首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
目的探讨TrueBeam加速器6 MV光子束均整(FF)与非均整(FFF)模式蒙特卡罗模型的绝对剂量刻度与射野输出因子计算方法。方法利用BEAMnrc程序分别建立FF与FFF两种模式在靶到监测电离室(BEAM_up)和监测电离室以下组件部分(BEAM_down)的加速器机头模型,计算入射电子和经次级准直器反射后的粒子在监测电离室的剂量沉积,利用DOSXYZnrc程序计算入射电子在射野中心轴上特定深度处的剂量沉积,结合绝对剂量刻度公式计算标准射野刻度因子和射野输出因子(1 cm×1 cm~40 cm×40 cm)。结果 FF与FFF模型的10 cm×10 cm标准辐射野,1 MU相当于7.747×1013±3.099×1011和3.248×1013±1.624×1011电子打靶,在虚拟的加速器监测电离室上产生21.53和35.01 cGy剂量;FF与FFF模式射野输出因子模拟值与测量值偏差为0.72%±1.4%和0.56%±0.78%。结论该模型输出因子模拟与测量结果符合度较好,绝对剂量计算精度较高,可以用于临床剂量学研究。  相似文献   

2.
目的 通过蒙特卡罗方法模拟瓦里安IX 6 MV直线加速器治疗机头,得到不同射野下的最适电子线能量,研究径向强度分布对百分深度剂量的影响。方法 首先对所研究的每个射野,保持径向强度大小不变,改变电子线能量,将得到的百分深度剂量与测量值进行对比,得到该射野下的最适电子线能量。随后将电子线能量设置为得到的最适值,改变径向强度分布大小,研究其对百分深度剂量的影响。结果 对于4 cm×4 cm、10 cm×10 cm、20 cm×20 cm和30 cm×30 cm的射野,最适能量分别为5.9、6.0、6.3和6.4 MeV;改变径向强度分布对4 cm×4 cm、10 cm×10 cm射野下的百分深度剂量没有影响,对20 cm×20 cm和30 cm×30 cm的射野则有明显影响。结论 适用于不同射野的最佳能量略有不同,径向强度的改变对大野下的深度剂量有较明显影响。为提高模拟精度,电子线能量和径向强度分布的选取需要考虑射野大小的因素。  相似文献   

3.
调强放射治疗多叶光栅小野输出因子测量方法研究   总被引:3,自引:3,他引:0       下载免费PDF全文
目的 研究用小探测器测量调强放射治疗多叶光栅(MLC)小野输出因子方法。方法用MAX4000剂量仪,Unidos剂量仪分别接不同型号小电离室和二极管半导体探测器,瓦里安加速器,6 MV X射线束,10 cm×10 cm(固定),变化二级准直器(多叶光栅片)形成照射野6 cm×6 cm, 4 cm×4 cm, 3 cm×3 cm, 2 cm×2 cm,水下10 cm,照射:250 MU,3次读数取平均值。所有小野读数归一到10 cm×10 cm照射野,得到多叶光栅小野输出因子,用测量输出因子与出版输出因子进行比较。结果 Unidos剂量仪和0.015 cc电离室测量多叶光栅小野输出因子与出版输出因子相对偏差分别为1.0%、1.7%、1.5%和2.4%;Unidos剂量仪和0.007 cc电离室测量相对偏差分别为0.2%、0.8%、0.8%和1.4%;MAX4000剂量仪和0.007 cc电离室测量相对偏差分别为0.1%、0.5%、0.5%和0.9%;MAX4000剂量仪和二极管半导体探测器测量相对偏差分别为0.1%、1.5%、1.8%和2.4%(所有小野读数归一到10 cm×10 cm照射野读数),3 cm×3 cm,2 cm×2 cm归一到4 cm×4 cm照射野读数的相对偏差分别为0.1%和0.9%。结论 0.015 cc电离室测量多叶光栅野输出因子,3 cm×3 cm,2 cm×2 cm照射野的结果符合要求。按照国际原子能机构(IAEA)放射治疗剂量准确度要求,测量输出因子与出版输出因子的相对偏差应在±2%和±3%范围内。0.007 cc电离室测量结果好于0.015 cc电离室测量结果;二极管半导体探测器测量结果符合要求(归一到10 cm×10 cm照射野)和非常好(归一到4 cm×4 cm照射野)。对多叶光栅片形成的小野,由于剂量学问题,小野输出因子必须用小电离室或二极管半导体探测器测量。该测量方法准确可靠,对所有小野测量结果应输入放射治疗计划系统作为制定临床放射治疗计划的依据。  相似文献   

4.
目的 用热释光剂量计(TLD)和放射性免冲洗胶片测量调强放疗(IMRT)多叶光栅(MLC)野光子线束吸收剂量并验证二维剂量分布。方法 选择湖北省7家三级甲等医院的7台不同型号医用直线加速器,使用国际原子能机构(IAEA)提供的15 cm×15 cm×15 cm聚苯乙烯专用模体,TLD和放射性免冲洗胶片,在源皮距90 cm,照射深度10 cm,照射野5 cm×5 cm,6 MV X射线,6 Gy吸收剂量照射条件下制定IMRT计划并实施照射,比较TLD和胶片吸收剂量测量值与放疗计划系统(TPS)预估剂量之间的偏差。同时,使用医院配备的30 cm×30 cm均质固体模体,在模体表面下5 cm处放置25 cm×25 cm放射性免冲洗胶片,并将IMRT计划中单个射野移植到模体中胶片层面上并实施照射,通过胶片剂量分析系统验证二维剂量分布。结果 所检医用直线加速器中,1号加速器TLD吸收剂量相对偏差和胶片吸收剂量相对偏差分别为-8.5%和-1.9%;7号加速器TLD吸收剂量相对偏差和胶片吸收剂量相对偏差分别为5.4%和0.5%;其余加速器TLD和胶片吸收剂量相对偏差均在±5%范围以内。所有加速器的二维剂量分布通过率均在90%以上。结论 TLD和胶片核查调强放疗剂量质量方法,操作简单,科学性强,TLD和胶片便于邮件方式寄送,该方法可运用于对放疗机构调强放疗剂量大范围的质量核查。  相似文献   

5.
目的 用热释光剂量计(TLD)和胶片测量调强放疗(IMRT)光子线束吸收剂量和二维剂量分布。方法 采用非概率抽样方法,在河南省选择5家三级甲等医院的8台可开展IMRT的医用加速器,TLD放入国家原子能机构(IAEA)提供的聚苯乙烯固体模体(15 cm×15 cm×15 cm)中,经CT扫描,影像传给放射治疗计划系统(TPS)制定放疗计划,源皮距90 cm,深度10 cm,照射野5 cm×5 cm,6 MV X射线,计算吸收剂量6 Gy和相应的监督单位(MU),实施IMRT计划照射模体,测量TLD吸收剂量,同样方法测量胶片吸收剂量。医院的均质固体模体,尺寸30 cm×30 cm,厚度20 cm,25 cm×25 cm的胶片放在模体中,源皮距95 cm,深度5 cm,实施IMRT计划。结果 调查的8台医用加速器中,有7台加速器的TLD吸收剂量相对偏差符合要求,1台加速器不符合要求;胶片吸收剂量相对偏差全部符合要求;7台加速器的二维剂量分布通过率符合要求,1台加速器不符合要求。结论 TLD和胶片用于核查调强放疗多叶光栅野吸收剂量和二维剂量分布,方法简单,可操作性强,适合在我省医院大范围实施IMRT剂量质量核查。  相似文献   

6.
目的 探讨在组织不均匀条件下,治疗计划系统(MONACO)中的有限笔形束算法(FSPB)与快速X射线体积元蒙特卡罗算法(XVMC)的调强放射治疗计划计算精度差别,以及对临床治疗的影响和各自的应用范围。方法 在非均匀仿真人体模型中,对两种算法模型计算的规则照射野及调强照射野的剂量精度,利用经过刻度的放射性铬胶片(EBT2胶片),进行剂量测量以及二维平面剂量的分析比对。结果 在非均匀仿真人体模型中,不同能量的X射线规则照射野,XVMC算法在不同介质中的剂量计算与胶片测量的结果偏差均在±2.00%范围内,而FSPB计算的结果与测量结果的偏差除了15 MV射野为10 cm×2 cm情况下肺中的剂量偏差高达6.51%以外,其他条件下的结果偏差都在±3%范围内。调强放疗计划(IMRT)的胶片验证测量结果中,3%/3 mm γ通过率XVMC算法组>90%;FSPB算法组为80%~90%,且4%/4 mm γ通过率>90%。结论 当临床治疗病例的组织密度不均匀性较大、子野数较多时,XVMC算法的剂量计算精度优于FSPB算法,采用XVMC治疗设计胸腹部IMRT治疗计划可以将算法所引起的误差控制在±3%以内,而且可以避免由于算法原因所致的计划靶区剂量缺失。  相似文献   

7.
目的 用胶片(film)测量调强放射治疗(IMRT)多叶光栅(MLC)叶片到位精确度验证方法研究。方法 固体均质模体30 cm×30 cm,经CT扫描,影像传给放射治疗计划系统(TPS)制定治疗计划,多叶光栅片形成5条栅栏野条状,每条条状栅栏野长3 cm,宽0.6 cm,条状与条状之间距离3 cm,在最大剂量点(dmax)处,源皮距离100 cm,6 MV X射线,每条条状照射监督单位250 MU。25 cm×25 cm的放射性免冲洗胶片EBT2放在30 cm×30 cm均质固体模体上,厚度1.0 cm的固体模体板覆盖在胶片上面,实施调强放射治疗计划照射。结果 7台加速器胶片测量与TPS计划每条栅栏野MLC位置偏差≤±0.5 mm,符合要求,1台加速器结果为-0.6 mm,不符合要求。胶片测量每对与所有多叶光栅叶片位置偏差结果,8台医用加速器结果均符合要求。4台加速器胶片测量每对与每条所有多叶光栅实际宽度差值≤±0.75 mm,符合要求,3台加速器结果超出±0.75 mm,不符合要求。6台加速器胶片测量每对与每条所有多叶光栅实际宽度标准偏差≤0.3 mm,符合要求,2台加速器结果超出0.3 mm,不符合要求。结论 胶片剂量学验证调强放射治疗多叶光栅到位精度方法简单可靠,能满足检测的要求,是调强放射治疗质量控制的重要内容。  相似文献   

8.
目的 使用国产二维水箱在螺旋断层加速器(TOMO)上测量百分深度剂量(PDD)和射野离轴剂量分布,探索其应用于TOMO束流质控的可行性。方法 使用国产二维水箱在TOMO上采集数据。选择40.0 cm × 1.0 cm、40.0 cm × 2.5 cm、40. 0 cm × 5.0 cm 3个射野测量水下1.5、5.0、10.0、15.0、20.0 cm深度的横向离轴剂量分布,选择25.0 cm × 1.0 cm、25.0 cm × 2.5 cm、25.0 cm × 5.0 cm 3个射野测量百分深度剂量曲线以及水下1.5、5.0、10.0、15.0、20.0 cm 深度的纵向离轴剂量分布,将所有数据导入TEMS软件进行γ分析。结果 以厂家金标准数据为基准,国产水箱PDD曲线在3个射野条件下基本吻合,建成区差异偏大,PDD20/PDD10相对偏差>1%。横向离轴剂量分布在3个不同射野条件下除20.0 cm外其他4个深度处所测四分之一高宽(FWQM)均<1%;在3个不同射野、不同深度条件下所测数据在2%/1 mm标准下γ值均>1。纵向离轴剂量分布除射野25.0 cm × 1.0 cm外,其他两个射野不同深度条件下所测半高宽(FWHM)均<1%;除射野25.0 cm × 5.0 cm、深度为15.0和20.0 cm外,其他不同射野不同深度条件下所测数据在2%/1%射野宽度的分析标准下γ值均>1。结论 国产二维水箱部分满足TOMO日常质控需求但仍需进一步优化改进以完全满足TOMO的临床验收需求。  相似文献   

9.
目的 研究容积旋转调强放疗(VMAT)计划设计采用不同计算分辨率对COMPASS验证通过率的影响。方法 选取10例宫颈癌术后患者,在治疗计划系统上采用4种计算分辨率0.2 cm×0.2 cm×0.2 cm、0.3 cm×0.3 cm×0.3 cm、0.4 cm×0.4 cm×0.4 cm、0.5 cm×0.5 cm×0.5 cm设计VMAT治疗计划。计划传至加速器上执行,由COMPASS实际测量重建并与TPS优化的剂量分布进行比较得到每个计划的偏差值,统计分析4种计划的偏差值是否有统计学意义。结果 肿瘤靶区的DmeanD95,COMPASS测量重建结果表明Dmean偏差值的平均值<0.5%,D95<1.3%,标准差均<1.0%。对于4种计划危及器官(OAR),其中左右股骨头的Dmean偏差值最大可达-6.7%、-7.0%、-8.0%、-5.8%,直肠V35偏差值最大可达-4.9%、-6.3%、-6.1%、-5.7%,是OAR中相应参数偏差值最大的两个器官。肿瘤靶区的γ通过率都在95%以上,标准差不超过2.5%;OAR除了股骨头γ通过率略低,在95%以上,标准差1.9%~6.1%不等,其余都达到98%以上,标准差<2.5%,差异均无统计学意义(P>0.05)。平均γ值的分析结果与γ通过率相一致,除了股骨头的平均γ值>0.4外,PTV和其余OAR的平均γ值都<0.4,差异均无统计学意义(P>0.05)。结论 采用0.2~0.5 cm计算分辨率优化宫颈癌术后VMAT计划,不影响COMPASS验证通过率。  相似文献   

10.
目的 定制125I 放射性粒子植入计划的优选方案。方法125I 粒子等间距植入直径为1、2和3 cm的3种球形模体和三径分别为1 cm×1 cm×2 cm、1 cm×1 cm×3 cm、1 cm×2 cm×2 cm、1 cm×2 cm×3 cm、1 cm×3 cm×3 cm、2 cm×2 cm×3 cm和2 cm×3 cm×3 cm的7种椭球形模体,粒子分布均匀对称,调整粒子活度和间距,使靶区剂量满足处方剂量D90 145 Gy,并实现尽可能适形均匀的剂量分布。初始粒子间距是1 cm,为改善靶区剂量分布适形度和均匀性,将粒子间距调整为0.75 cm。通过评价均匀性指数(HI)、靶区外体积指数(EI)和适形指数(CI)定制粒子植入优选方案。同时记录植入粒子活度和数目。结果 对直径1 cm的球形靶区,粒子间距1和0.75 cm 时HI分别为40.0%和55.9%,EI分别为98.3%和95.1%,CI均为0.44;对直径3 cm的球形靶区和1 cm×2 cm×2 cm的椭球形靶区,粒子间距1 cm植入方式的HI、EI和CI优于粒子间距0.75 cm 的植入方式。对其余靶区粒子间距0.75 cm植入方式的EI和CI均优于间距1 cm的植入方式,HI略小于间距1 cm的植入方式。粒子间距0.75和1 cm植入单颗粒子活度分别为17.0~27.8 MBq 和30.0~58.8 MBq,间距0.75 cm比间距1 cm多植入粒子2~10颗。结论 对于10种靶区,除直径为1 cm、3 cm的球形靶区和1 cm×2 cm×2 cm 的椭球形靶区以外,其余7种靶区0.75 cm 植入方式的剂量分布适形度更好,靶区外接受处方剂量体积更小,为粒子均匀植入的优选方案。  相似文献   

11.
The characteristics of a flattening filter-free (FFF) beam are different from those of a beam with a flattening filter. For small-field dosimetry, the beam data needed by the radiation treatment planning system (RTPS) includes the percent depth dose (PDD), off-center ratio (OCR), and output factor (OPF) for field sizes down to 3 × 3 cm2 to calculate the beam model. The purpose of this study was to evaluate the accuracy of calculations for the FFF beam by the Eclipse? treatment planning system for field sizes smaller than 3 × 3 cm2 (2 × 2 and 1 × 1 cm2). We used 6X and 10X FFF beams by the Varian TrueBeam? to produce. The AAA and AXB algorithms of the Eclipse were used to compare the Monte Carlo (MC) calculation and the measurements from three dosimeters, a diode detector, a PinPoint dosimeter, and EBT3 film. The PDD curves and the penumbra width in the OCR calculated by the Eclipse, measured data, and those from the MC calculations were in good agreement to within ±2.8 % and ±0.6 mm, respectively. However, the difference in the OPF values between AAA and AXB for a field size of 1 × 1 cm2 was 5.3 % for the 6X FFF beam and 7.6 % for the 10X FFF beam. Therefore, we have to confirm the small field data that is included for the RTPS commission procedures.  相似文献   

12.
江苏省调强放疗剂量学验证研究   总被引:2,自引:2,他引:0       下载免费PDF全文
目的 研究调强放疗(IMRT)多叶光栅野吸收剂量和二维剂量分布验证方法。方法 选取8台医用加速器,6 MV X射线照射野为5 cm×5 cm时,分别使用热释光剂量计(TLD)和EBT3胶片剂量计核查调强放疗多叶光栅野光子线束吸收剂量,并使用EPT3胶片剂量计核查调强放疗多叶光栅野光子线束二维剂量分布。结果 使用多叶光栅野热释光验证方法和胶片剂量计方法,剂量相对偏差范围分别是-1.4%~6.8%和-1.8%~7.8%。有7台结果符合国际原子能机构(IAEA)剂量偏差在±5%的要求;二维剂量分布通过率范围为73.4%~97.0%,有7台符合二维剂量分布通过率> 90%的要求。结论 热释光剂量计和胶片剂量计用于调强放疗多叶光栅野剂量学参数验证是可行的,适合审管部门大规模开展的IMRT的治疗计划系统(TPS)吸收剂量和二维剂量分布验证。  相似文献   

13.
调强放疗多叶光栅野剂量质量核查方法研究   总被引:4,自引:4,他引:0       下载免费PDF全文
目的 研究用热释光剂量计(TLD)和胶片(film)测量调强放疗(IMRT)多叶光栅(MLC)野吸收剂量和二维剂量分布质量核查方法,为我国IMRT剂量质量核查的应用提供指导。方法 根据放疗开展情况,选择江苏、四川、湖北、河南4省的27家医院30台不同型号加速器(瓦里安17台,医科达10台,西门子3台)。同批次胶片和TLD,分别放入2 cm固体模体中固定,装入国际原子能机构(IAEA)提供的15 cm×15 cm×15 cm聚苯乙烯固体模体中。源皮距90 cm,深度10 cm,照射野10 cm×10 cm,照射1组不同剂量点的剂量,分别建立胶片和TLD标准剂量曲线。照射后的TLD和胶片返回中国外部核查组(EAG)测量并计算吸收剂量。测量的胶片或TLD吸收剂量与放疗计划系统(TPS)计算吸收剂量进行比较。胶片测量IMRT多叶光栅二维剂量分布,参加IEAE国际多放射治疗中心研究。30 cm×30 cm均质固体模体,经CT扫描,影像传给TPS制定治疗计划,25 cm×25 cm的胶片放在固体模体表面,源皮距95 cm,深度5 cm,实施IMRT计划,分次完成6 Gy照射。照射后的胶片邮寄到IAEA剂量学实验室测量和估算。IMRT二维剂量分布验证研究验证程序与国际多放射治疗中心研究程序相同。计算3 mm,3%二维剂量分布通过率。胶片测量与TPS计算二维剂量分布通过率进行比较。结果 按IAEA要求,TLD或胶片测量吸收剂量与TPS计算吸收剂量相对偏差应在±5%内符合要求。江苏、四川、湖北、河南4省的TLD及胶片测量吸收剂量与TPS计算吸收剂量的相对偏差结果分别为±0.7%~±8.5%和±0.3%~±7.8%范围内。IAEA要求,胶片测量与TPS计划二维剂量分布通过率3 mm/3%比较,90%符合要求。中国参与国际多放射治疗中心研究结果为94%。江苏、湖北、河南、四川4省参加二维剂量分布验证研究结果在70.0%~99.9%的范围内。结论 TLD和胶片核查IMRT多叶光栅野吸收剂量和二维剂量分布方法,科学适用,可操作性强。建立的TLD和胶片核查方法,适合在国内医院大范围开展IMRT剂量质量核查。  相似文献   

14.
目的 用放射性免冲洗胶片验证调强放射治疗(IMRT)多叶光栅(MLC)叶片到位精确度方法研究。方法 选择瓦里安、医科达、西门子3个厂家的医用电子直线加速器共7台,用25 cm×25 cm的放射性免冲洗胶片放在30 cm×30 cm、厚3.0 cm的均质固体模体上,厚度2.0 cm的固体模体板覆盖在胶片上面,经CT扫描,影像传给放射治疗计划系统(TPS)制定治疗计划,多叶光栅形成5条条状栅栏野,能量6 MV X射线束,每条栅栏野长3 cm,宽0.6 cm,每条条状野间隔3 cm,在最大剂量点处,胶片到源距离100 cm,每条栅栏野给出监督剂量250 MU。照射后邮寄到国际原子能机构(IAEA)剂量学实验室测量和计算。结果 6台加速器胶片测量与TPS计划每条栅栏野MLC条状位置偏差符合IAEA要求的±0.5 mm,1台加速器偏差不符合要求。7台加速器胶片测量每对与每条多叶光栅叶片位置偏差均在IAEA要求0.5 mm以内,符合要求。6台加速器胶片测量每对与每条所有MLC叶片实际宽度差值在0.75 mm范围内,1台加速器为-0.8 mm,不符合要求。6台加速器胶片测量每条多叶光栅叶片实际宽度标准偏差在0.3 mm范围内,符合要求。1台加速器为0.4 mm,不符合要求。结论 用放射性免冲洗胶片验证调强放射治疗多叶光栅片到位精确度的方法简单,快速精确,建议广泛应用到临床。  相似文献   

15.
The electron benefit transfer (EBT) GAFCHROMIC films possess a number of features making them appropriate for high-quality dosimetry in intensity-modulated radiation therapy (IMRT). Compensators to deliver IMRT are known to change the beam-energy spectrum as well as to produce scattered photons and to contaminate electrons; therefore, the accuracy and validity of EBT-film dosimetry in compensator-based IMRT should be investigated. Percentage-depth doses and lateral-beam profiles were measured using EBT films in perpendicular orientation with respect to 6 and 18 MV photon beam energies for: (1) different thicknesses of cerrobend slab (open, 1.0, 2.0, 4.0, and 6.0 cm), field sizes (5×5, 10×10, and 20×20 cm2), and measurement depths (Dmax, 5.0 and 10.0 cm); and (2) step-wedged compensator in a solid phantom. To verify results, same measurements were implemented using a 0.125 cm3 ionization chamber in a water phantom and also in Monte Carlo simulations using the Monte Carlo N-particle radiation transport computer code. The mean energy of photons was increased due to beam hardening in comparison with open fields at both 6 and 18 MV energies. For a 20×20 cm2 field size of a 6 MV photon beam and a 6.0 cm thick block, the surface dose decreased by about 12% and percentage-depth doses increased up to 3% at 30.0 cm depth, due to the beam-hardening effect induced by the block. In contrast, at 18 MV, the surface dose increased by about 8% and depth dose reduced by 3% at 30.0 cm depth. The penumbral widths (80% to 20%) increase with block thickness, field size, and beam energy. The EBT film results were in good agreement with the ionization chamber dose profiles and Monte Carlo N-particle radiation transport computer code simulation behind the step-wedged compensator. Also, there was a good agreement between the EBT-film and the treatment-planning results on the anthropomorphic phantom. The EBT films can be accurately used as a 2D dosimeter for dose verification and quality assurance of compensator-based C-IMRT.  相似文献   

16.
The effects of the physical parameters of an electron beam from a Siemens PRIMUS clinical linear accelerator (linac) on the dose distribution in water were investigated by Monte Carlo simulation. The EGS4 user code, OMEGA/BEAM, was used in this study. Various incident electron beams, for example, with different energies, spot sizes and distances from the point source, were simulated using the detailed linac head structure in the 6 MV photon mode. Approximately 10 million particles were collected in the scored plane, which was set under the reticle to form the so-called phase space file. The phase space file served as a source for simulating the dose distribution in water using DOSXYZ. Dose profiles at Dmax (1.5 cm) and PDD curves were calculated following simulating about 1 billion histories for dose profiles and 500 million histories for percent depth dose (PDD) curves in a 30×30×30 cm3 water phantom. The simulation results were compared with the data measured by a CEA film and an ion chamber. The results show that the dose profiles are influenced by the energy and the spot size, while PDD curves are primarily influenced by the energy of the incident beam. The effect of the distance from the point source on the dose profile is not significant and is recommended to be set at infinity. We also recommend adjusting the beam energy by using PDD curves and, then, adjusting the spot size by using the dose profile to maintain the consistency of the Monte Carlo results and measured data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号