首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
1. Effects of hypothalamic stimulation on activity of dorsomedial medulla neurons that responded to subdiaphragmatic vagal stimulation were investigated in urethan-anesthetized rats. 2. Extracellular recordings were made from 231 neurons in the nucleus of the tractus solitarius (NTS) that fired repetitively in response to single-pulse subdiaphragmatic vagal stimulation and from 320 neurons in the dorsal motor nucleus of the vagal nerve (DMV) that responded antidromically to subdiaphragmatic vagal stimulation. The mean latencies of responses to subdiaphragmatic vagal stimulation were 90.3 +/- 17.1 ms (mean +/- SD) for NTS neurons, and 90.8 +/- 11.2 ms for DMV neurons. This indicated that both afferent and efferent subdiaphragmatic vagal fibers were thin and unmyelinated and had a conduction velocity of approximately 1 m/s. 3. In extracellular recordings from 320 DMV neurons, marked inhibition preceded the antidromic response and subdiaphragmatic vagal stimulation evoked orthodromic spikes in only a few neurons. 4. Intracellular recordings from 66 DMV neurons revealed inhibitory postsynaptic potentials (IPSPs) before the antidromic responses. These IPSPs suppressed spontaneous firing and prevented excitatory postsynaptic potentials (EPSPs) from generating action potentials. 5. Stimulation in all hypothalamic loci studied, the ventromedial hypothalamic nucleus (VMH), the lateral hypothalamic area (LHA), and the paraventricular nucleus (PVN), induced responses with similar characteristics of excitation alone or excitation followed by inhibition in most NTS and DMV neurons. 6. No reciprocal effect of VMH and LHA stimulation was observed on NTS and DMV neurons. 7. Intracellular recordings from DMV neurons revealed monosynaptic EPSPs in response to stimulation of the VMH, the LHA, and the PVN. 8. PVN stimulation evoked significantly more responses in NTS and DMV neurons than VMH stimulation and more responses in DMV neurons than LHA stimulation. This suggests a difference in the number of connections between each hypothalamic site and the dorsomedial medulla. 9. The same dorsomedial medulla neurons were tested with VMH and LHA stimulation. The respective mean latencies of the antidromic and the orthodromic NTS neuron responses were 37.3 +/- 3.2 and 39.6 +/- 12.9 ms for VMH stimulation and 29.8 +/- 5.3 and 31.8 +/- 8.7 ms for LHA stimulation. The mean latencies of the orthodromic DMV neuron responses were 39.4 +/- 8.3 ms for VMH stimulation and 31.1 +/- 5.2 ms for LHA stimulation. The estimated conduction velocity from the VMH to the dorsomedial medulla was approximately 0.25 m/s and from the LHA it was approximately 0.33 m/s, which was significantly faster.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
1. Electrophysiological techniques have been used to locate the origin of preganglionic vagal motoneurones supplying the heart of the cat. 2. The right cardiac vagal branches were identified anatomically and their ability to slow the heart was assessed by electrical stimulation. Control experiments revealed that contamination of cardiac branches by bronchomotor and oesophageal efferent fibres was likely to be small. 3. Fifty-seven neurones in the medulla were activated antidromically on stimulating the cardiac branches at up to 5 times the threshold for cardiac slowing. They had axons with conduction velocities between 3 and 15 m/sec, corresponding to B fibres. 4. None of these were located in the region of the dorsal motor nucleus of the vagus, in spite of repeated sampling there, but all were located in the region of the nucleus ambigus. Histological examination of marked neurones (forty-six of the fifty-seven neurones) revealed that they were associated with its principal column, rostral to the obex. 5. Sampling motoneurones of the dorsal motor nucleus revealed that most sent axons down the thoracic vagus below the cardiac branches. Only three of thirty-three could be activated antidromically by high intensity stimulation of the cardiac branches, but on the basis of their thresholds and conduction velocities, it is argued that they were unlikely to be cardio-inhibitory neurones. 6. It is concluded that preganglionic cardio-inhibitory neurones arise not in the dorsal motor nucleus, but in the principal column of the nucleus ambiguus.  相似文献   

3.
Summary The central distributions of efferent and afferent components of the pharyngeal branches of the vagus (PH-X) and glossopharyngeal (PH-IX) nerves in the cat were studied by soaking their central cut ends in a horseradish peroxidase (HRP) solution. HRP-labelled PH-X neurones were distributed ipsilaterally in the rostral part of the nucleus ambiguus (NA) and the retrofacial nucleus (RFN); HRP-labelled PH-IX neurones were found in the ipsilateral RFN and the bulbopontine lateral reticular formation (RF). Vagal pharyngeal neurones constituted a large population of brainstem motoneurones. The population of HRP-labelled glossopharyngeal neurones was divided into two components. Indeed, on the basis of their location and somal morphology, the most ventral cells were identified as cranial motoneurones and those scattered in the lateral RF as parasympathetic preganglionic neurones. Application of HRP to the PH-IX nerve resulted also in the labelling of fibres and terminals in the alaminar spinal trigeminal nucleus and the nucleus of the solitary tract (NTS). The afferent fibres entered the lateral medulla with the glossopharyngeal roots, ran dorsomedially, then turned caudally toward the NTS and the caudal part of the alaminar spinal trigeminal motor (V) nucleus. In the NTS, labelled fibres ran mainly along the solitary tract, projecting to terminals in the dorsal and dorsolateral nuclei of the NTS.  相似文献   

4.
The origins of preganglionic vagal neurones which slow the heart in the rabbit have been examined with standard neurophysiological stimulation and recording techniques. The activity of 216 neurones projecting to the right cervical vagus nerve have been recorded in localized areas of the brain stem. Thirty-six of these neurones were classified as cardiomotor neurones since they had properties similar to those described for such neurones in the cat. All had efferent axons in the range of B fibers. They could be synaptically activated by electrical stimulation of the ipsilateral aortic nerve which in the rabbit is solely barosensory. The majority of these neurones (70%) were spontaneously active and those which were normally silent could be made to fire by iontophoretic application ofdl-homocysteic acid (an excitant amino acid). This spontaneous, or evoked, activity showed evidence of a pulse rhythm (of baroreceptor origin) and respiratory modulation (firing predominantly during expiration). In response to application ofdl-homocysteic acid, the neuronal excitation was usually accompanied by a small but significant bradycardia. Histological examination showed that these neurones were located in both the dorsal vagal nucleus and the nucleus ambiguus.  相似文献   

5.
Extracellular recordings were made from ninety-four single motoneurones in the dorsal motor vagal nucleus of chloralose-anaesthetized or decerebrate cats. Fifty-five neurones had axons in cardiac vagal branches and thirty-nine had axons in pulmonary vagal branches; the conduction velocities of the axons were in the C fibre range, i.e. the axons were non-myelinated. The neurons exhibited little or no spontaneous activity. Excitatory and inhibitory synaptic inputs were demonstrated by electrical stimulation of the vagus nerve or its branches. Twenty-four neurones were tested by carotid sinus distension but only one was excited. Iontophoretic excitation of neurones projecting to cardiac vagal branches had no effect on heart rate. The properties of these neurones and their possible functions are discussed and contrasted with those of cardiac and pulmonary vagal motoneurones in the nucleus ambiguus.  相似文献   

6.
用HRP注入下丘脑室旁核逆行追踪与抗Fos和抗酪氨酸羟化酶(TH)双重免疫细胞化学相结合的三重标记方法,对大鼠孤束核和延髓腹外侧区至下丘脑室旁核的儿茶酚胺能投射神经元对胃伤害性刺激后的c-fos表达进行了观察,发现孤束核和延髓腹外侧区有7种不同的标记细胞:HRP、Fos、TH单标细胞,Fos/HRP、Fos/TH、HRP/TH双标细胞,Fos/HRP/TH三标细胞。上述7种标记细胞主要分布在延髓中、尾段孤束核的内侧亚核、连合亚核和延髓腹外侧区以及两者之间的网状结构。HRP标记细胞以注射侧为主,对侧有少量分布。本文结果证明,大鼠孤束核和延髓腹外侧区至下丘脑室旁核投射的部分儿茶酚胺能神经元可能参与胃伤害性刺激的传导和调控。  相似文献   

7.
1. The dorsal motor nucleus of the vagus was destroyed in cats and after survival periods greater than 10 days, the response of the heart, bronchioles, oesophagus and duodenum to electrical stimulation of the cervical vagi was investigated. The responses obtained from the vagus ipsilateral to the destroyed dorsal motor nucleus were compared to those obtained from the contralateral vagus and with normal controls. No significant differences were demonstrable.2. The responses obtained from stimulation of the cervical vagus following chronic intracranial rhizotomy of the IXth, Xth and XIth nerves were also examined. Visceromotor responses were abolished in three experiments and atypical responses were obtained in two experiments.3. It is concluded that the dorsal motor nucleus does not supply the vagal fibres which produce contraction of the smooth muscle of the bronchioles, oesophagus and duodenum, and that it is not the source of the cardio-inhibitory fibres4. A simple method of destroying a longitudinal column of neurones is described.  相似文献   

8.
Cannabinoids bind central type 1 receptors (CB1R) and modify autonomic functions, including feeding and anti-emetic behaviours, when administered peripherally or into the dorsal vagal complex. Western blots and immunohistochemistry indicated the expression of CB1R in the rat dorsal vagal complex, and tissue polymerase chain reaction confirmed that CB1R message was made within the region. To identify a cellular substrate for the central autonomic effects of cannabinoids, whole-cell patch-clamp recordings were made in brainstem slices to determine the effects of CB1R activation on synaptic transmission to neurones of the dorsal motor nucleus of the vagus (DMV). A subset of these neurones was identified as gastric related after being labelled retrogradely from the stomach. The CB1R agonists WIN55,212-2 and anandamide decreased the frequency of spontaneous excitatory or inhibitory postsynaptic currents in a concentration-related fashion, an effect that persisted in the presence of tetrodotoxin. Paired pulse ratios of electrically evoked postsynaptic currents were also increased by WIN55,212-2. The effects of  WIN55,212-2 were sensitive to the selective CB1R antagonist AM251. Cannabinoid agonist effects on synaptic input originating from neurones in the nucleus tractus solitarius (NTS) were determined by evoking activity in the NTS with local glutamate application. Excitatory and inhibitory synaptic inputs arising from the NTS were attenuated by WIN55,212-2. Our results indicate that cannabinoids inhibit transfer of synaptic information to the DMV, including that arising from the NTS, in part by acting at receptors located on presynaptic terminals contacting DMV neurones. Inhibition of synaptic input to DMV neurones is likely to contribute to the suppression of visceral motor responses by cannabinoids.  相似文献   

9.
1. With dye-filled micro-electrodes single neurones in the medulla of anaesthetized paralysed cats were identified which: (a) fired rhythmically in synchrony with or were modulated by the cardiac cycle, and which ceased firing with occlusion of the ipsilateral common carotid artery (carotid sinus baroreceptor neurones); (b) were excited by stimulation of carotid body chemoreceptors by close intra-arterial injection of lobeline into the thyroid artery (carotid body chemoreceptor neurones).2. Twelve carotid baroreceptor neurones were identified, in thirty-three cats, nine of which were localized in the intermediate area of the nucleus of the solitary tract (NTS) within 1 mm ahead of or behind the obex; three units were located either in the parahypoglossal area or the dorsal portion of the paramedian reticular nucleus (PRN).3. Of the twenty-one carotid chemoreceptor neurones which were identified, thirteen were localized in the NTS, three in the parahypoglossal area and four in the dorsal PRN.4. Bilateral lesions of the paramedian reticular area of medulla destroying the PRN, abolished or reversed the depressor response to electrical stimulation of myelinated fibres of the carotid sinus nerve (CSN), attenuated the depressor response to carotid sinus stretch and augmented the pressor response to chemoreceptor stimulation by lobeline. Such lesions did not significantly alter the reflex heart rate responses.5. Small lesions of the NTS within an area 1 mm rostral to the obex abolished all reflex blood pressure and heart rate responses to electrical stimulation of the CSN or natural stimulation of carotid baro- or chemoreceptors.6. Baroreceptors and chemoreceptors of the CSN project both to the intermediate zone of the NTS and to more medial areas of the medulla, particularly the dorsal PRN and parahypoglossal area.7. The PRN serves to mediate the reflex depressor, but not cardio-vagal, response from myelinated baroreceptors and buffers the pressor responses from chemoreceptors; it may serve as an important area integrating cardiovascular activity descending from forebrain, brain stem and cerebellum with baroreceptor reflexes.8. Cardiovascular reflex responses arising from non-myelinated baroreceptors and all chemoreceptors are mediated by neurones in the intermediate area of the NTS.  相似文献   

10.
Activation of the cardiac mechanoreceptors results in changes in sympathetic nerve activity and plays an important role in the responses elicited by elevated blood volume. Stimulation of the reflex influences several key autonomic regions, namely the paraventricular nucleus (PVN), the nucleus of the tractus solitarius (NTS) and the caudal ventrolateral medulla (CVLM). Neurons in these regions project directly to the rostral ventrolateral medulla (RVLM), a critical region in the generation of sympathetic vasomotor tone. The aim of the present experiments was to determine whether neurons in the PVN, NTS and CVLM that are activated by cardiac mechanoreceptor stimulation also project to the RVLM. Animals were prepared, under general anesthesia, by microinjection of a retrogradely transported tracer into the pressor region of the RVLM, and the placement of a balloon-tipped cannula at the junction of the right atrium and the superior vena cava. On the experimental day, in conscious rats, the balloon was inflated to stimulate cardiac mechanoreceptors (n = 9), or left uninflated (control, n = 8). Compared with controls, there was a significantly increased number of Fos-immunoreactive neurons (a marker of activation) in both the PVN (2.5-fold) and NTS (two-fold), but this was not seen in the CVLM. Compared with controls, a significant number of the neurons in the PVN (8%) and NTS (4.0%) that projected to the RVLM were activated. The data suggest that subgroups of RVLM-projecting neurons located in the PVN and NTS are involved in the central reflex pathway activated by cardiac mechanoreceptor stimulation.  相似文献   

11.
1. A preparation is described for investigating the central nervous control of gastric motility in decerebrate decerebellate sheep.2. The dorsal vagal nucleus has been electrically stimulated in thirty decerebrate sheep, and the effect on the mechanical responses of the different parts of the reticulo-rumen have been determined.3. In the absence of recurrent rhythmic gastric contractions, punctate electrical stimulation of the dorsal vagal nucleus did not elicit gastric contraction until the intensity of stimulation was sufficiently high to excite efferent vagal fibres.4. Direct stimulation of the vagus nerve, or of motor fibres running from the nucleus to this nerve, always caused contraction of the reticulum, and dorsal and ventral ruminal sacs.5. Electrical stimulation of certain points within the medulla oblongata, during rhythmic gastric motility, inhibited motility for one or more contraction cycles. These inhibitory points lay on a line commencing at the mid-point of the dorsal vagal nucleus, and extending forward and ventral to this.6. Excitatory responses were less frequent, and were seen along a line running parallel to, but about 1 mm below, the anterior half of the line of maximum inhibition. They usually followed a period of inhibition, were generally shorter in duration, and consisted of a series of small reticular contractions at a rate of about 1/10 sec.7. The presence of a powerful inhibitory influence on the dorsal vagal nucleus, mediated from an area lying anterior to the nucleus, is argued and its probable action at the level of the gastric motor nucleus is discussed.  相似文献   

12.
Catecholaminergic vagal motor neurones were identified within the dorsal motor nucleus of the vagus, by retrograde tracing of True blue from the stomach followed by immunocytochemistry using antibodies directed against tyrosine hydroxylase. Presumed dopaminergic efferents were largely confined to caudal regions, where they averaged as much as 30% of the labelled efferents. Most but not all of these were also identified on the basis of acetylcholinesterase histochemistry.  相似文献   

13.
Despite the findings that impaired vagal control of the heart rate occurs in human hypertension, leading to greater cardiovascular risk, the mechanism of this impairment is as yet unknown. Observations in humans and experiments in the spontaneously hypertensive rat (SHR) suggested that such impairment may be related to an anomaly in central vagal neurones. We therefore set out to determine whether the numbers and distribution of cardiac-projecting vagal preganglionic neurones in the medulla of adult (12 week) hypertensive SHR are different from those in young (4 week) prehypertensive SHR and in age-matched Wistar-Kyoto (WKY) rats of two age groups. The number of vagal neurones, identified by labelling with the fluorescent tracer DiI applied to the heart, was essentially similar in the three areas of the medulla analysed (dorsal vagal nucleus, nucleus ambiguus and intermediate reticular zone) in young SHR and young or adult WKY rats. In contrast, fewer vagal neurones were labelled in adult SHR compared with young SHR or WKY rats. This difference was due to highly significant reductions in vagal neurones in the dorsal vagal nucleus and nucleus ambiguus on the right side of the medulla. These observations suggest that a loss of parasympathetic preganglionic neurones supplying the heart with axons in the right vagus nerve, or a remodelling of their cardiac projections, may explain the known impairment of the baroreceptor reflex gain controlling heart rate in hypertension.  相似文献   

14.
The voltage-gated potassium channel subunit Kv3.1 confers fast firing characteristics to neurones. Kv3.1b subunit immunoreactivity (Kv3.1b-IR) was widespread throughout the medulla oblongata, with labelled neurones in the gracile, cuneate and spinal trigeminal nuclei. In the nucleus of the solitary tract (NTS), Kv3.1b-IR neurones were predominantly located close to the tractus solitarius (TS) and could be GABAergic or glutamatergic. Ultrastructurally, Kv3.1b-IR was detected in NTS terminals, some of which were vagal afferents. Whole-cell current-clamp recordings from neurones near the TS revealed electrophysiological characteristics consistent with the presence of Kv3.1b subunits: short duration action potentials (4.2 ± 1.4 ms) and high firing frequencies (68.9 ± 5.3 Hz), both sensitive to application of TEA (0.5 m m ) and 4-aminopyridine (4-AP; 30 μ m ). Intracellular dialysis of an anti-Kv3.1b antibody mimicked and occluded the effects of TEA and 4-AP in NTS and dorsal column nuclei neurones, but not in dorsal vagal nucleus or cerebellar Purkinje cells (which express other Kv3 subunits, but not Kv3.1b). Voltage-clamp recordings from outside-out patches from NTS neurones revealed an outward K+ current with the basic characteristics of that carried by Kv3 channels. In NTS neurones, electrical stimulation of the TS evoked EPSPs and IPSPs, and TEA and 4-AP increased the average amplitude and decreased the paired pulse ratio, consistent with a presynaptic site of action. Synaptic inputs evoked by stimulation of a region lacking Kv3.1b-IR neurones were not affected, correlating the presence of Kv3.1b in the TS with the pharmacological effects.  相似文献   

15.
Autonomic effects of vestibular stimulation are important components of phenomena as diverse as acute vestibular dysfunction and motion sickness. How ever, the organization of neural circuits mediating these responses is poorly understood. This study presents evidence for direct vestibular nucleus projections to brain stem regions that mediate autonomic function. One group of albino rabbits received injections of Phaseolus vulgaris leucoagglutinin into the vestibular nuclei. The tracer was visualized immunocytochemically with standard techniques. Anterogradely labeled axons from the caudal medial vestibular nucleus (cMVN) and inferior vestibular nucleus (IVN) could be traced bilaterally to nucleus tractus solitarius (NTS). Fewer axons ended near the somata of neurons in the dorsal motor nucleus of the vagus nerve (DMX). A second group of rabbits received pressure or iontophoretic injections of cholera toxin B-HRP or Fluoro-Gold into a region including NTS and DMX. Retrogradely labeled neurons were observed bilaterally in the caudal half of cMVN and ipsilaterally in IVN. The labeled somata were small and they tended to occupy the center of cMVN in transverse sections. These previously unreported vestibular nucleus projections to NTS and DMX are a potential substrate for vestibular influences on autonomic function. In particular, they may contribute to both cardiovascular control during head movements (e.g., orthostatic reflexes) and autonomic manifestions of vestibular dysfunction, motion sickness and exposure to altered gravitational environments.  相似文献   

16.
1. The responses of identified cells in the cat Clarke's column and dorsal horn to micro-electrophoretically applied cholinomimetics and anti-cholinergic substances have been investigated. 2. Both antidromically identified (DSCT neurones) and synaptically activated neurones from the region of the Clarke's column of the spinal cord were excited by ACh. However, the proportion of ACh excited cells was greater in units synaptically activated by ipsilateral dorsolateral funiculus stimulation (78%) than in DSCT neurones (50%). In addition, about 55% of neurones activated either antidromically or synaptically by ipsilateral dorsal column stimulation were excited by ACh. 3. In contrast to a relatively weak excitatory potency on the DSCT neurones (maximum firing frequency did not exceed 130% of the control activated by ipsilateral dorsolateral funiculus stimulation (maximum firing frequency reached 430% of the control level). 4. ACh has a relatively quick and rapidly reversible excitatory effect on Clarke's column neurones and some types of dorsal horn interneurones, which can be obtained also with nicotine. However, the action of nicotine is frequently delayed in onset and recovery. This excitatory action of ACh can be blocked or markedly depressed by dihydro-beta-erythroidine. These results and those obtained with acetyl-beta-methylcholine and atropine seem to suggest that the receptors mediating excitation of the cholinoceptive spinal cells activated either antidromically or synaptically by ipsilateral dorsolateral funiculus stimulation besides predominantly nicotinic have also weak muscarinic properties. 5. Desensitization with repeated applications of ACh and nicotine has been observed in both DSCT neurones and units antidromically activated by ipsilateral dorsal column stimulation. 6. About 11% of units antidromically activated by ipsilateral dorsolateral funiculus stimulation were depressed by ACh. In addition, the depressant effect of ACh was more frequently encountered in the cells unresponsive either to the dorsolateral funiculus or dorsal column stimulation. ACh depression was also seen in units activated either antidromically or synaptically by ipsilateral dorsal column stimulation. In contrast, none of the units synaptically activated by the ipsilateral dorsolateral funiculus stimulation were depressed by ACh. The same was true for spinal neurones receiving convergent peripheral inputs activated either antidromically or synaptically by ipsilateral dorsolateral or dorsal column stimulation. 7. The findings that ACh depression of all tested DSCT neurones is blocked by atropine and readily evoked by acetyl-beta-methylcholine indicates that receptors mediating the effect are of muscarinic type.  相似文献   

17.
The production of nitric oxide in neurones of the rat medulla oblongata that project to the nucleus tractus solitarii (NTS) was examined by simultaneous immunohistochemical detection of nitric oxide synthase (NOS) and of cholera toxin B-subunit (CTb), which was injected into the caudal zone of the NTS. Neurones immunoreactive for CTb and neurones immunoreactive for NOS were widely co-distributed and found in almost all the anatomical divisions of the medulla. Dual-labelled cells, containing both CTb and NOS immunoreactivities were more numerous ipsilaterally to the injection sites. They were concentrated principally in the more rostral zone of the NTS, raphé nuclei, dorsal, intermediate and lateral reticular areas, spinal trigeminal and paratrigeminal nuclei and the external cuneate and medial vestibular nuclei. Isolated dual-labelled neurones were also scattered throughout most of the divisions of the reticular formation. These observations indicate that many areas of the medulla that are known to relay somatosensory and viscerosensory inputs contain NOS immunoreactive neurones that project to the NTS, and may, therefore, contribute to the dense NOS-immunoreactive innervation of the NTS. The release of nitric oxide from the axon terminals of these neurones may modulate autonomic responses generated by NTS neurones in relation to peripheral sensory stimuli, and thus ultimately regulate sympathetic and/or parasympathetic outflow.  相似文献   

18.
Light microscopic autoradiography of [125I]Bolton-Hunter substance P binding sites was used to study the localization and denervation-induced changes in substance P receptors in the medulla oblongata. Substance P binding sites were widely distributed. The highest density was in the rostral nucleus ambiguus, dorsal motor nucleus of the vagus, nucleus of the solitary tract, hypoglossal nucleus, spinal trigeminal nucleus and inferior olive. Moderate density was apparent in the commissural nucleus of the solitary tract, area postrema, parvocellular reticular nucleus, medial vestibular nucleus and facial nucleus. The remainder of the medullary nuclei contained few or no specific substance P binding sites. Specific binding was inhibited by the addition of unlabeled substance P (1 microM). The association of substance P binding sites with the spinal trigeminal nucleus and with several nuclei involved in autonomic function suggest a role for substance P receptor activation in nociceptive and autonomic regulation, respectively. To study the influence of afferent and efferent denervation, the substance P binding sites in the medulla of sham operated rats were compared with those of both unilateral nodose ganglionectomized and cervical vagotomized rats. Substance P binding was unilaterally reduced in the rostral nucleus ambiguus and the rostral dorsal motor nucleus of the vagus with either surgical procedure. No changes in substance P binding were detected in other medullary nuclei, including the nucleus of the solitary tract, the site of termination of afferent vagal fibers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Medullary control of the pontine swallowing neurones in sheep   总被引:3,自引:0,他引:3  
Summary The origin of the inputs from the medullary swallowing centre (dorsal region including the nucleus of the solitary tract, or ventral region corresponding to the reticular formation surrounding the nucleus ambigous) to the pontine swallowing neurones (PSNs) was studied in sheep anaesthetized with halothane.Out of 101 PSNs located in the posterior part of the trigeminal (Vth) motor nucleus, 46 were activated by stimulating either the dorsal (21 neurones) or the ventral (25 neurones) region of the ipsilateral medullary swallowing centre, 3–4 mm rostral from the obex. Thirty-one neurones out of the 46 were identified as a motoneurones supplying swallowing muscles (mylohyoïd, anterior body of digastric and medial pterygoïd). Their average activation latency through stimulation of the dorsal medullary region was about 1 ms longer than through stimulation of the ventral region (3.63 ms±0.81 versus 2.72 ms±0.32).To determine the origin of the medullary input to the PSNs, we tried to activate the medullary swallowing neurones (MSNs) antidromically through stimulating the posterior part of the Vth motor nucleus, which contains the swallowing motoneurones. Seventy-three MSNs were tested (25 located in the dorsal and 48 in the ventral region). None of the dorsal neurones tested could be antidromically activated by pontine stimulation: 15 ventral neurones showed a clear antidromic response (collision test) with an average latency of 2.5 ms±0.73. These neurones, which send their axons into the pons, were all located in the reticular formation, above the nucleus ambiguus, 3–4 mm rostral from the obex.These results suggest that MSNs in the ventral reticular formation connect the medullary swallowing centre to the Vth motor nucleus. They also suggest that during swallowing, inputs originating from the dorsal region of the medullary centre (interneurones programming the motor sequence) are relayed in the ventral region (reticular formation adjacent to the nucleus ambiguus) before reaching the PSNs.This work was supported, in part, by grants from CNRS (LA 205), INRA and M.R.I. (82 E 0685)  相似文献   

20.
高文军 《解剖学杂志》1994,17(3):231-234
实验将30%HRP与1%CB-HRP混合液分别通过微波管电泳入小脑顶核和迷走神经背核嘴、尾段。TMB显色,结果如下:顶核电泳组:双侧迷走神经背核内见到标记细胞,以对侧为主,中,小型,梭形细胞居多、嘴,尾段无明显差别,此外,孤束核,舌下神经核、楔束核、楔外核、下橄核、下橄榄核及网状结构中均见到标记细胞、迷走神经背核电泳组;在顶核内未见到标记细胞、在顶核内未见到标记细胞,只有小脑前叶皮质及小脑蚓部有标  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号