首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cardiomyocytes from common experimental animals rapidly exit the cell cycle upon isolation, impeding studies of basic cell biology and applications such as myocardial repair. Here we examined proliferation of cardiomyocytes derived from human and mouse embryonic stem (ES) cells. While mouse ES cell-derived cardiomyocytes showed little proliferation, human cardiomyocytes were highly proliferative under serum-free conditions (15-25% BrdU+/sarcomeric actin+). The cells exhibited only a small serum dose-response, and proliferation gradually slowed with increasing differentiation of the cells. Neither cell density nor different matrix attachment factors affected cardiomyocyte proliferation. Blockade of phosphatidylinositol 3-kinase (PI 3-kinase) and Akt significantly reduced cardiomyocyte proliferation, whereas MEK inhibition had no effect. Antibody blocking of the insulin-like growth factor-1 (IGF-1) receptor significantly inhibited cardiomyocyte proliferation, while addition of IGF-1 or IGF-2 stimulated cardiomyocyte proliferation in a dose-dependent manner. Thus, cardiomyocytes derived from human ES cells proliferate extensively in vitro, and their proliferation appears to be mediated primarily via the PI 3-kinase/Akt signaling pathway, using the IGF-1 receptor as one upstream activator. This system should permit identification of regulatory pathways for human cardiomyocyte proliferation and may facilitate expansion of cardiomyocytes from human ES cells for therapeutic purposes.  相似文献   

2.
BACKGROUND AND OBJECTIVES: Secreted growth factors and cell-to-cell contact are both required to elicit cellular functions. We tested the hypothesis that bone-marrow-derived growth factors, together with cell-to-cell contact between bone-marrow-derived stem cells and cardiomyocytes or myoblasts, promote the proliferation of cardiomyocytes and myoblasts. METHODS: Human cardiomyocytes or skeletal myoblasts were cultured for 4 days in the presence of low and high concentrations of bone-marrow-derived mononuclear cell conditioned medium (MNC-CM) or marrow stromal cell conditioned medium (MSC-CM). The concentrations of vascular endothelial growth factor (VEGF), monocyte chemoattractant protein-1 (MCP-1), hepatocyte growth factor (HGF), and insulin-like growth factor-1 in their respective conditioned media were assayed by enzyme-linked immunosorbent assay. Stem cells were mixed with cardiomyocytes or skeletal myoblasts at a 1:1 ratio and cultured for 7 days to assess the proliferation of these cells. In parallel experiments, equal numbers of various cell types were cultured alone. RESULTS: The concentrations of VEGF, MCP-1, and HGF increased in MNC-CM and MSC-CM. MNC-CM showed no effect on cardiomyocyte proliferation. A low concentration of MSC-CM increased cardiomyocyte proliferation by 60% (P<.05). Low concentrations of MNC-CM or MSC-CM showed a trend toward an increased proliferation of myoblasts. A high concentration of either conditioned medium showed a toxic effect. In contact coculture, the proliferation of cardiomyocytes and MNC showed no synergistic effect; instead, there was some evidence of inhibition. The proliferation of cardiomyocytes and stromal cells showed an additive effect. Myoblasts in contact coculture with MNC or MSC showed no synergistic effect. CONCLUSION: These in vitro results suggest that paracrine effects may be the mechanism by which stromal cells become beneficial in cardiac therapy. MNC do not induce the proliferation of cardiomyocytes. Stem-cell-secreted growth factors induce the proliferation of myoblasts, which is not influenced by cell-to-cell contact.  相似文献   

3.
It has been demonstrated that adult human circulating endothelial progenitor cells (EPCs) can differentiate to a cardiomyogenic phenotype. Notch signaling promotes epithelial-to-mesenchymal transformation and plays a role in heart and vessel development. Here, we investigated the role of Notch activation for cardiac differentiation of EPCs in a coculture system with neonatal cardiomyocyte. After coculture, Notch activation was transiently detected in EPCs, as determined by immunohistochemical detection of NICD (the intracellular cleavage fragment of Notch-1) and expression of human Notch target genes. Inhibition of gamma-secretase blocked Notch cleavage and NICD translocation. Furthermore, the expression of the cardiac marker protein alpha-sarcomeric actinin and troponin T was significantly suppressed by gamma-secretase inhibition or addition of soluble recombinant Jagged-1, indicating that Notch activation facilitates cardiac marker gene expression. Because noncanonical Wnts have previously been shown to promote cardiac differentiation, we additionally determined the influence of Notch activation on the expression of Wnt5a and Wnt11. Wnt5a and Wnt11 expression in the human cells was induced by the coculture and was blocked by gamma-secretase inhibition. Likewise, stimulation of Notch signaling by immobilized Jagged-1 promoted Wnt5a expression in EPCs. These data suggest that Notch is activated upon coculture of EPCs with neonatal rat cardiac myocytes. Gamma-secretase-dependent Notch activation is required for cardiac gene expression in human cells and induces the expression of noncanonical Wnt proteins, which may act in a paracrine manner to further amplify cardiac differentiation.  相似文献   

4.
5.
Endothelin (ET)-1 is a vasoconstrictor involved in cardiovascular diseases. Connective tissue growth factor/CCN2 (CTGF) is a fibrotic mediator overexpressed in human atherosclerotic lesions, myocardial infarction, and hypertension. In different cell types CTGF regulates cell proliferation/apoptosis, migration, and extracellular matrix (ECM) accumulation and plays important roles in angiogenesis, chondrogenesis, osteogenesis, tissue repair, cancer and fibrosis. In the present study, we investigated the ET-1 signaling which triggers CTGF expression in cultured adult mouse atrial-muscle HL-1 cells used as a model system. ET-1 activated the CTGF promoter and induced CTGF expression at both mRNA and protein levels. Real-time PCR analysis revealed CTGF induction also in isolated rat heart preparations perfused with ET-1. Several intracellular signals elicited by ET-1 via ET receptors and even Epidermal Growth Factor Receptor (EGFR) contributed to the up-regulation of CTGF, including ERK activation and induction of the AP-1 components c-fos and c-jun, as also evaluated by ChIP analysis. Moreover, in cells treated with ET-1 the expression of ECM component decorin was abolished by CTGF silencing, indicating that CTGF is involved in ET-1 induced ECM accumulation not only in a direct manner but also through downstream effectors. Collectively, our data indicate that CTGF could be a mediator of the profibrotic effects of ET-1 in cardiomyocytes. CTGF inhibitors should be considered in setting a comprehensive pharmacological approach towards ET-1 induced cardiovascular diseases.  相似文献   

6.
Background The induced pluripotent stem cell (iPSC) has shown great potential in cellular therapy of myocardial infarction (MI), while its application is hampered by the low efficiency of cardiomyocyte differentiation. The present study was designed to investigate the effects of cardiotrophin-1 (CT-1) on cardiomyocyte differentiation from mouse induced pluripotent stem cells (miPSCs) and the underlying mechanisms involved. Methods The optimal treatment condition for cardiomyocyte differentiation from miPSCs was established with ideal concentration (10 ng/mL) and duration (from day 3 to day 14) of CT-1 administration. Up-regulated expression of cardiac specific genes that accounted for embryonic cardiogenesis was observed by quantitative RT-PCR. Elevated amount of α-myosin heavy chain (α-MHC) and cardiac troponin I (cTn I) positive cells were detected by immunofluorescence staining and flow cytometry analysis in CT-1 group. Results Transmission electron microscopic analysis revealed that cells treated with CT-1 showed better organized sacromeric structure and more mitochondria, which are morphological characteristic of matured cardiomyocytes. Western blot demonstrated that CT-1 promotes cardiomyocyte differentiation from miPSCs partly via JAK2/STAT3/Pim-1 pathway as compared with control group. Conclusions These findings suggested that CT-1 could enhance the cardiomyocyte differentiation as well as the maturation of mouse induced pluripotent stem cell derived cardiomyocytes by regulating JAK2/STAT3/Pim-1signaling pathway.  相似文献   

7.
Background and Objectives   Mesenchymal stem/progenitor cells (MSCs) are multipotent progenitors that differentiate into such lineages as bone, fat, cartilage and stromal cells that support haemopoiesis. Bone marrow MSCs can also contribute to cardiac repair, although the mechanism for this is unclear. Here, we examine the potential of MSCs from different sources to generate cardiomyocytes in vitro , as a means for predicting their therapeutic potential after myocardial infarction.
Materials and Methods   Mesenchymal stem/progenitor cells were isolated from the perivascular tissue and Wharton's jelly of the umbilical cord and from cord blood. Their immunophenotype and differentiation potential to generate osteoblasts, chondrocytes, adipocytes and cardiomyoxcytes in vitro was compared with those of bone marrow MSCs.
Results   Mesenchymal stem/progenitor cells isolated from umbilical cord and cord blood were phenotypically similar to bone marrow MSCs, the exception being in the expression of CD106, which was absent on umbilical cord MSCs, and CD146 that was highly expressed in cord blood MSCs. They have variable abilities to give rise to osteoblasts, chondrocytes and adipocytes, with bone marrow MSCs being the most robust. While a small proportion (~0·07%) of bone marrow MSCs could generate cardiomyocyte-like cells in vitro, those from umbilical cord and cord blood did not express cardiac markers either spontaneously or after treatment with 5-azacytidine.
Conclusion   Although MSCs may be useful for such clinical applications as bone or cartilage repair, the results presented here indicate that such cells do not generate cardiomyocytes frequently enough for cardiac repair. Their efficacy in heart repair is likely to be due to paracrine mechanisms.  相似文献   

8.

Background

Notch signaling is required for the maintenance of intestinal epithelial proliferation. Dysfunction of this signaling pathway is associated with the loss of proliferated crypt epithelial cells.

Aim

The aim of this study was to investigate the role of Notch signaling in small bowel resection (SBR)-associated crypt epithelial cell proliferation.

Methods

Male Sprague–Dawley rats were subjected to sham operation (bowel transection and reanastomosis) or 70 % mid-SBR. Intestinal tissue samples were collected at 0.5, 1, 6, 12, 24, 72, and 168 h after operation. The expression of Notch pathway mRNAs and proteins was analyzed using RT-PCR and Western blot. The expression of the Notch pathway proteins Jagged-1, NICD and Hes-1 was also determined through immunohistochemical staining using day 3 postoperative intestinal tissues. The degree of crypt epithelial cell proliferation was evaluated using the immunohistochemical staining of proliferating cell nuclear antigen (PCNA). Furthermore, IEC-6 cells were used to examine the function of the Jagged-1 signaling system.

Results

SBR led to increased crypt epithelial cell proliferation and increased expression of Jagged-1 and Hes-1 mRNA and protein along with cleaved Notch-1. Immunohistochemical staining showed that Jagged-1, cleaved Notch-1 and Hes-1 colocalized in the same proliferated crypt epithelial cell population. Recombinant Jagged-1 significantly stimulated the proliferation of IEC-6 cells. Transient upregulation of Jagged-2 expression was found 1 h after SBR, and it was accompanied by cleaved Notch-1 and Hes-1 upregulation.

Conclusion

The Jagged-1/Notch-1/Hes-1 signaling pathway is involved in intestinal adaptation through increasing crypt epithelial cell proliferation.  相似文献   

9.
During heart development, cells from the proepicardial organ spread over the naked heart tube to form the epicardium. From here, epicardium-derived cells (EPDCs) migrate into the myocardium. EPDCs proved to be indispensable for the formation of the ventricular compact zone and myocardial maturation, by largely unknown mechanisms. In this study we investigated in vitro how EPDCs affect cardiomyocyte proliferation, cellular alignment and contraction, as well as the expression and cellular distribution of proteins involved in myocardial maturation. Embryonic quail EPDCs induced proliferation of neonatal mouse cardiomyocytes. This required cell-cell interactions, as proliferation was not observed in transwell cocultures. Western blot analysis showed elevated levels of electrical and mechanical junctions (connexin43, N-cadherin), sarcomeric proteins (Troponin-I, α-actinin), extracellular matrix (collagen I and periostin) in cocultures of EPDCs and cardiomyocytes. Immunohistochemistry indicated more membrane-bound expression of Cx43, N-cadherin, the mechanotransduction molecule focal adhesion kinase, and higher expression of the sarcoplasmic reticulum Ca2+ ATPase (SERCA2a). Newly developed software for analysis of directionality in immunofluorescent stainings showed a quantitatively determined enhanced cellular alignment of cardiomyocytes. This was functionally related to increased contraction. The in vitro effects of EPDCs on cardiomyocytes were confirmed in three reciprocal in vivo models for EPDC-depletion (chicken and mice) in which downregulation of myocardial N-cadherin, Cx43, and FAK were observed. In conclusion, direct interaction of EPDCs with cardiomyocytes induced proliferation, correct mechanical and electrical coupling of cardiomyocytes, ECM-deposition and concurrent establishment of cellular array. These findings implicate that EPDCs are ideal candidates as adjuvant cells for cardiomyocyte integration during cardiac (stem) cell therapy.  相似文献   

10.
Angiotensin-II (Ang-II) plays a key role in myocardial hypertrophy, remodeling and failure. We investigated whether Ang-II-induced cardiomyocyte hypertrophy is dependent on WNT1 inducible signaling pathway protein 1 (WISP1), a pro growth factor. Ang-II induced hypertrophy and WISP1 expression in neonatal rat cardiomyocytes (NRCM), effects that were significantly inhibited by pre-treatment with the AT1 antagonist losartan and by WISP1 knockdown. Further, Ang-II induced WISP1 was superoxide-dependent, and inhibited by DPI, an inhibitor of NADPH oxidases, and by knockdown of NOX2. AT1 was physically associated with NOX2 both in vitro and in vivo, and Ang-II increased this interaction in vivo. Ang-II induced WISP1 expression via superoxide/Akt/GSK3β/β-catenin/TCF/LEF and by Akt-dependent CREB activation. Further, Ang-II also activated CREB via superoxide-mediated p38 MAPK and ERK activation. Continuous infusion of Ang-II for 7 days induced myocardial hypertrophy in rats, and was associated with increased Akt, p-Akt, p-p38 MAPK, p-ERK1/2, and WISP1 expression. These results demonstrate that Ang-II induced cardiomyocyte hypertrophy is mediated through AT1, NOX2 and the induction of WISP1, and may involve the direct interaction of AT1 with NOX2. Thus targeting both WISP1 and NOX2 may have a therapeutic potential in improving cardiomyocyte survival and growth following myocardial injury and remodeling. This article is part of a Special Issue entitled ‘Possible Editorial’.  相似文献   

11.
Accumulating evidence suggests that interleukin-1 (IL-1) signaling plays an essential role in the pathogenesis of heart failure by inducing cardiomyocyte apoptosis, but the mechanisms of this process are poorly defined. We further explored these molecular pathways.We isolated cardiomyocytes from neonatal mice and then cultured and stimulated them with murine IL-1β in vitro. Cell apoptotic ratios were measured by means of flow cytometry. Expression of effector molecules was analyzed by means of enzyme-linked immunosorbent assay, Western blotting, and real-time quantitative polymerase chain reaction. The results showed that IL-1β induced murine cardiomyocyte apoptosis through a release of cytochrome c into cytoplasm and through caspase 3 activation. Simultaneously, IL-1β signaling promoted expression of endonuclease G and high-temperature requirement protein A2 messenger RNA. Survivin and X-linked inhibitors of apoptosis protein (IAP), members of the IAP family, were inhibited on the messenger RNA level during IL-1β–mediated cardiomyocyte apoptosis.We found that IL-1β signaling during cardiomyocyte apoptosis in vitro induced the activation of caspase-dependent and caspase-independent pathways, and inhibited IAPs. Understanding the molecular mechanisms involved in IL-1β–mediated cardiomyocyte apoptosis might assist in the design of therapeutic approaches to protect cardiomyocyte function and prevent heart failure.  相似文献   

12.
13.
The effects of tanshinone VI (Tan), a diterpene extracted from Salvia miltiorrhiza, on insulin-like growth factor-1 (IGF-1)-induced hypertrophy of cardiomyocytes were examined. Cultured cardiomyocytes were isolated from neonatal rat hearts. The incorporation of [3H]-leucine into the trichloroacetic acid (TCA)-insoluble fraction was measured as a marker of protein synthesis, which revealed cardiomyocyte hypertrophy. Various concentrations of IGF-1, ranging from 0.1 nM to 10 nM, increased [3H]-leucine incorporation into the TCA-insoluble fraction of cardiomyocytes in a dose-dependent manner. IGF-1 induced an increase in phosphorylated extracellular signal-regulated kinase 1/2 (ERK), but did not change ERK protein content in cardiomyocytes. When the cells were incubated in the presence of Tan (0.1 μM to 10 μM), [3H]-leucine incorporation into IGF-1-untreated cells was unaltered. When the cells were incubated with 10 μM Tan, IGF-1-induced increases in [3H]-leucine incorporation into the TCA-insoluble fraction and phosphorylated ERK were attenuated. These results suggest that Tan is a possible agent for the suppression of IGF-1-induced hypertrophy of cardiomyocytes via an attenuation of ERK activation.  相似文献   

14.
15.
16.
目的 探讨人双突变型低氧诱导因子1α(HIF-1α)基因(HIF-1α-402-564)对与心肌细胞共培养的骨髓间充质干细胞(MSC)向心肌细胞分化的影响.方法 实验分为4组:HIF-1α组(MSC+心肌细胞+Ad-HIF-1α)、LacZ组(MSC+心肌细胞+Ad-Lacz)、Sham组[MSC+心肌细胞+胎牛血清(PBS)]、MSC+HIF-1α组(MSC+Ad-HIF-1α),前三组中MSC与心肌细胞按1:2比例共同培养,各组细胞培养24 h后分别感染不同病毒(MOI=100)或加入PBS液.病毒感染后7 d,免疫细胞化学分析共培养的MSC表达心肌细胞特异性标志物心肌肌钙蛋白T(cTnT)的情况,逆转录聚合酶链式反应(RT-PCR)分析各组细胞HIF-1α、转化生长因子β1(TGF-β1)、Smad4、NKx2.5、GATA结合蛋白4(GATA-4)的mRNA表达量.结果 HIF-1α组MSc心肌细胞分化率为(32.68±6.52)%,显著高于LacZ组[(8.28±0.09)%]和Sham组[(10.25±2.20)%],P均<0.05,MSC±HIF-1α组仅为(0.32±0.05)%.LacZ组和Sham组间差异无统计学意义.MSC+HIF-1α组与Sham组比较,差异有统计学意义(P<0.05).HIF-1α组TGFβ1及Smad4 mRNA表达水平明显高于其余各组,P均<0.05.HIF-1α组NKx2.5和GATA-4 mRNA表达水平明显高于Sham组,P均<0.05.结论 HIF-1α能够促进与心肌细胞共培养的MSC向心肌细胞分化,TGF-β1/Smad4信号通路参与了该过程.  相似文献   

17.
High Mobility Box 1 Protein (HMGB1) is a cytokine released into the extracellular space by necrotic cells and activated macrophages in response to injury. We recently demonstrated that HMGB1 administration into the mouse heart during acute myocardial infarction induces cardiac tissue regeneration by activating resident cardiac c-kit+ cells (CSCs) and significantly enhances left ventricular function. In the present study it was analyzed the hypothesis that human cardiac fibroblasts (cFbs) exposed to HMGB1 may exert a paracrine effect on mouse and human CSCs. Human cFbs expressed the HMGB1 receptor RAGE. Luminex technology and ELISA assays revealed that HMGB1 significantly enhanced VEGF, PlGF, Mip-1α, IFN-γ, GM-CSF, Il-10, Il-1β, Il-4, Il-1ra, Il-9 and TNF-α in cFbs cell culture medium. HMGB1-stimulated cFbs conditioned media induced CSC migration and proliferation. These effects were significantly higher to those obtained when HMGB1 was added directly to the culture medium. In conclusion, we provide evidence that HMGB1 may act in a paracrine manner stimulating growth factor, cytokine and chemokine release by cFbs which, in turn, modulate CSC function. Via this mechanism HMGB1 may contribute to cardiac tissue regeneration.  相似文献   

18.
The Notch/Jagged signaling pathway is important for cellular differentiation and proliferation. Its dysfunction is associated with human pathologies in several tissues including liver. Point mutations in Jagged-1 gene are the cause for Alagille syndrome, associated with paucity of intrahepatic bile ducts. To determine the putative role of the trans-membrane receptor Notch and its ligand Jagged-1 in liver regeneration, we investigated the expression of Notch and Jagged-1 in rat liver following 2/3 partial hepatectomy. Immunohistochemical staining of normal rat liver showed that Notch was expressed in hepatocytes, bile duct cells and endothelial cells, whereas Jagged-1 was expressed in bile duct cells and hepatocytes. Both Notch-1 and Jagged-1 proteins were upregulated in hepatocytes after partial hepatectomy up to day 4. After partial hepatectomy, nuclear translocation of the intracellular cytoplasmic domain of Notch (NICD) increased and peaked within 15 minutes, indicating the activation of Notch. Expression of the Notch-dependent target gene (HES-1) expression increased within 30-60 minutes. Addition of recombinant Jagged-1 protein to primary cultures of hepatocytes stimulated hepatocyte DNA synthesis. Furthermore, injection of silencing RNA for Notch and Jagged-1 to livers 2 days before partial hepatectomy significantly suppressed proliferation of hepatocytes at days 2 to 4 of the regenerative response. In conclusion, Notch/Jagged signaling pathway is activated during liver regeneration and is potentially contributing to signals affecting cell growth and differentiation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号