共查询到20条相似文献,搜索用时 15 毫秒
1.
Vinatier C Gauthier O Masson M Malard O Moreau A Fellah BH Bilban M Spaethe R Daculsi G Guicheux J 《Journal of biomedical materials research. Part A》2009,89(1):176-185
Hybrid constructs associating a biodegradable matrix and autologous chondrocytes hold promise for the treatment of articular cartilage defects. In this context, our objective was to investigate the potential use of nasal chondrocytes associated with a fibrin sealant for the treatment of articular cartilage defects. The phenotype of primary nasal chondrocytes (NC) from human (HNC) and rabbit (RNC) origin were characterized by RT-PCR. The ability of constructs associating fibrin sealant and NC to form a cartilaginous tissue in vivo was investigated, firstly in a subcutaneous site in nude mice and secondly in an articular cartilage defect in rabbit. HNC express type II collagen and aggrecan, the two major hallmarks of a chondrocytic phenotype. Furthermore, when injected subcutaneously into nude mice within a fibrin sealant, these chondrocytes were able to form a cartilage-like tissue. Our data indicate that RNC also express type II collagen and aggrecan and maintained their phenotype in three-dimensional culture within a fibrin sealant. Moreover, treatment of rabbit articular cartilage defects with autologous RNC embedded in a fibrin sealant led to the formation of a hyalin-like repair tissue. The use of fibrin sealant containing hybrid autologous NC therefore appears as a promising approach for cell-based therapy of articular cartilage. 相似文献
2.
Trimborn M Endres M Bommer C Janke U Krüger JP Morawietz L Kreuz PC Kaps C 《Acta biomaterialia》2012,8(4):1519-1529
Scaffold-assisted autologous chondrocyte implantation (ACI) is an effective clinical procedure for cartilage repair. The aim of our study was to evaluate the chromosomal stability of human chondrocytes subjected to typical cell culture procedures needed for regenerative approaches in polymer-scaffold-assisted cartilage repair. Chondrocytes derived from post mortem donors and from donors scheduled for ACI were expanded, cryopreserved and re-arranged in polyglycolic acid (PGA)-fibrin scaffolds for tissue culture. Chondrocyte redifferentiation was analyzed by electron microscopy, histology and gene expression analysis. Karyotyping was performed using GTG banding and fluorescence in situ hybridization on a single cell basis. Chondrocytes showed de- and redifferentiation accompanied by the formation of extracellular matrix and induction of typical chondrocyte marker genes like type II collagen in PGA-fibrin scaffolds. Post mortem chondrocytes showed up to 1.7% structural and high numbers of numerical (up to 26.7%) chromosomal aberrations, while chondrocytes from living donors scheduled for ACI showed up to 1.8% structural and up to 1.3% numerical alterations. Cytogenetically, cell culture procedures and PGA-fibrin scaffolds did not significantly alter chromosomal integrity of the chondrocyte genome. Human chondrocytes derived from living donors subjected to regenerative medicine cell culture procedures like cell expansion, cryopreservation and culture in resorbable polymer-based scaffolds show normal chromosomal integrity and normal karyotypes. 相似文献
3.
4.
A sandwich model for engineering cartilage with acellular cartilage sheets and chondrocytes 总被引:1,自引:0,他引:1
Acellular cartilage can provide a native extracellular matrix for cartilage engineering. However, it is difficult for cells to migrate into acellular cartilage because of its non-porous structure. The aim of this study is to establish a sandwich model for engineering cartilage with acellular cartilage sheets and chondrocytes. Cartilage from adult pig ear was cut into a circular cylinder with a diameter of approximately 6?mm and freeze-sectioned at thicknesses of 10?μm and 30?μm. The sheets were then decellularized and lyophilized. Chondrocytes isolated from newborn pig ear were expanded for 2 passages. The acellular sheets and chondrocytes were then stacked layer-by-layer, in a sandwich model, and cultured in dishes. After 4 weeks of cultivation, the constructs were then either maintained in culture for another 12 weeks or implanted subcutaneously in nude mouse. Histological analysis showed that cells were completely removed from cartilage sheets after decellularization. By re-seeding cells and stacking 20 layers of sheets together, a cylinder-shaped cell sheet was achieved. Cartilage-like tissues formed after 4 weeks of culture. Histological analyses showed the formation of cartilage with a typical lacunar structure. Cartilage formation was more efficient with 10?μm-thick sheets than with 30?μm sheets. Mature cartilage was achieved after 12 weeks of implantation, which was demonstrated by histology and confirmed by Safranin O, Toluidine blue and anti-type II collagen antibody staining. Furthermore, we achieved cartilage with a designed shape by pre-shaping the sheets prior to implantation. These results indicate that the sandwich model could be a useful model for engineering cartilage in vitro and in vivo. 相似文献
5.
目的 探讨以聚羟基烷酸酯(polyhydroxyalkanotes,PHBV)为支架材料的同种异体软骨细胞构建组织工程化软骨的能力.方法 分离、培养、扩增、传代培养兔软骨细胞,接种在PHBV支架材料上,体外培养7 d后,将细胞-材料复合物种植在成年兔皮下,6周取材,对获得的同种异体工程化软骨进行组织学评价及扫描电镜观察.结果 组织学观察示PHBV有成熟软骨组织形成,软骨细胞形态正常,胶原形成较多;电镜观察示软骨基质内弹性纤维较丰富,在弹性纤维包绕中有散在的卵圆形软骨细胞.单纯PHBV体内培养无软骨组织形成.结论 以PHBV为支架材料同种异体软骨细胞在有免疫力的动物体内可形成工程化软骨. 相似文献
6.
Rabbit articular chondrocytes seeded on collagen-chitosan-GAG scaffold for cartilage tissue engineering in vivo 总被引:4,自引:0,他引:4
Yan J Qi N Zhang Q 《Artificial cells, blood substitutes, and immobilization biotechnology》2007,35(4):333-344
In this study, we prepared a tri-copolymer porous matrices by natural polymer, collagen (Col), Chitosan (Chi) and Chondroitin (CS). Rabbit articular chondrocytes were isolated from the shoulder articular joints of a rabbit, seeded in Col-Chi-CS scaffold, and implanted subcutaneously in the dorsum of athymic nude mice to tissue engineer articular cartilage in vivo. In vitro studies show that Chondrocytes adhered to the scaffold, where they proliferated and secreted extracellular matrices with time, filling the space within the scaffold. The results of hematoxylin and eosin staining scanning electron microscopy revealed that most of the chondrocytes maintained their typically rounded morphology. After 28 days of culture within Col-Chi-CS scaffold in vitro, the results of histological staining showed forming of cartilage-specific morphological appearance and structural characteristics such as lacunae. Subcutaneous implantation studies in nude mice demonstrated that a homogeneous cartilaginous tissue, which was similar to those of natural cartilage, formed when chondrocytes were seeded in Col-Chi-CS matrix after implant 12 weeks. The tri-copolymer matrix could therefore have potential applications as a three-dimensional scaffold for cartilage tissue engineering. 相似文献
7.
Potential use of collagen-chitosan-hyaluronan tri-copolymer scaffold for cartilage tissue engineering 总被引:8,自引:0,他引:8
Yan J Li X Liu L Wang F Zhu TW Zhang Q 《Artificial cells, blood substitutes, and immobilization biotechnology》2006,34(1):27-39
A three-dimensional biodegradable porous scaffold plays a vital role in a tissue engineering approach. Collagen, chitosan and hyaluronan (HA) are natural extracellular matrix (ECM) or similarity, and may provide appropriate environment for the generation of cartilage-like tissue. In this study, we prepared a collagen/chitosan/HA tri-copolymer porous scaffold by freezing and lyophilization to evaluate physico-chemical properties of the tri-copolymer scaffold and its capacity to sustain chondrocytes proliferation and differentiation in vitro. The results show that the mechanical strength, the resistance to enzymatic degradation, and the waterblinding capacity were improved when chitosan and hyaluronan were incorporated into a collagen scaffold. After 21 days of culture, the porous scaffold had been surfaced with cartilaginous tissue. DNA and glycosaminoglycan (GAG) contents were significantly higher during culture periods in collagen/ chitosan/hyaluronan matrix compared to collagen alone matrix, and most seeded cells preserved the chondrocytic phenotype during culture within the scaffold. The collagen/chitosan/hyaluronan tri-copolymer scaffold has potential applications in a cartilage tissue engineering scaffold field. 相似文献
8.
可靠而安全的软骨种子细胞来源是保证软骨组织工程持续深入研究的前提。本文介绍了目前软骨组织工程种子细胞来源、培养和评价等方面的最新研究进展 相似文献
9.
Potential of 3-D tissue constructs engineered from bovine chondrocytes/silk fibroin-chitosan for in vitro cartilage tissue engineering 总被引:2,自引:0,他引:2
The use of cell-scaffold constructs is a promising tissue engineering approach to repair cartilage defects and to study cartilaginous tissue formation. In this study, silk fibroin/chitosan blended scaffolds were fabricated and studied for cartilage tissue engineering. Silk fibroin served as a substrate for cell adhesion and proliferation while chitosan has a structure similar to that of glycosaminoglycans, and shows promise for cartilage repair. We compared the formation of cartilaginous tissue in silk fibroin/chitosan blended scaffolds seeded with bovine chondrocytes and cultured in vitro for 2 weeks. The constructs were analyzed for cell viability, histology, extracellular matrix components glycosaminoglycan and collagen types I and II, and biomechanical properties. Silk fibroin/chitosan scaffolds supported cell attachment and growth, and chondrogenic phenotype as indicated by Alcian Blue histochemistry and relative expression of type II versus type I collagen. Glycosaminoglycan and collagen accumulated in all the scaffolds and was highest in the silk fibroin/chitosan (1:1) blended scaffolds. Static and dynamic stiffness at high frequencies was higher in cell-seeded constructs than non-seeded controls. The results suggest that silk/chitosan scaffolds may be a useful alternative to synthetic cell scaffolds for cartilage tissue engineering. 相似文献
10.
Scaffolds for tissue engineering of cartilage 总被引:4,自引:0,他引:4
Woodfield TB Bezemer JM Pieper JS van Blitterswijk CA Riesle J 《Critical reviews in eukaryotic gene expression》2002,12(3):209-236
Articular cartilage lesions resulting from trauma or degenerative diseases are commonly encountered clinical problems. It is well-established that adult articular cartilage has limited regenerative capacity, and, although numerous treatment protocols are currently employed clinically, few approaches exist that are capable of consistently restoring long-term function to damaged articular cartilage. Tissue engineering strategies that focus on the use of three-dimensional scaffolds for repairing articular cartilage lesions offer many advantages over current treatment strategies. Appropriate design of biodegradable scaffold conduits (either preformed or injectable) allow for the delivery of reparative cells bioactive factors, or gene factors to the defect site in an organized manner. This review seeks to highlight pertinent design considerations and limitations related to the development, material selection, and processing of scaffolds for articular cartilage tissue engineering, evidenced over the last decade. In particular, considerations for novel repair strategies that use scaffolds in combination with controlled release of bioactive factors or gene therapy are discussed, as are scaffold criteria related to mechanical stimulation of cell-seeded constructs. Furthermore, the subsequent impact of current and future aspects of these multidisciplinary scaffold-based approaches related to in vitro and in vivo cartilage tissue engineering are reported herein. 相似文献
11.
Kafienah W Jakob M Démarteau O Frazer A Barker MD Martin I Hollander AP 《Tissue engineering》2002,8(5):817-826
Adult chondrocytes are less chondrogenic than immature cells, yet it is likely that autologous cells from adult patients will be used clinically for cartilage engineering. The aim of this study was to compare the postexpansion chondrogenic potential of adult nasal and articular chondrocytes. Bovine or human chondrocytes were expanded in monolayer culture, seeded onto polyglycolic acid (PGA) scaffolds, and cultured for 40 days. Engineered cartilage constructs were processed for histological and quantitative analysis of the extracellular matrix and mRNA. Some engineered constructs were implanted in athymic mice for up to six additional weeks before analysis. Using adult bovine tissues as a cell source, nasal chondrocytes generated a matrix with significantly higher fractions of collagen type II and glycosaminoglycans as compared with articular chondrocytes. Human adult nasal chondrocytes proliferated approximately four times faster than human articular chondrocytes in monolayer culture, and had a markedly higher chondrogenic capacity, as assessed by the mRNA and protein analysis of in vitro-engineered constructs. Cartilage engineered from human nasal cells survived and grew during 6 weeks of implantation in vivo whereas articular cartilage constructs failed to survive. In conclusion, for adult patients nasal septum chondrocytes are a better cell source than articular chondrocytes for the in vitro engineering of autologous cartilage grafts. It remains to be established whether cartilage engineered from nasal cells can function effectively when implanted at an articular site. 相似文献
12.
In this work, novel hydrogel composites, based on the biodegradable polymer, oligo(poly(ethylene glycol) fumarate) (OPF) and gelatin microparticles (MPs) were utilized as injectable cell and growth factor carriers for cartilage tissue engineering applications. Specifically, bovine chondrocytes were embedded in composite hydrogels co-encapsulating gelatin MPs loaded with transforming growth factor-beta1 (TGF-beta1). Hydrogels with embedded cells co-encapsulating unloaded MPs and those with no MPs served as controls in order to assess the effects of MPs and TGF-beta1 on chondrocyte function. Samples were cultured up to 28 days in vitro. By 14 days, cell attachment to embedded gelatin MPs within the constructs was observed via light microscopy. Bioassay results showed that, over the 21 day period, there was a statistically significant increase in cellular proliferation for samples containing gelatin MPs, but no increase was exhibited in samples without MPs over the culture period. The release of TGF-beta1 further increased cell construct cellularity. Over the same time period, glycosaminoglycan content per cell remained constant for all formulations, suggesting that the dramatic increase in cell number for samples with TGF-beta1-loaded MPs was accompanied by maintenance of the cell phenotype. Overall, these data indicate the potential of OPF hydrogel composites containing embedded chondrocytes and TGF-beta1-loaded gelatin MPs as a novel strategy for cartilage tissue engineering. 相似文献
13.
体外软骨构建是软骨组织工程产业化发展及临床应用的重要手段。然而,采用现有的体外构建技术无法构建功能接近正常的软骨。生物反应器能够在一定程度上模拟体内环境,有望弥补现有体外构建技术的弊端。研究发现,流体剪切力、静态液压力和直接压缩力是体内软骨发育和成熟的重要力学因素,常用软骨生物反应器均据此设计而产生。由于不同类型生物反应器各具特点,研究和开发新型复合式生物反应器将成为未来的发展方向。对目前软骨组织工程生物反应器的研究现状做一综述。 相似文献
14.
Cartilage tissue engineering using human auricular chondrocytes embedded in different hydrogel materials 总被引:1,自引:0,他引:1
Yamaoka H Asato H Ogasawara T Nishizawa S Takahashi T Nakatsuka T Koshima I Nakamura K Kawaguchi H Chung UI Takato T Hoshi K 《Journal of biomedical materials research. Part A》2006,78(1):1-11
To seek a suitable scaffold for cartilage tissue engineering, we compared various hydrogel materials originating from animals, plants, or synthetic peptides. Human auricular chondrocytes were embedded in atelopeptide collagen, alginate, or PuraMatrix, all of which are or will soon be clinically available. The chondrocytes in the atelopeptide collagen proliferated well, while the others showed no proliferation. A high-cell density culture within each hydrogel enhanced the expression of collagen type II mRNA, when compared with that without hydrogel. By stimulation with insulin and BMP-2, collagen type II and glycosaminoglycan were significantly accumulated within all hydrogels. Chondrocytes in the atelopeptide collagen showed high expression of beta1 integrin, seemingly promoting cell-matrix signaling. The N-cadherin expression was inhibited in the alginate, implying that decrease in cell-to-cell contacts may maintain chondrocyte activity. The matrix synthesis in PuraMatrix was less than that in others, while its Young's modulus was the lowest, suggesting a weakness in gelling ability and storage of cells and matrices. Considering biological effects and clinical availability, atelopeptide collagen may be accessible for clinical use. However, because synthetic peptides can control the risk of disease transmission and immunoreactivities, some improvement in gelling ability would provide a more useful hydrogel for ideal cartilage regeneration. 相似文献
15.
RGD-peptides for tissue engineering of articular cartilage 总被引:9,自引:0,他引:9
Jeschke B Meyer J Jonczyk A Kessler H Adamietz P Meenen NM Kantlehner M Goepfert C Nies B 《Biomaterials》2002,23(16):3455-3463
One keypoint in the development of a biohybrid implant for articular cartilage defects is the specific binding of cartilage cells to a supporting structure. Mimicking the physiological adhesion process of chondrocytes to the extracellular matrix is expected to improve cell adhesion of in vitro cultured chondrocytes. Our approach involves coating of synthetic scaffolds with tailor-made, cyclic RGD-peptides, which bind to specific integrin receptors on the cell surface. In this study we investigated the expression pattern of integrins on the cell surface of chondrocytes and their capability to specifically bind to RGD-peptide coated materials in the course of monolayer cultivation. Human chondrocytes expressed integrins during a cultivation period of 20 weeks. Receptors proved to be functionally active as human and pig chondrocytes attached to RGD-coated surfaces. A competition assay with soluble RGD-peptide revealed binding specificity to the RGD-entity. Chondrocyte morphology changed with increasing amounts of cyclic RGD-peptides on the surface. 相似文献
16.
de Isla N Huseltein C Jessel N Pinzano A Decot V Magdalou J Bensoussan D Stoltz JF 《Bio-medical materials and engineering》2010,20(3):127-133
Tissue engineering is a multidisciplinary field that applies the principles of engineering, life sciences, cell and molecular biology toward the development of biological substitutes that restore, maintain, and improve tissue function. In Western Countries, tissues or cells management for clinical uses is a medical activity governed by different laws. Three general components are involved in tissue engineering: (1) reparative cells that can form a functional matrix; (2) an appropriate scaffold for transplantation and support; and (3) bioreactive molecules, such as cytokines and growth factors that will support and choreograph formation of the desired tissue. These three components may be used individually or in combination to regenerate organs or tissues. Thus the growing development of tissue engineering needs to solve four main problems: cells, engineering development, grafting and safety studies. 相似文献
17.
Potential use of chitosan as a cell scaffold material for cartilage tissue engineering 总被引:29,自引:0,他引:29
One of the most important factors in any tissue-engineering application is the cell substrate. The purpose of this study was the initial evaluation of chitosan, a derivative of the abundant, naturally occurring biopolymer chitin, as a cell scaffold for cartilage tissue engineering. Chitosan scaffolds having an interconnecting porous structure were easily fabricated by simple freezing and lyophilization of a chitosan solution. After rehydration of scaffolds, porcine chondrocytes were seeded onto scaffolds and cultured for up to 28 days in a rotating-wall bioreactor. Chitosan scaffolds supported cell attachment and maintenance of a rounded cell morphology. After 18 days, cells within the scaffolds had synthesized extracellular matrix in which proteoglycan and type II collagen were detected by toluidine blue staining and immunohistochemistry, respectively. Abundant extracellular matrix was found almost exclusively in the periphery of the scaffolds, as scaffold microstructure prevented cells from penetrating to interior regions. Nonetheless, the results suggest that chitosan scaffolds may be a useful alternative to synthetic cell scaffolds for cartilage tissue engineering. 相似文献
18.
Native and DPPA cross-linked collagen sponges seeded with fetal bovine epiphyseal chondrocytes used for cartilage tissue engineering 总被引:11,自引:0,他引:11
Collagen-based biomaterials in the form of sponges (bovine type I collagen, both native and cross-linked by treatment with diphenylphosphorylazide, noted control and DPPA sponges respectively) were tested as three-dimensional scaffolds to support chondrocyte proliferation with maintenance of the phenotype in order to form neocartilage. Control and DPPA sponges were initially seeded with 10(6) or 10(7) foetal bovine epiphyseal chondrocytes and maintained for 4 weeks in culture under static conditions in RPMI/NCTC medium with 10% FCS and without addition of fresh ascorbic acid. Both supports were always present during the study and a partial decrease in size and weight was detected only with control sponges, both seeded and unseeded. Cell proliferation was only noted in the 10(6) cells-seeded sponges (4-fold increase after 4 weeks of culture). Specific cartilage collagens (types II and XI) were deposited in the matrix throughout the culture and traces of type I collagen were noticed only in the culture medium after 2-3 weeks and 4 weeks in the case of 10(6) and 10(7) cells-seeded sponges, respectively. Glycosaminoglycans accumulated in the matrix, up to 1.8 and 9.8% of total dry weight after one month with both seeding conditions, which was much lower than in the natural tissue. In the 10(7) cells-seeded sponges, mineral deposition, observed with unseeded sponges, was significantly decreased (2- to 3-fold). These in vitro results indicate that both collagen matrices can support the development of tissue engineered cartilage. 相似文献
19.
Chondrocytes of different ages synthesize proteoglycans which have structural differences in both the chondroitin sulfate and keratan sulfate glycosaminoglycans. In order to ascertain whether age-dependent differences also occur in the core protein, the chick limb bud mesenchymal cell culture system was utilized to analyze newly synthesized proteoglycan core protein from undifferentiated mesenchymal cells (day 1 and 2), newly differentiated cartilage (day 4), mature cartilage (day 8), and senescent cartilage (day 16). The core protein synthesized at various times was identified by radiolabeling with [3H]leucine and [35S]sulfate immediately prior to extraction and purification. The sizes of the various core protein preparations were compared by electrophoresis on a 3% polyacrylamide gel after partial deglycosylation with chondroitinase AC and keratanase. The proteoglycans from day 4, 8, and 16 cultures each give rise to a single band of approximately 475,000 daltons. The proteoglycans from day 1 and 2 cultures also give rise to the 475,000 dalton band, but each contains several other components which produce a smear of high molecular weight material on the gel. The monomer proteoglycans were incubated with cyanogen bromide and the resultant peptides separated by electrophoresis on a 5-17.5% polyacrylamide gel. The peptide displays of core proteins synthesized on days 4, 8 and 16 are virtually identical in terms of the number and electrophoretic distribution of the core protein peptides. In contrast, proteoglycan core proteins from day 1 and day 2 cultures give rise to peptide displays which resemble those from older cultures in some respects but have distinct features as well. The absence of structural variation in the newly synthesized proteoglycan core proteins from cartilage of different ages suggests that the age-related changes in the structure of the intact proteoglycans result from differences in the glycosaminoglycan biosynthetic machinery rather than alterations in the acceptor molecule (i.e., the core protein). 相似文献
20.
Cellulose-based scaffold materials for cartilage tissue engineering 总被引:17,自引:0,他引:17
Non-woven cellulose II fabrics were used as scaffolds for in vitro cartilage tissue engineering. The scaffolds were activated in a saturated Ca(OH)(2) solution and subsequently coated with a calcium phosphate layer precipitated from a supersaturated physiological solution. Chondrocyte cell response and cartilage development were investigated. The cell adherence was significantly improved compared to untreated cellulose fabrics, and the proliferation and vitality of the adhered chondrocytes were excellent, indicating the biocompatibility of these materials. A homogeneous distribution of the seeded cells was possible and the development of cartilageous tissue could be proved. In contact with a physiological chondrocyte solution, calcium is expected to be leached out from the precipitated layer, which might lead to a microenvironment that triggers the development of cartilage in a way similar to cartilage repair in the vicinity of subchondral bone. 相似文献