, significantly reduced pit formation by these cells (p < 0.05). Pretreatment of slices for 48 h with S 12911-2 (5 mM Sr2+) did not produce appreciable inhibition of resorption. Bone resorption in cultured fetal mouse long bones was assessed by measuring the release of pre-incorporated 45calcium. S 12911-2 inhibited resorption in control cultures (18.9%, p < or = 0.05) and in bones cultured with the active form of vitamin D3 [1,25(OH)2D3] (44.5%, p < or = 0.05). S 12911-2 had no effect on the number of osteoclasts observed histochemically in longitudinal sections prepared from fetal mouse long bones. Electron microscopy of mouse long bones treated with S 12911-2 (3 mM Sr2+) showed osteoclasts with clear zones facing the bone surface, but without well-developed ruffled borders; untreated bones contained osteoclasts with normal ruffled borders. These results indicate that S 12911-2 inhibits osteoclast activity. This effect is directly linked to the presence of strontium, is effective on basal and stimulated resorption, and involves a decrease in ruffled border formation by osteoclasts.  相似文献   

8.
Long-term thiazide diuretic use is associated with higher bone mineral density and reduced hip fracture rates, which are attributed to increased serum calcium levels and decreased parathyroid activity that lead to decreased bone resorption. The present study shows that 1–100 M hydro-chlorothiazide (HCTZ) dose dependently inhibits bone resorption by isolated rat osteoclasts in the bone slice assay with an IC50 of 20 M. At these concentrations, HCTZ did not affect osteoclast survival on bone slices and had no effect on the proliferation of UMR-106 rat osteoblasts, indicating that the compound is not cytotoxic. However, such concentrations of HCTZ are unlikely to be achieved in man where therapeutic doses are usually 12.5–100 mg/day. That the in vitro effect of HCTZ on bone resorption may be due to inhibition of osteoclast carbonic anhydrase is discussed.  相似文献   

9.
The role of the plasminogen system in bone resorption in vitro.   总被引:8,自引:0,他引:8  
The plasminogen/plasmin proteolytic cascade plays an important role in extracellular matrix remodeling. The presence of the two plasminogen activators (PAs), tissue-type plasminogen activator (tPA), and urokinase-type plasminogen activator (uPA), and their inhibitor type 1 (PAI-1) in bone cells, suggests a role in one or more aspects of bone resorption such as osteoclast formation, mineral dissolution, and degradation of the organic matrix. These different processes were assayed in vitro using cells derived from mice with either tPA (tPA-/-), uPA (uPA-/-), PAI-1 (PAI-1-/-) inactivation or with a combined inactivation (tPA-/-:uPA-/-) and compared with wild-type mice (WT). First, osteoclast formation, assessed by investigating the number and characteristics of tartrate-resistant acid phosphatase-positive multinucleated cells formed in cocultures of primary osteoblasts and bone marrow cells treated with 1alpha,25-dihydroxyvitamin D3, was not different between the different cell types. Second, dentine resorption, an assay for osteoclast activity, was not affected by the combined deficiency of both tPA and uPA. Finally, the ability to degrade nonmineralized bone-like matrix was however, significantly reduced in tPA-/-:uPA-/- cells compared with WT cells (28.1 +/- 0.6%, n = 6 vs. 56.4 +/- 3.1%, n = 6, respectively, p < 0.0001). Surprisingly, collagen proteolysis by bone cells was not dependent on the presence of plasmin as suggested by degradation assays performed on type I 3H-collagen films. Taken together, these data suggest that the plasminogen activator/plasmin system is not required for osteoclast formation, nor for the resorption of the mineral phase, but is involved in the removal of noncollagenous proteins present in the nonmineralized bone matrix.  相似文献   

10.
Summary Several studies have shown that promethazine can reduce age-related osteopenia in mice. Furthermore, prolonged treatment with promethazine (50 mg/day) increases bone mineral content in the lumbar spine in post-menopausal women with osteopenia. However, the mechanism of action of promethazine has not been elucidated. The present study shows that promethazine HCl (0.01 – 10 M) dose-dependently inhibits bone resorption by isolated rat osteoclasts in the bone slice assay with an IC50 of 1 M. Since these concentrations are likely to be achieved in vivo, it is suggested that the beneficial effect of promethazine on osteopenia is at least partly due to a direct inhibitory effect on osteoclast activity.  相似文献   

11.
Summary Phosphatidylinositol 3-kinase (Pl3-k) is involved in cellular signaling via the phosphoinositol pathway leading to mitogenesis in response to growth factors in proliferating cells, as well as cytoskeletal changes and secretory responses in terminally differentiated cells. The fungal metabolite, wortmannin, is a potent and selective inhibitor of Pl3-k at nanomolar concentrations. We show that wortmannin dose-dependently (0.001 – 1 M) inhibits bone resorption by isolated rat osteoclasts in the bone slice pit assay with an IC50 of-5 nM. Wortmannin was not cytotoxic since osteoclast morphology and survival on bone slices was unaffected by concentrations up to 1 M. Since primary osteoclasts are terminally differentiated cells and osteoclast cytoplasmic spreading and morphology was unaffected by wortmannin, we suggest that Pl3-k signaling is involved in vesicle exocytosis and ruffled border membrane formation that are required for osteoclastic bone resorption to take place.  相似文献   

12.
Introduction Oxidative stress induced by reactive oxygen species (ROS) is associated with the risk of osteoporosis, and can be reduced by certain dietary antioxidants. Lycopene is an antioxidant known to decrease the risk of age-related chronic diseases, such as cancer. However, the role of lycopene in osteoporosis has not yet been investigated. Materials and methods In a cross-sectional study, 33 postmenopausal women aged 50–60 years provided seven-day dietary records and blood samples. Serum samples were used to measure serum lycopene, lipid peroxidation, protein thiols, bone alkaline phosphatase (BAP), and cross-linked N-telopeptides of type I collagen (NTx). The serum lycopene per kilogram body weight of the participants was grouped into quartiles and associated with the above serum parameters using one-way ANOVA and the Newman-Keuls post-test. Results The results showed that groups with higher lycopene intake, as determined from the dietary records, had higher serum lycopene (p<0.02). A higher serum lycopene was found to be associated with a low NTx (p<0.005). Similarly, groups with higher serum lycopene had lower protein oxidation (p<0.05). Discussion In conclusion, these results suggest that the dietary antioxidant lycopene reduces oxidative stress and the levels of bone turnover markers in postmenopausal women, and may be beneficial in reducing the risk of osteoporosis.  相似文献   

13.
Cyclosporine A inhibits calcemic hormone-induced bone resorption in vitro   总被引:1,自引:0,他引:1  
We have investigated the in vitro effects of cyclosporine (CsA), a potent immunosuppressive agent, on bone resorption induced by calcemic hormones. CsA inhibited parathyroid hormone (PTH), prostaglandin E2, 1,25-dihydroxy vitamin D3 (1,25(OH)2D3), and osteoclast-activating factor induced resorption of fetal rat limb bones in a dose-dependent manner. Established ongoing resorptive activity in bone was also inhibited by CsA. The CsA inhibition of bone resorption could be partially surmounted by higher concentrations of PTH and 1,25(OH)2D3. The inhibitory effects of CsA on limb bone resorption were reversible. Neither protein nor DNA synthesis were inhibited by treatment of limb bones with CsA. Thus, the inhibitory effect of this agent on bone resorption is not a cytotoxic one. These data could suggest that the induction of bone resorption by the calcemic hormones involves an immune cell derived mediator such as a lymphokine.  相似文献   

14.
In vitro demonstration of PTH effects requires hormone concentrations greater than the "physiological" concentrations reported by radioimmunoassay or cytochemical assays. This discrepancy could be the result of binding or destruction of PTH at nonbiologically active sites. In the present study, ACTH was found to have no effect by itself on bone resorption, but addiction of ACTH to bone cultures together with low concentrations of PTH resulted in a specific enhancement of PTH-stimulated bone resorption. This effect was not observed when bone resorption was stimulated by PGE2 and 1,25(OH)2D3, and it was blocked by human serum. The effect of ACTH is similar to the enhancement in PTH-stimulated bone resorption by poly-l-lysine [7]. We suggest that the amplification of PTH stimulation was the result of displacement of PTH from nonbiologically active sites, making more PTH available for binding to its biologically active receptor. An alternative explanation for our results was that ACTH prevented degradation of PTH by bone-derived proteolytic enzymes. Thus the sensitivity of bioassays for PTH could be improved by adding ACTH.  相似文献   

15.
Summary In vitro demonstration of PTH effects requires hormone concentrations greater than the “physiological” concentrations reported by radio-immunoassay or cytochemical assays. This discrepancy could be the result of binding or destruction of PTH at nonbiologically active sites. In the present study, ACTH was found to have no effect by itself on bone resorption, but addition of ACTH to bone cultures together with low concentrations of PTH resulted in a specific enhancement of PTH-stimulated bone resorption. This effect was not observed when bone resorption was stimulated by PGE2 and 1,25(OH)2D3, and it was blocked by human serum. The effect of ACTH is similar to the enhancement in PTH-stimulated bone resorption by poly-l-lysine [7]. We suggest that the amplification of PTH stimulation was the result of displacement of PTH from nonbiologically active sites, making more PTH available for binding to its biologically active receptor. An alternative explanation for our results was that ACTH prevented degradation of PTH by bone-derived proteolytic enzymes. Thus the sensitivity of bioassays for PTH could be improved by adding ACTH.  相似文献   

16.
An in vitro organ culture system of embryonic chick tibiae was used to examine bone formation and bone resorption under conditions of stimulation with 10−12 M parathyroid extract. The bones were cultured in a serum-free medium to alleviate any potential interference by serum growth factors. Evidence is presented showing that this bone culture system responds to parathyroid extract with an increase in both bone resorption and bone formation. Although initially there was a decrease in formation, this was followed after 12–16 h by an increase in formation which was correlated with resorption (r = .96, p < .05). These results suggest that the increase in formation was some consequence of the increase in resorption, and as such are consistent with the interpretation that coupling can occur in vitro.  相似文献   

17.
Osteoclastogenesis, bone resorption, and osteoclast-based therapeutics.   总被引:9,自引:0,他引:9  
Over the past decade, advances in molecular tools, stem cell differentiation, osteoclast and osteoblast signaling mechanisms, and genetically manipulated mice models have resulted in major breakthroughs in understanding osteoclast biology. This review focuses on key advances in our understanding of molecular mechanisms underlying the formation, function, and survival of osteoclasts. These include key signals mediating osteoclast differentiation, including PU.1, RANK, CSF-1/c-fms, and src, and key specializations of the osteoclast including HCl secretion driven by H+-ATPase and the secretion of collagenolytic enzymes including cathepsin K and matrix metalloproteinases (MMPs). These pathways and highly expressed proteins provide targets for specific therapies to modify bone degradation. The main outstanding issues, basic and translational, will be considered in relation to the osteoclast as a target for antiresorptive therapies.  相似文献   

18.
19.
《Acta orthopaedica》2013,84(2):281-288
Background?Interaction between wear particle debris and the cells at the implant-bone interface is an important contributory factor to periprosthetic bone loss seen in arthroplasties.

Method?To investigate the effect of this particle-induced response on different stages of osteoclast maturation, polymethylmethacrylate (PMMA) particles were added to a murine osteoclastogenic bone marrow cell culture system at either day 0, day 4, or day 8 of culture, which represented PMMA particle stimulation of precursor osteoclasts, mature osteoclasts, or end-stage osteoclasts, respectively. The number of TRAP-posi-tive multinucleate cells (MNCs) and the degree of bone resorption in culture were measured

Results?Treatment of precursor osteoclasts with PMMA particles resulted in a statistically significant increase in TRAP-positive MNCs that persisted for 4 days, but there was no significant increase in bone resorption. Addition of particles to mature osteoclasts resulted in a significant increase in the number of TRAP-positive MNCs that lasted for 8 days, and also a significant increase in bone resorption. Treatment of end-stage osteoclasts with PMMA particles did not result in an increased number of TRAP-positive MNCs and there was no increase in bone resorption.

Interpretation?Treatment of mature osteoclasts with PMMA particles resulted in an elevated number of TRAP-positive cells. This persisted over a longer period of time than at the other stages of osteoclast development, and there was also a greater increase in bone resorption.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号