首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
To determine the potential development in vivo of tissue-engineered auricular cartilage, chondrocytes from articular cartilage of bovine forelimb joints were seeded on poly(L-lactic acid-epsilon-caprolactone) copolymer scaffolds molded into the shape of a human ear. Copolymer scaffolds alone in the same shape were studied for comparison. Chondrocyte-seeded copolymer constructs and scaffolds alone were each implanted in dorsal skin flaps of athymic mice for up to 40 weeks. Retrieved specimens were examined by histological and molecular techniques. After 10 weeks of implantation, cell-seeded constructs developed cartilage as assessed by toluidine blue and safranin-O red staining; a vascular, perichondrium-like capsule enveloped these constructs; and tissue formation resembled the auricular shape molded originally. Cartilage matrix formation increased, the capsule persisted, and initial auricular configuration was maintained through implantation for 40 weeks. The presence of cartilage production was correlated with RT-PCR analysis, which showed expression of bovine-specific type II collagen and aggrecan mRNA in cell-seeded specimens at 20 and 40 weeks. Copolymer scaffolds monitored only for 40 weeks failed to develop cartilage or a defined capsule and expressed no mRNA. Extensive vascularization led to scaffold erosion, decrease in original size, and loss of contour and shape. These results demonstrate that poly(L-lactic acid-epsilon-caprolactone) copolymer seeded with articular chondrocytes supports development and maintenance of cartilage in a human ear shape over periods to 40 weeks in this implantation model.  相似文献   

2.
Articular chondrocytes can synthesize new cartilaginous matrix in vivo that forms functional bonds with native cartilage. Other sources of chondrocytes may have a similar ability to form new cartilage with healing capacity. This study evaluates the ability of various chondrocyte sources to produce new cartilaginous matrix in vivo and to form functional bonds with native cartilage. Disks of articular cartilage and articular, auricular, and costal chondrocytes were harvested from swine. Articular, auricular, or costal chondrocytes suspended in fibrin glue (experimental), or fibrin glue alone (control), were placed between disks of articular cartilage, forming trilayer constructs, and implanted subcutaneously into nude mice for 6 and 12 weeks. Specimens were evaluated for neocartilage production and integration into native cartilage with histological and biomechanical analysis. New matrix was formed in all experimental samples, consisting mostly of neocartilage integrating with the cartilage disks. Control samples developed fibrous tissue without evidence of neocartilage. Ultimate tensile strength values for experimental samples were significantly increased (p < 0.05) from 6 to 12 weeks, and at 12 weeks they were significantly greater (p < 0.05) than those of controls. We conclude that articular, auricular, and costal chondrocytes have a similar ability to produce new cartilaginous matrix in vivo that forms mechanically functional bonds with native cartilage.  相似文献   

3.
The imperfections of scaffold materials have hindered the clinical application of cartilage tissue engineering. The recently developed cell-sheet technique is adopted to engineer tissues without scaffold materials, thus is considered being potentially able to overcome the problems concerning the scaffold imperfections. This study constructed monolayer and bilayer chondrocyte cell sheets and harvested the sheets with cell scraper instead of temperature-responsive culture dishes. The properties of the cultured chondrocyte cell sheets and the feasibility of cartilage engineering using the chondrocyte cell sheets was further investigated via in vitro and in vivo study. Primary extracellular matrix (ECM) formation and type II collagen expression was detected in the cell sheets during in vitro culture. After implanted into nude mice for 8 weeks, mature cartilage discs were harvested. The morphology of newly formed cartilage was similar in the constructs originated from monolayer and bilayer chondrocyte cell sheet. The chondrocytes were located within evenly distributed ovoid lacunae. Robust ECM formation and intense expression of type II collagen was observed surrounding the evenly distributed chondrocytes in the neocartilages. Biochemical analysis showed that the DNA contents of the neocartilages were higher than native human costal cartilage; while the contents of the main component of ECM, glycosaminoglycan and hydroxyproline, were similar to native human costal cartilage. In conclusion, the chondrocyte cell sheet constructed using the simple and low-cost technique is basically the same with the cell sheet cultured and harvested in temperature-responsive culture dishes, and can be used for cartilage tissue engineering.  相似文献   

4.
Matrix-associated autologous chondrocyte transplantation (MACT) is a tissue-engineered approach for the treatment of cartilage defects and combines autologous chondrocytes seeded on biomaterials. The objective of the study is the analysis of growth and differentiation behaviour of human articular chondrocytes grown on three different matrices used for MACT. Human articular chondrocytes were kept in monolayer culture for 42 days and then seeded on matrices consisting of either collagen type I/III, hyaluronan, or gelatine. During the culture time of 4 weeks the constructs were analyzed weekly. Morphological criteria were studied by scanning and transmission electron microscopy. The expression of the main type collagens was analyzed by real-time PCR. The collagen type I/III matrix supported a differentiation that closely resembled the tissue organisation of native cartilage, but cell number and type II collagen synthesis were low and differentiation occurred rather late in the cultivation period. The hyaluronan matrix and the gelatine-based matrix supported a rather rapid differentiation, with a high number of cells and a relatively high amount of type II collagen, but there was no spatial assembly that mimicked native cartilage. These facts indicate that the nature of the matrix is of great influence in the differentiation behaviour of dedifferentiated chondrocytes.  相似文献   

5.
Association of biomaterials with autologous cells can provide a new generation of implantable devices for cartilage repair. Such scaffolds should provide a preformed three-dimensional shape and prevent cells from escaping into the articular cavity. Furthermore, these constructs should have sufficient mechanical strength to facilitate handling in a clinical setting and stimulate the uniform spreading of cells and their phenotype redifferentiation. The aim of this study was to verify the ability of HYAFF 11, a recently developed hyaluronic-acid-based biodegradable polymer, to support the growth of human chondrocytes and to maintain their original phenotype. This capability was assessed by the evaluation of collagen types I, II and aggrecan mRNA expression. Immunohistochemical analyses were also performed to evaluate collagen types I, II and proteoglycans synthesis. A field emission in lens scanning microscopy was utilized to verify the interactions between the cells and the biomaterial. Our data indicate that human chondrocytes seeded on HYAFF 11 express and produce collagen type II and aggrecan and downregulate the production of collagen type I. These results provide an in vitro demonstration for the therapeutic potential of HYAFF 11 as a delivery vehicle in a tissue-engineered approach towards the repair of articular cartilage defects.  相似文献   

6.
Transplantation of cultured chondrocytes can regenerate cartilage tissue in cartilage defects. This method requires serial cell passages to expand chondrocytes to a large number of cells for transplantation. However, as chondrocytes are expanded in number in monolayer culture, the cells gradually lose their differentiated phenotype and may not form cartilage tissue. This study investigated whether chondrocytes cultured through various passages maintain their potential to reexpress a chondrogenic phenotype in three-dimensional scaffolds and form cartilage tissue in vitro and in vivo. The growth rate, viability, synthesis of collagen type I and II, and apoptotic activity of chondrocytes with passage number of 1, 2 and 5 were compared during in vitro culture. As the passage number increased, the cell growth rate and viability decreased and apoptotic cell increased. Passage 2 chondrocytes exhibited a high expression of collagen type II and a low expression of collagen type I. In contrast, passage 5 chondrocytes exhibited a low expression of collagen type II and a high expression of collagen type I, indicating chondrocyte dedifferentiation. To examine the ability of chondrocytes to regenerate cartilage tissues in vitro and in vivo, chondrocytes were expanded in vitro to passage number of 1 or 5, seeded onto biodegradable polymer scaffolds, and maintained in vitro or implanted into subcutaneous spaces of athymic mice for 1 month. Histological and immunohistochemical analyses of cartilage tissues engineered in vitro and in vivo with passage 1 chondrocytes showed mature and well-formed cartilage and the presence of highly sulfated glycosaminoglycans and type II collagen, a collagen type produced by differentiated chondrocytes. In contrast, tissues engineered in vitro and in vivo with passage 5 chondrocytes did not have chondrocyte morphology or cartilage-specific extracellular matrices (i.e., glycosaminoglycans and type II collagen). The results of this study show that chondrocyte passage number is an important factor affecting the quality of cartilage tissue-engineered with the chondrocytes, and that chondrocytes.  相似文献   

7.
Tissue engineering may provide a technique to generate cartilage grafts for laryngotracheal reconstruction in children. The present study used a rabbit model to characterize cartilage generated by a candidate tissue engineering approach to determine, under baseline conditions, which chondrocytes in the rabbit produce tissue-engineered cartilage suitable for in vivo testing in laryngotracheal reconstruction. We characterized tissue-engineered cartilage generated in perfused bioreactor chambers from three sources of rabbit chondrocytes: articular, auricular, and nasal cartilage. Biomechanical testing and histological, immunohistochemical, and biochemical assays were performed to determine equilibrium unconfined compression (Young's) modulus, and biochemical composition and structure. We found that cartilage samples generated from articular or nasal chondrocytes lacked the mechanical integrity and stiffness necessary for completion of the biomechanical testing, but five of six auricular samples completed the biomechanical testing (moduli of 210 +/- 93 kPa in two samples at 3 weeks and 100 +/- 65 kPa in three samples at 6 weeks). Auricular samples showed more consistent staining for proteoglycans and collagen II and had significantly higher glycosaminoglycan (GAG) content and concentration and higher collagen content than articular or nasal samples. In addition, the delayed gadolinium enhanced MRI of cartilage (dGEMRIC) method revealed variations in GAG spatial distribution in auricular samples that were not present in articular or nasal samples. The results indicate that, for the candidate tissue engineering approach under baseline conditions, only rabbit auricular chondrocytes produce tissue-engineered cartilage suitable for in vivo testing in laryngotracheal reconstruction. The results also suggest that this and similar tissue engineering approaches must be optimized for each potential source of chondrocytes.  相似文献   

8.
For the application of bone marrow stromal cells (BMSCs) in cartilage tissue engineering, it is imperative to develop efficient strategies for their chondrogenic differentiation. In this study, the conditioned media derived from chondrocyte/scaffold constructs were used to direct chondrogenic differentiation of BMSCs. The porcine articular chondrocytes were seeded on the PGA/PLA scaffolds to form chondrocyte/scaffold constructs and were cultured to form engineered cartilage in vitro. The culture media were collected as conditioned media and used for chondrogenic induction of BMSC pellets (experimental group, Exp.). The chondrocyte pellets and BMSC pellets were cultured routinely as positive control (PC) and negative control (NC), respectively. After 4 weeks, the wet weight and GAG content in Exp. group and PC group were significantly higher than that in NC group. Histological and immunohistochemical analysis showed that cartilaginous tissue was formed with typical cartilage lacuna structure and positive staining of collagen Type II (Col II) in the peripheral area of the BMSC pellets in Exp. group. Gene expression of Sox9, Col II, and COMP in Exp. group and PC group were significantly higher than that in NC group. The growth factors in the conditioned media derived from human costal chondrocytes‐scaffold constructs were tested by protein microassay. The conditioned media contained low levels of TGF‐β1,2,3, IGF‐1 and high levels of IGF‐2, FGF‐4, and IGFBP4,6, and so forth. The soluble factors derived from the engineered cartilage can induce chondrogenic differentiation of BMSCs independently. Many cytokines may function in chondrogenesis in a coordinated way. Anat Rec, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Adult chondrocytes are less chondrogenic than immature cells, yet it is likely that autologous cells from adult patients will be used clinically for cartilage engineering. The aim of this study was to compare the postexpansion chondrogenic potential of adult nasal and articular chondrocytes. Bovine or human chondrocytes were expanded in monolayer culture, seeded onto polyglycolic acid (PGA) scaffolds, and cultured for 40 days. Engineered cartilage constructs were processed for histological and quantitative analysis of the extracellular matrix and mRNA. Some engineered constructs were implanted in athymic mice for up to six additional weeks before analysis. Using adult bovine tissues as a cell source, nasal chondrocytes generated a matrix with significantly higher fractions of collagen type II and glycosaminoglycans as compared with articular chondrocytes. Human adult nasal chondrocytes proliferated approximately four times faster than human articular chondrocytes in monolayer culture, and had a markedly higher chondrogenic capacity, as assessed by the mRNA and protein analysis of in vitro-engineered constructs. Cartilage engineered from human nasal cells survived and grew during 6 weeks of implantation in vivo whereas articular cartilage constructs failed to survive. In conclusion, for adult patients nasal septum chondrocytes are a better cell source than articular chondrocytes for the in vitro engineering of autologous cartilage grafts. It remains to be established whether cartilage engineered from nasal cells can function effectively when implanted at an articular site.  相似文献   

10.
Saldanha V  Grande DA 《Biomaterials》2000,21(23):2427-2431
It has been demonstrated that using cultured chondrocytes that have been seeded onto various biomatrices can enhance the quality of the articular cartilage repair tissue. As tissue-engineering becomes increasingly more complex there is a need to understand how a specific biomaterial may influence gene expression. In this study several commonly used scaffold materials for cartilage tissue engineering were evaluated with respect to their influence on matrix gene expression. Primary cultures of bovine chondrocytes were established in monolayer then seeded onto polylactic acid (PLLA), polyglycolic acid (PGA), collagen matrices. The induction of collagen type I, collagen type II, and aggrecan was observed at various time points on these biomaterials using RT-PCR. The collagen type I gene was upregulated on collagen scaffolds throughout the culture period. PLLA and PGA showed initial induction followed by downregulation. Monolayer culture did not induce collagen I message. Collagen II genes were selectively upregulated after 72 and 96 h post seeding depending the scaffold material. Monolayer culture had strong induction of collagen II. The aggrecan protein was consistently expressed in all scaffold materials cultures and monolayer.  相似文献   

11.
12.
13.
Chondrocytes have been demonstrated to be sensitive to mechanical stimuli, such as compression, tension, shear force, and hydrostatic pressure. The responses of chondrocytes to mechanical compression have been often studied in vitro with cartilage and chondrocyte/hydrogel systems. The aim of this study was to investigate the effects of dynamic compression on gene expression of rabbit chondrocytes which were seeded in elastic polyurethane scaffolds with or without collagen gel encapsulation. Dynamic compression of 20% or 30% strain with 0.1 Hz frequency was applied to the cell-seeded scaffolds for 4, 8, 12, or 24 h, and then the expression of the three genes related to chondrogenic phenotype, type I and II collagens and aggrecan, was analyzed by RT-PCR. We also investigated the gene expression of the compressed chondrocytes, which had experienced 12-h 30% strain dynamic loading, during the post-compression resting period. We found that the expression of type II collagen did not seem to respond to cyclic compression. On the other hand, aggrecan gene was stimulated by dynamic compression. The stimulatory effect disappeared gradually after the dynamic compression was ceased. Furthermore, the mechano-response of the chondrocytes to aggrecan expression was delayed by collagen gel encapsulation. The expression of type I collagen was enhanced by collagen gel. We found that collagen gel encapsulation prolonged the expression of aggrecan and type I collagen during post-compression resting period. We demonstrated that mechanical and biochemical stimuli modulate the gene expression of chondrocytes.  相似文献   

14.
15.
In the field of tissue engineering, techniques have been described to generate cartilage tissue with isolated chondrocytes and bioresorbable or nonbioresorbable biomaterials serving as three-dimensional cell carriers. In spite of successful cartilage engineering, problems of uneven degradation of biomaterial, and unforeseeable cell-biomaterial interactions remain. This study represents a novel technique to engineer cartilage by an in vitro macroaggregate culture system without the use of biomaterials. Human nasoseptal or auricular chondrocytes were enzymatically isolated and amplified in conventional monolayer culture before the cells were seeded into a cell culture insert with a track-etched membrane and cultured in vitro for 3 weeks. The new cartilage formed within the in vitro macroaggregates was analyzed by histology (toluidine blue, von Kossa-safranin O staining), and immunohistochemistry (collagen types I, II, V, VI, and X and elastin). The total glycosaminoglycan (GAG) content of native and engineered auricular as well as nasal cartilage was assayed colorimetrically in a safranin O assay. The biomechanical properties of engineered cartilage were determined by biphasic indentation assay. After 3 weeks of in vitro culture, nasoseptal and auricular chondrocytes synthesized new cartilage with the typical appearance of hyaline nasal cartilage and elastic auricular cartilage. Immunohistochemical staining of cartilage samples showed a characteristic pattern of staining for collagen antibodies that varied in location and intensity. In all samples, intense staining for cartilage-specific collagen types I, II, and X was observed. By the use of von Kossa-safranin O staining a few positive patches-a possible sign of beginning mineralization within the engineered cartilages-were detected. The unique pattern for nasoseptal cartilage is intense staining for type V collagen, whereas auricular cartilage is only weakly positive for collagen types V and VI. Engineered nasal and auricular macroaggregates were negative for anti-elastin antibody (interterritorially). The measurement of total GAG content demonstrated higher GAG content for reformed nasoseptal cartilage compared with elastic auricular cartilage. However, the total GAG content of engineered macroaggregates was lower than that of native cartilage. In spite of the mechanical stability of the auricular macroaggregates, there was no equilibrium of indentation. The histomorphological and immunohistochemical results demonstrate successful cartilage engineering without the use of biomaterials, and identify characteristics unique to hyaline as well as elastic cartilage. The GAG content of engineered cartilage was lower than in native cartilage and the biomechanical properties were not determinable by indentation assay. This study illustrates a novel in vitro macroaggregate culture system as a promising technique for tissue engineering of cartilage grafts. Further long-term in vitro and in vivo studies must be done before this method can be applied to reconstructive surgery of the nose or auricle.  相似文献   

16.
17.
Tissue engineering provides a promising alternative therapy to the complex surgical reconstruction of auricular cartilage by using ear-shaped autologous costal cartilage. Bacterial nanocellulose (BNC) is proposed as a promising scaffold material for auricular cartilage reconstruction, as it exhibits excellent biocompatibility and secures tissue integration. Thus, this study evaluates a novel bilayer BNC scaffold for auricular cartilage tissue engineering. Bilayer BNC scaffolds, composed of a dense nanocellulose layer joined with a macroporous composite layer of nanocellulose and alginate, were seeded with human nasoseptal chondrocytes (NC) and cultured in vitro for up to 6 weeks. To scale up for clinical translation, bilayer BNC scaffolds were seeded with a low number of freshly isolated (uncultured) human NCs combined with freshly isolated human mononuclear cells (MNC) from bone marrow in alginate and subcutaneously implanted in nude mice for 8 weeks. 3D morphometric analysis showed that bilayer BNC scaffolds have a porosity of 75% and mean pore size of 50 ± 25 μm. Furthermore, endotoxin analysis and in vitro cytotoxicity testing revealed that the produced bilayer BNC scaffolds were non-pyrogenic (0.15 ± 0.09 EU/ml) and non-cytotoxic (cell viability: 97.8 ± 4.7%). This study demonstrates that bilayer BNC scaffolds offer a good mechanical stability and maintain a structural integrity while providing a porous architecture that supports cell ingrowth. Moreover, bilayer BNC scaffolds provide a suitable environment for culture-expanded NCs as well as a combination of freshly isolated NCs and MNCs to form cartilage in vitro and in vivo as demonstrated by immunohistochemistry, biochemical and biomechanical analyses.  相似文献   

18.
BACKGROUND: The co-culture of chondrocytes and synovial mesenchymal stem cells can induce the cartilage differentiation of synovial mesenchymal stem cells in vitro, but the cell differentiation induced by co-culture in vivo is rarely reported. OBJECTIVE: To investigate the chondrogenic differentiation of synovial mesenchymal stem cells co-cultured with chondrocytes on the chitosan/type I collagen composite scaffolds after being transplanted into the subcutaneous layer of Sprague-Dawley rats. METHODS: The synovial mesenchymal stem cells and chondrocytes harvested from the synovial membrane and articular cartilage of Sprague-Dawley rats were obtained by enzyme digestion method and cultured respectively. Passage 3 synovial mesenchymal stem cells and passage 2 chondrocytes, which were divided into four groups: group A (chondrocytes alone), group B (synovial mesenchymal stem cells alone), group C (ratio of synovial mesenchymal stem cells:chondrocytes=1:2) and group D (scaffold material without cells), were cultured on chitosan/type I collagen composite scaffolds and transplanted into the subcutaneous layer of rats followed by morphological observation and immunohistochemical staining at 4 and 8 weeks.   . RESULTS AND CONCLUSION: After 4 and 8 weeks, the discoid-like scaffold was visible. The immunohistochemical staining of type II collagen and the toluidine blue staining of aggrecan were significantly positive in groups A and C. These results show that the co-culture of synovial mesenchymal stem cells and chondrocytes on the scaffold in vivo can form cartilage-like tissues.   相似文献   

19.
20.
Cartilage repair strategies increasingly focus on the in vitro development of cartilaginous tissues that mimic the biological and mechanical properties of native articular cartilage. However, current approaches still face problems in the reproducible and standardized generation of cartilaginous tissues that are both biomechanically adequate for joint integration and biochemically rich in extracellular matrix constituents. In this regard, the present study investigated whether long-term continuous compressive loading would enhance the mechanical and biological properties of such tissues. Human chondrocytes were harvested from 8 knee joints (n=8) of patients having undergone total knee replacement and seeded into a collagen type I hydrogel at low density of 2×10(5)cells/ml gel. Cell-seeded hydrogels were cut to disks and subjected to mechanical stimulation for 28 days with 10% continuous cyclic compressive loading at a frequency of 0.3 Hz. Histological and histomorphometric evaluation revealed long-term mechanical stimulation to significantly increase collagen type II and proteoglycan staining homogenously throughout the samples as compared to unstimulated controls. Gene expression analyses revealed a significant increase in collagen type II, collagen type I and MMP-13 gene expression under stimulation conditions, while aggrecan gene expression was decreased and no significant changes were observed in the collagen type II/collagen type I mRNA ratio. Mechanical propertywise, the average value of elastic stiffness increased in the stimulated samples. In conclusion, long-term mechanical preconditioning of human chondrocytes seeded in collagen type I hydrogels considerably improves biological and biomechanical properties of the constructs, corroborating the clinical potential of mechanical stimulation in matrix-associated autologous chondrocyte transplantation (MACT) procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号