首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The effect of benzodiazepines (BZs) on GABA(A)-ergic synaptic responses depends on the control receptor occupancy: the BZ-induced enhancement of receptor affinity can lead to greater peak amplitudes of quantal responses only when, under normal conditions, receptors are not fully saturated at peak. Based on this fact, receptor occupancy at the peak of spontaneous miniature inhibitory postsynaptic currents (mIPSCs) has been assessed in various mammalian neuronal preparations. To use the same principle with compound (or multiquantal), action potential-evoked IPSCs, complications introduced by quantal asynchrony in conjunction with the BZ-induced increase in the decay time of the quantal responses have to be overcome. We used a simple analytic convolution model to calculate expected changes in the rise time and amplitude of postsynaptic currents when the decay time constant, but not the peak amplitude, of the underlying quantal responses is increased, this being the expected BZ effect at saturated synapses. Predictions obtained were compared with the effect of the BZ flunitrazepam on IPSCs recorded in paired pre- and postsynaptic whole cell voltage-clamp experiments on striatal neurons in cell culture. In 22 pairs, flunitrazepam (500 nM) reliably prolonged the decay of IPSCs (49 +/- 19%, mean +/- SE) and in 18 of 22 cases produced an enhancement in their peak amplitude that varied markedly between 3 and 77% of control (26.0 +/- 5.3%). The corresponding change in rise time, however (+0.38 +/- 0.11 ms, range -0.8 to +1.3 ms) was far smaller than calculated for the observed changes in peak amplitude assuming fixed quantal size. Because therefore an increase in quantal size is required to explain our findings, postsynaptic GABA(A) receptors were most likely not saturated during impulse-evoked transmission at these unitary connections. The peak amplitudes of miniature IPSCs in these neurons were also increased by flunitrazepam (500 nM, +26.8 +/- 6.6%), and their decay time constant was increased by 26.3 +/- 7.3%. Using these values in our model led to a slight overestimate of the change in compound IPSC amplitude (+28 to +30%).  相似文献   

3.
Central Research Laboratory, Medical Faculty, Patrice Lumumba Peoples' Friendship University, Moscow. (Presented by Academician of the Academy of Medical Sciences of the USSR T. T. Berisov.) Translated from Byulleten' Éksperimental'noi Biologii i Meditsiny, Vol. 105, No. 6, pp. 726–728, June, 1988.  相似文献   

4.
5.
6.
Experiments were performed to investigate whether intact intracellular Ca2+ pools are necessary for long-term potentiation (LTP) in the CA1 region of rat hippocampal slices. Thapsigargin (1 microM), which depletes most intracellular Ca2+ pools by blocking ATP-dependent Ca2+ uptake into intracellular compartments, blocked the induction but not the expression of LTP. Thapsigargin had no effect on synaptic transmission or on responses mediated by N-methyl-D-aspartate (NMDA) receptor activation. These data suggest that Ca2+ release from intracellular stores is required for the induction of LTP.  相似文献   

7.
The strength of synaptic connections in the brain is not fixed, but can be modulated by numerous mechanisms. Traditionally, electrophysiology has been used to characterize connections between neurons. Electrophysiology typically reports the activity of populations of synapses, while most mechanisms of plasticity are thought to operate at the level of single synapses. Recently, two-photon laser scanning microscopy has enabled us to perform optical quantal analysis of individual synapses in intact brain tissue. Here we introduce the basic principle of the two-photon microscope and discuss its main differences compared to the confocal microscope. Using calcium imaging in dendritic spines as an example, we explain the advantages of simultaneous dual-dye imaging for quantitative calcium measurements and address two common problems, dye saturation and background fluorescence subtraction.  相似文献   

8.
Osmotic effects upon excitability in rat neocortical slices   总被引:4,自引:0,他引:4  
A S Rosen  R D Andrew 《Neuroscience》1990,38(3):579-590
Acute osmotic disturbances can lead to profound neurological problems, yet there has been little experimentation at a cellular level to assess if neurophysiological changes are induced by altered osmolality. Using extra- and intracellular recording in the rat neocortical slice preparation, we examined pyramidal neurons of layers II-III under changing osmotic conditions. Single cell properties, field potentials, synaptic transmission and epileptiform discharges were studied in control saline (295 mOsm) and compared with corresponding data collected during exposure to osmolalities between 245 and 375 mOsm. Single cell properties (resting membrane potential, cell input resistance, action potential threshold and duration) did not change significantly, but neuronal interactions were considerably influenced by osmotic change within minutes. Hyposmolality increased the amplitude of evoked field potentials and of excitatory postsynaptic potentials recorded intracellularly. Hyperosmolality, induced with mannitol, decreased these parameters. Electrotonic coupling, as gauged by the degree of dye coupling and by cell input resistance, was not influenced by shifts in osmolality. The clinical finding that overhydration promotes seizure onset was examined in slices made epileptogenic in Mg2(+)-free saline. Hyposmolality increased the frequency and decreased the duration of interictal bursts, whereas raising osmolality with mannitol had opposite effects. None of the aforementioned effects occurred when osmolality was increased with a freely permeable substance such as dimethylsulfoxide, nor could they be ascribed to changes in saline Na+ or Ca2+ concentrations. The results are consistent with hyposmotic solutions reducing extracellular space by causing cells to swell. Theoretically, during population discharge, this should both concentrate K+ released extracellularly and possibly increase field (ephaptic) interactions. How lowered osmolality strengthens spontaneous and evoked excitatory synaptic transmission in neocortex is not yet clear. However, it may be an important mechanism underlying the increased seizure susceptibility of patients and experimental animals with lowered plasma osmolality. Conversely, suppression of excitatory postsynaptic potentials by osmotically active substances may be involved in the lowered seizure susceptibility observed clinically.  相似文献   

9.
H Mitoma  S Konishi 《Neuroscience》1999,88(3):871-883
Long-term facilitation of neurotransmission by monoaminergic systems is implicated in the cellular mechanism of memory and learning-related processes at invertebrate synapses. Using whole-cell recording and rat cerebellar slices, we have examined whether mammalian monoamine-containing neurons play analogous roles in synaptic plasticity, and our results suggest that serotonin and noradrenaline are critically involved in short- and long-term modulation of GABAergic transmission in the cerebellar cortex. Exogenously applied serotonin and noradrenaline selectively induced a short-term enhancement of GABAergic transmission between cerebellar interneurons and Purkinje cells, their effect subsiding in 30 min. Successive amine applications converted this effect to long-term facilitation lasting more than 2 h. During the monoamine-induced short- and long-term facilitation, spontaneously occurring miniature inhibitory synaptic responses increased in frequency, without significant changes in their mean amplitude and amplitude distribution, as well as the GABA receptor sensitivity of Purkinje cells. The actions of the two amines on the inhibitory transmission were mimicked by forskolin and blocked by kinase inhibitors, H-7, H-89 and Rp-adenosine 3',5'-cyclic monophosphothioate. Thus, serotonin and noradrenaline are likely to activate cyclic-AMP- and protein kinase-dependent pathways in GABAergic interneurons, thereby reinforcing the inhibitory transmission on to Purkinje cells. Repetitive electrical stimulation within the molecular layer mimicked the facilitatory effect induced by exogenous monoamines: namely, neural stimulation selectively elicited long-lasting enhancement of GABAergic transmission in a manner sensitive to the monoamine receptor antagonists, methiothepin and propranolol, and an uptake inhibitor, imipramine. Synaptically released monoamines thus appear to induce cyclic-AMP- and protein kinase-dependent long-term facilitation of cerebellar GABAergic transmission, thereby providing a likely mechanism of synaptic plasticity associated with motor coordination within the mammalian cerebellar system.  相似文献   

10.
Chiou LC  Chou HH 《Neuroscience》2000,100(4):829-834
Synaptic transmission evoked by focal stimulation in the ventrolateral periaqueductal gray was characterized using the whole-cell recording technique in rat brain slices. At resting membrane potential (-62+/-1 mV), focal stimulation (0.05-0.1 ms, 0.03 Hz) usually evoked a 6-cyano-7-nitroquinoxaline-2, 3-dione-sensitive fast excitatory postsynaptic potential and a DL-2-amino-5-phosphonopentanoic acid-sensitive slow excitatory postsynaptic potential with a bicuculline-sensitive inhibitory postsynaptic potential in between. In the presence of kynurenic acid, bicuculline-sensitive inhibitory postsynaptic currents recorded in the voltage-clamp mode displayed a reversal potential of -68+/-3 mV, resembling GABA(A) receptor-mediated inhibitory postsynaptic currents. However, no GABA(B) receptor-mediated inhibitory postsynaptic current was evoked, even at stronger stimulating intensity. 6-Cyano-7-nitroquinoxaline-2,3-dione-sensitive fast excitatory postsynaptic currents were isolated by DL-2-amino-5-phosphonopentanoic acid plus bicuculline and DL-2-amino-5-phosphonopentanoic acid-sensitive slow fast excitatory postsynaptic currents by bicuculline plus 6-cyano-7-nitroquinoxaline-2,3-dione. Both types of excitatory postsynaptic current reversed at potentials near 0 mV. The I-V curve of slow fast excitatory postsynaptic currents or N-methyl-D-aspartate currents displayed a negative slope at potentials more negative than -30 mV in an Mg(2+)-sensitive manner. The control postsynaptic currents reversed at potentials between -50 and -35 mV, inclined to the reversal potential of GABA(A), but not glutamate, receptor channels. It is concluded that, in the ventrolateral periaqueductal gray, focal stimulation elicits both inhibitory and excitatory transmission, while the former is dominant. The inhibitory transmission is mediated by GABA(A) but not GABA(B) receptors. The excitatory transmission is mediated by glutamate acting on alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate as well as N-methyl-D-aspartate receptors.  相似文献   

11.
The probability of transmitter release at synaptic terminals is one of the key characteristics of communication between nerve cells because it determines both the strength and dynamic properties of synaptic connections. To assess the distribution of the release probabilities at excitatory synapses on supragranular pyramidal cells in rat visual cortex, we have used the MK-801, a blocker of the open N-methyl-d-aspartate (NMDA) receptor-gated channels. With this method, the release probability can be calculated from the time course of the blockade of NMDA-receptor mediated postsynaptic currents in the presence of MK-801. At temperatures >32 degrees C, the distribution of release probabilities covered the range from 0.05 to 0.43 [mean: 0.171 +/- 0.012 (SE), n = 65], being skewed toward low values. When estimated at room temperature (22-25 degrees C), the release probabilities were significantly lower (mean: 0.123 +/- 0.009, n = 54), and almost the whole distribution was restricted to values <0.2. Furthermore, warming from room temperature to >32 degrees C led to a pronounced overshooting increase of the release probability. Taken together, the results of the present study show that release probabilities at synapses formed onto layer 2/3 pyramidal cells in the visual cortex vary significantly, but values >0.3 are rare and the results obtained either at room or variable temperature differ significantly from those made under conditions of constant temperature in the physiological range.  相似文献   

12.
Epidermal growth factor receptor pathway substrate 8 (Eps8) is a widely expressed multidomain signaling protein that coordinates two disparate GTPase-dependent mechanisms: actin reorganization via Ras/Rac pathways and receptor trafficking via Rab5. Expression of Eps8, the gene encoding the founding member of the Eps8 family of proteins, was found in cerebellum by virtual Northern analysis and in situ hybridization. Because the cerebellum has a well-known cellular architecture and is a favored model to study synaptic plasticity and actin dynamics, we sought to analyze Eps8 localization in rat cerebellar neurons and synapses by light and electron microscopy. Specificity of Eps8-antibody was demonstrated by immunoblots and in brain sections. In cerebellum, unipolar brush cells (UBCs) were densely Eps8 immunopositive and granule cells were moderately immunostained. In both types of neuron immunoreaction product was localized to the somatodendritic and axonal compartments. Postsynaptic immunostained foci were demonstrated in the glomeruli in correspondence of the synapses formed by mossy fiber terminals with granule cell and UBC dendrites. These foci appeared especially evident in the UBC brush, which contains an extraordinary postsynaptic apparatus of actin microfilaments facing synaptic junctions of the long and segmented varieties. Eps8 immunoreactivity was conspicuously absent in Purkinje cells and their actin-rich dendritic spines, in all types of inhibitory interneurons of the cerebellum, cerebellar nuclei neurons, and astrocytes. In conclusion, Eps8 protein in cerebellum is expressed exclusively by excitatory cortical interneurons and is intracellularly compartmentalized in a cell-class specific manner. This is the first demonstration of the presence of a member of the Eps8 protein family in UBCs and its enrichment at postsynaptic sites.  相似文献   

13.
Synaptic depression in the hippocampus at early postnatal stage can be induced by test pulse stimulation (<1 Hz). However, the receptor mechanism for induction of this synaptic depression is unclear. In the present study, we used whole-cell patch clamp recording in vitro to investigate how excitatory and inhibitory synapses onto layer II/III pyramidal neurons of the primary visual cortex adapt to test pulse activation from a previously non-activated (naive) state. We found that excitatory postsynaptic currents (EPSCs) of pyramidal neurons were rapidly depressed by 0.1 Hz stimulation in acutely prepared slices from rats at 11–12 postnatal days, while this phenomena disappeared in slices from young adolescent rats (23–24 postnatal days). By contrast, inhibitory postsynaptic currents (IPSCs) were relatively stable following 0.1 Hz stimulation of rat slices at the same early postnatal stage. Moreover, the test pulse depression of EPSCs was associated with a decrease in 1/coefficient of variation (CV)2 and no change in the paired-pulse ratio. These data imply silencing of synapses and no significant change either in postsynaptic receptor density or presynaptic terminal release probability. This synaptic depression was unaffected by the competitive NMDA receptor antagonist D-APV. Ca2+-permeable AMPA receptor selective antagonists, Naspm or IEM-1460, prevented the induction of the test pulse depression. These data suggest that EPSCs, but not IPSCs, were rapidly depressed by test pulse stimulation in rats at early postnatal stage via a Ca2+-permeable AMPA receptor-dependent mechanism.  相似文献   

14.
The effects of the strychnine-insensitive glycine receptor antagonists, cycloleucine and 7-chlorokynurenic acid, on the induction of long-term potentiation (LTP) in CA1 of rat hippocampal slices were examined. A 5 min administration of cycloleucine (20-100 microM) or 7-chlorokynurenic acid (1-5 microM) during the delivery of high-frequency stimulation blocked the induction of LTP without affecting baseline synaptic transmission. Coapplication of 100 microM glycine with cycloleucine or 7-chlorokynurenic acid masked the inhibitory effect on the induction of LTP, supporting the hypothesis that these compounds act as glycine antagonists. These results indicate that glycine is a necessary factor for the induction of LTP in CA1 of the rat hippocampus.  相似文献   

15.
Age-related changes in the relative contribution of voltage-dependent calcium channel (VDCC) subtypes to depolarization-induced Ca(2+) influx and in the density of VDCC subtypes in cortical synapses were investigated using synaptosomes and their membrane preparations from brain cortices of Wistar rats. The relative contribution of VDCC subtypes to Ca(2+) influx was determined by measuring the inhibition of depolarization-induced Ca(2+) influx with four VDCC subtype-specific peptide blockers. In adult rat synaptosomes, L-, N-, P- and Q-type channels accounted for 24, 32, 27 and 12% of the total Ca(2+) influx, respectively. Brain aging significantly reduced the relative contributions of N- and P-type channels and increased the contribution of the channels resistant to the four blockers used. The densities of VDCC subtypes, determined by binding experiments using radiolabeled PN200 -110, omega-conotoxin GVIA and omega-conotoxin MVIIC, were found to be significantly decreased in aged synaptic plasma membranes. On the contrary, the dissociation constants of the blockers were not changed except for PN200-110-sensitive L-type channels. These results suggest that aging alters the relative contributions of each VDCC subtype to depolarization-induced Ca(2+) influx and decreases the number of VDCCs in rat brain cortical synapses. These changes in VDCCs may lead to age-related hypofunction of synaptic neurotransmission in brain cortices.  相似文献   

16.
Zinc enhances GABAergic transmission in rat neocortical neurons   总被引:2,自引:0,他引:2  
  相似文献   

17.
Long-term potentiation was elicited in living slices of rat olfactory cortex by stimulation of the lateral olfactory tract. A group of interdependent parameters of membrane metabolism was studied, i.e., the kinetics of45Ca metabolism, lipid peroxidation, and antioxidant defense; cytochemical measurements were made of Na+, K+-ATPase activity in neurons and glial cells; the functional (GTPase) activity of G-proteins was also studied. All parameters were compared with the bioelectrical activity of slices at three time points after tetanization, i.e., 3–5, 15, and 30 min. In most cases, regular phasic changes in metabolic parameters occurred, and their functional significance is discussed. Laboratory of Functional Neurochemistry (N. A. Emel'yanov, Director), I. P. Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg. Translated from Fiziologicheskii Zhurnal im. I. M. Sechenova, Vol. 81, No. 8, pp. 29–33, August, 1995.  相似文献   

18.
Recent data indicate that most "silent" synapses in the hippocampus are "presynaptically silent" due to low transmitter release rather than "postsynaptically silent" due to "latent" receptors of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid type (AMPARs). That synapses bearing only N-methyl-d-aspartate (NMDAR) receptors do exist is suggested by the decreased number of transmission failures during postsynaptic depolarisation and by the presence of NMDA-mediated excitatory postsynaptic currents (EPSCs) in synapses silent at rest. We tested whether these effects could be due to potentiated transmitter release at depolarised postsynaptic potentials rather than removal of Mg(2+) block from NMDARs. Using whole-cell recordings of minimal EPSCs from CA1 and CA3 neurones of hippocampal slices we confirmed decreased incidence of failures at +40 mV as compared with -60 mV. This effect was associated with a gradual increase of EPSC amplitude after switching to +40 mV and with a decrease of paired-pulse facilitation. In initially silent synapses, potentiation of pharmacologically isolated AMPAR-mediated EPSCs was still observed at +40 mV and this persisted after stepping back to -60 mV. All above effects were blocked when the cell was dialysed with the Ca(2+) chelator BAPTA (20 mM). These observations are difficult to reconcile with the "latent AMPAR" hypothesis and suggest an alternative explanation, namely that the reduction in failure rates at positive potentials is due to potentiation of transmitter release following Ca(2+) influx through NMDARs. Our results suggest that silent synapses can be mainly "presynaptically" rather than "postsynaptically silent" and thus increased transmitter release rather than insertion of AMPARs is a major mechanism of early long-term potentiation maintenance.  相似文献   

19.
Basal ganglia are interconnected subcortical nuclei, connected to the thalamus and all cortical areas involved in sensory motor control, limbic functions and cognition. The striatal output neurones (SONs), the major striatal population, are believed to act as detectors and integrators of distributed patterns of cerebral cortex inputs. Despite the key role of SONs in cortico-striatal information processing, little is known about their local interactions. Here, we report the existence and characterization of electrical and GABAergic transmission between SONs in rat brain slices. Tracer coupling (biocytin) incidence was high during the first two postnatal weeks and then decreased (postnatal days (P) 5–25, 60%; P25–30, 29%; n = 61). Electrical coupling was observed between 27% of SON pairs (coupling coefficient: 3.1 ± 0.3%, n = 89 at P15) and as shown by single-cell RT-PCR, several connexin (Cx) mRNAs were found to be expressed (Cx31.1, Cx32, Cx36 and Cx47). GABAergic synaptic transmission (abolished by bicuculline, a GABAA receptor antagonist) observed in 19% of SON pairs ( n = 62) was reliable (mean failure rate of 6 ± 3%), precise (variation coefficient of latency, 0.06), strong (IPSC amplitudes of 38 ± 12 pA) and unidirectional. Interestingly, electrical and chemical transmission were mutually exclusive. These results suggest that preferential networks of electrically and chemically connected SONs, might be involved in the channelling of cortico-basal ganglia information processing.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号