首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
This paper describes the differences in the presence of myofascial trigger points (TrPs) in the upper trapezius, sternocleidomastoid, temporalis and suboccipital muscles between unilateral migraine subjects and healthy controls, and the differences in the presence of TrPs between the symptomatic side and the non-symptomatic side in migraine subjects. In addition, we assess the differences in the presence of both forward head posture (FHP) and active neck mobility between migraine subjects and healthy controls and the relationship between FHP and neck mobility. Twenty subjects with unilateral migraine without side-shift and 20 matched controls participated. TrPs were identified when there was a hypersensible tender spot in a palpable taut band, local twitch response elicited by the snapping palpation of the taut band and reproduction of the referred pain typical of each TrP. Side-view pictures were taken in both sitting and standing positions to measure the cranio-vertebral angle. A cervical goniometer was employed to measure neck mobility. Migraine subjects showed a significantly greater number of active TrPs (P<0.001), but not latent TrPs, than healthy controls. Active TrPs were mostly located ipsilateral to migraine headaches (P<0.01). Migraine subjects showed a smaller cranio-vertebral angle than controls (P<0.001), thus presenting a greater FHP. Neck mobility in migraine subjects was less than in controls only for extension (P=0.02) and the total range of motion in flexion/extension (P=0.01). However, there was a positive correlation between the cranio-vertebral angle and neck mobility. Nociceptive inputs from TrPs in head and neck muscles may produce continuous afferent bombardment of the trigeminal nerve nucleus caudalis and, thence, activation of the trigeminovascular system. Active TrPs located ipsilateral to migraine headaches might be a contributing factor in the initiation or perpetuation of migraine.  相似文献   

3.
Present pain models for tension-type headache suggest that nociceptive inputs from peripheral tender muscles can lead to central sensitization and chronic tension-type headache (CTTH) conditions. Such models support that possible peripheral mechanisms leading to pericranial tenderness include activation or sensitization of nociceptive nerve endings by liberation of chemical mediators (bradikinin, serotonin, substance P). However, a study has found that non-specific tender points in CTTH subjects were not responsible for liberation of algogenic substances in the periphery. Assuming that liberation of algogenic substances is important, the question arising is: if tender muscle points are not the primary sites of on-going neurogenic inflammation, which structure can be responsible for liberation of chemical mediators in the periphery? A recent study has found higher levels of algogenic substances, and lower pH levels, in active myofascial trigger point (TrPs) compared with control tender points. Clinical studies have demonstrated that referred pain elicited by head and neck muscles contribute to head pain patterns in CTTH. Based on available data, an updated pain model for CTTH is proposed in which headache can at least partly be explained by referred pain from TrPs in the posterior cervical, head and shoulder muscles. In this updated pain model, TrPs would be the primary hyperalgesic zones responsible for the development of central sensitization in CTTH.  相似文献   

4.
OBJECTIVE: To investigate whether cross-sectional area (CSA) of the suboccipital muscles was associated with active trigger points (TrPs) in chronic tension-type headache (CTTH). DESIGN: Magnetic resonance imaging (MRI) of the cervical spine was performed in 11 females with CTTH aged from 26 to 50 yrs old. CSA for both rectus capitis posterior minor (RCPmin) and rectus capitis posterior major (RCPmaj) muscles were measured from axial T1-weighted images, using axial MRI slices aligned parallel to the C2/3 intervertebral disc. A headache diary was kept for 4 wks to record the pain history. TrPs in the suboccipital muscle were identified by eliciting referred pain to palpation, and increased referred pain with muscle contraction. TrPs were considered active if the elicited referred pain reproduced the head pain pattern and features of the pattern seen during spontaneous headache attacks. RESULTS: Active TrPs were found in six patients (55%), whereas the remaining five patients showed latent TrPs. CSA of the RCPmin was significantly smaller (F = 13.843; P = 0.002) in the patients with active TrPs (right side: 55.9 +/- 4.4 mm; left side: 61.1 +/-: 3.8 mm) than in patients with latent TrPs (right side: 96.9 +/- 14.4 mm; left side: 88.7 +/- 9.7 mm). No significant differences were found for CSA of the RCPmaj between the patients with either active or latent TrP (P > 0.5). CONCLUSIONS: It seems that muscle atrophy in the RCPmin, but not in the RCPmaj, was associated with suboccipital active TrPs in CTTH, although studies with larger sample sizes are now required. It may be that nociceptive inputs in active TrPs could lead to muscle atrophy of the involved muscles. Muscle disuse or avoidance behavior can also be involved in atrophy.  相似文献   

5.
The aim of this study was to describe the differences in the presence of myofascial trigger points (TrPs) in the upper trapezius,sternocleidomastoid, levator scapulae and suboccipital muscles between patients presenting with mechanical neck pain and control healthy subjects. Twenty subjects with mechanical neck pain and 20 matched healthy controls participated in this study. TrPs were identified, by an assessor blinded to the subjects' condition, when there was a hypersensible tender spot in a palpable taut band, local twitch response elicited by the snapping palpation of the taut band, and reproduction of the referred pain typical of each TrP. The mean number of TrPs present on each neck pain patient was 4.3 (SD: 0.9), of which 2.5 (SD: 1.3) were latent and 1.8 (SD: 0.8) were active TrPs. Control subjects also exhibited TrPs (mean: 2; SD: 0.8). All were latent TrPs. Differences in the number of TrPs between both study groups were significant for active TrPs (P < 0.001), but not for latent TrPs (P > 0.5). Moreover, differences in the distribution of TrPs within the analysed cervical muscles were also significant (P < 0.01) for all muscles except for both levators capulae. All the examined muscles evoked referred pain patterns contributing to patients' symptoms. Active TrPs were more frequent in patients presenting with mechanical neck pain than in healthy subjects.  相似文献   

6.
OBJECTIVE: To assess the presence of trigger points (TrPs) in several head and neck muscles in subjects with chronic tension-type headache (CTTH) and in healthy subjects; and to evaluate the relationship of these TrPs with forward head posture (FHP), headache intensity, duration, and frequency. BACKGROUND: Tension-type headache (TTH) is a headache in which myofascial TrPs in head and neck muscles might play an important etiologic role. DESIGN: A blinded, controlled, pilot study. METHODS: Twenty-five CTTH subjects and 25 matched controls without headache were studied. TrPs in bilateral upper trapezius, sternocleidomastoids, and temporalis muscles were identified according to Simons et al's diagnostic criteria: tenderness in a hyperirritable spot within a palpable taut band, local twitch response elicited by snapping palpation, and elicited referred pain with palpation. A TrP was considered active if the subject recognized the evoked referred pain as familiar headache. If the evoked referred pain was not recognized as familiar headache, the TrP was considered as latent. Side-view pictures of each subject were taken in both sitting and standing positions in order to assess FHP by measuring the cranio-vertebral angle. Both measurements were made by a blinded assessor. A headache diary was kept for 4 weeks in order to assess headache intensity, frequency, and duration. RESULTS: The mean number of TrPs on each CTTH subject was 3.9 (SD: 1.2), of which 1.9 (SD: 1.2) were active TrPs and 1.9 (SD: 0.8) were latent TrPs. Control subjects only exhibited latent TrPs (mean: 1.4; SD: 0.8). There was a significant difference between the CTTH group and the controls for active TrPs (P < .001), but not for latent TrPs (P > .05). Differences in the distribution of active and latent TrPs within each muscle were also significant for all the analyzed muscles (P < .01). CTTH subjects with active TrPs in the right upper trapezius muscle or left sternocleidomastoid muscle showed a greater headache intensity and duration, but not headache frequency, compared to those with latent TrPs (P < .05). Active TrPs in the right temporalis muscle were associated with longer headache duration (P < .01), whereas active TrPs in the left temporalis muscle were associated with greater headache intensity (P < .05). CTTH subjects with active TrPs in the analyzed muscles had a greater FHP than those with latent TrPs in both sitting and standing positions. Differences were only significant for TrPs in the left sternocleidomastoid and FHP in the sitting position (P < .01). CONCLUSIONS: Active TrPs in upper trapezius, sternocleidomastoid, and temporalis muscles were associated with CTTH. CTTH subjects with active TrPs usually reported a greater headache intensity and longer headache duration than those with latent TrPs. CTTH subjects with active TrPs tended to have a greater FHP than CTTH subjects with latent TrPs.  相似文献   

7.
OBJECTIVE: To assess the differences in the presence of trigger points (TrPs) in head and neck muscles, forward head posture (FHP) and neck mobility between episodic tension-type headache (ETTH) subjects and healthy controls. In addition, we assess the relationship between these muscle TrPs, FHP, neck mobility, and several clinical variables concerning the intensity and the temporal profile of headache. BACKGROUND: TTH is a headache in which musculoskeletal disorders of the craniocervical region might play an important role in its pathogenesis. Design.-A blinded, controlled pilot study. METHODS: Fifteen ETTH subjects and 15 matched controls without headache were studied. TrPs in both upper trapezius, both sternocleidomastoids, and both temporalis muscles were identified according to Simons and Gerwin diagnostic criteria (tenderness in a hypersensible spot within a palpable taut band, local twitch response elicited by snapping palpation, and elicited referred pain with palpation). Side-view pictures of each subject were taken in both sitting and standing positions, in order to assess FHP by measuring the craniovertebral angle. A cervical goniometer was employed to measure neck mobility. All measures were taken by a blinded assessor. A headache diary was kept for 4 weeks in order to assess headache intensity, frequency, and duration. RESULTS: The mean number of TrPs for each ETTH subject was 3.7 (SD: 1.3), of which 1.9 (SD: 0.9) were active, and 1.8 (SD: 0.9) were latent. Control subjects only had latent TrPs (mean: 1.5; SD: 1). TrP occurrence between the 2 groups was significantly different for active TrPs (P < .001), but not for latent TrPs (P > .05). Differences in the distribution of TrPs were significant for the right upper trapezius muscles (P= .04), the left sternocleidomastoid (P= .03), and both temporalis muscles (P < .001). Within the ETTH group, headache intensity, frequency, and duration outcomes did not differ depending on TrP activity, whether the TrP was active or latent. The craniovertebral angle was smaller, ie, there was a greater FHP, in ETTH patients than in healthy controls for both sitting and standing positions (P < .05). ETTH subjects with active TrPs in the analyzed muscles had a greater FHP than those with latent TrPs in both sitting and standing positions, though differences were only significant for certain muscles. Finally, ETTH patients also showed lesser neck mobility than healthy controls in the total range of motion as well as in half-cycles (except for cervical extension), although neck mobility did not seem to influence headache parameters. CONCLUSIONS: Active TrPs in the upper trapezius, sternocleidomastoid, and temporalis muscles were more common in ETTH subjects than in healthy controls, although TrP activity was not related to any clinical variable concerning the intensity and the temporal profile of headache. ETTH patients showed greater FHP and lesser neck mobility than healthy controls, although both disorders were not correlated with headache parameters.  相似文献   

8.
This study evaluated the contribution of myofascial trigger points (TrPs) to migraine pain. Seventy-eight migraine patients with cervical active TrPs whose referred areas (RAs) coincided with migraine sites (frontal/temporal) underwent electrical pain threshold measurement in skin, subcutis, and muscle in TrPs and RAs at baseline and after 3, 10, 30, and 60 days; migraine pain assessment (number and intensity of attacks) for 60 days before and 60 days after study start. Fifty-four patients (group 1) underwent TrP anesthetic infiltration on the 3rd, 10th, 30th, and 60th day (after threshold measurement); 24 (group 2) received no treatment. Twenty normal subjects underwent threshold measurements in the same sites and time points as patients. At baseline, all patients showed lower than normal thresholds in TrPs and RAs in all tissues (P < .001). During treatment in group 1, all thresholds increased progressively in TrPs and RAs (P < .0001), with sensory normalization of skin/subcutis in RAs at the end of treatment; migraine pain decreased (P < .001). Threshold increase in RAs and migraine reduction correlated linearly (.0001 < P < .006). In group 2 and normal subjects, no changes occurred. Cervical TrPs with referred areas in migraine sites thus contribute substantially to migraine symptoms, the peripheral nociceptive input from TrPs probably enhancing the sensitization level of central sensory neurons. PERSPECTIVE: This article shows the beneficial effects of local therapy of active myofascial trigger points (TrPs) on migraine symptoms in patients in whom migraine sites coincide with the referred areas of the TrPs. These results suggest that migraine pain is often contributed to by myofascial inputs that enhance the level of central neuronal excitability.  相似文献   

9.
Referred pain evoked by suboccipital muscle trigger points (TrPs) spreads to the side of the head over the occipital and temporal bones and is usually perceived as bilateral headache. This paper describes the presence of referred pain from suboccipital muscle TrPs in subjects with episodic tension-type headache (ETTH) and in healthy controls. Ten patients presenting with ETTH and 10 matched controls without headache were examined by a blinded assessor for the presence of suboccipital muscle TrPs. Diagnostic criteria described by Simons and Gerwin were adapted to diagnose TrPs, i.e. presence of tenderness in the suboccipital region, referred pain evoked by maintained pressure for 10 s, and increased referred pain on muscle contraction. Six ETTH patients (60%) had active TrPs and 4 had latent TrPs (40%). On the other hand, 2 control subjects also had latent TrPs. Differences in the presence of suboccipital muscle TrPs between both groups were significant for active TrPs (P<0.001), but not for latent TrPs. Active TrPs were only present in ETTH patients, although TrP activity was not related to any clinical variable concerning the intensity and the temporal profile of headache. Myofascial TrPs in the suboccipital muscles might contribute to the origin and/or maintenance of headache, but a comprehensive knowledge of the role of these muscles in tension-type headache awaits further research.  相似文献   

10.
Our aim was to describe the referred pain patterns and size of areas of trigger points (TrPs) in the masticatory and neck-shoulder muscles of women with myofascial temporomandibular disorders (TMD). Twenty-five women with myofascial TMD and 25 healthy matched women participated. Bilateral temporalis, deep masseter, superficial masseter, sternocleidomastoid, upper trapezius and suboccipital muscles were examined for TrPs by an assessor blinded to the subjects' condition. TrPs were identified with manual palpation and categorized into active and latent according to proposed criteria. The referred pain areas were drawn on anatomical maps, digitalized, and measured. The occurrence of active (P < .001) and latent TrPs (P = .04) were different between groups. In all muscles, there were significantly more active and latent TrP in patients than controls (P < .001). Significant differences in referred pain areas between groups (P < .001) and muscles (P < .001) were found: the referred pain areas were larger in patients (P < .001), and the referred pain area elicited by suboccipital TrPs was greater than the referred pain from other TrPs (P < .001). Referred pain areas from neck TrPs were greater than the pain areas from masticatory muscle TrPs (P < .01). Referred pain areas of masticatory TrPs were not different (P > .703). The local and referred pain elicited from active TrPs in the masticatory and neck-shoulder muscles shared similar pain pattern as spontaneous TMD, which supports the concept of peripheral and central sensitization mechanisms in myofascial TMD.  相似文献   

11.
Our aim was to describe the referred pain pattern and areas from trigger points (TrPs) in head, neck, and shoulder muscles in children with chronic tension type headache (CTTH). Fifty children (14 boys, 36 girls, mean age: 8 ± 2) with CTTH and 50 age- and sex- matched children participated. Bilateral temporalis, masseter, superior oblique, upper trapezius, sternocleidomastoid, suboccipital, and levator scapula muscles were examined for TrPs by an assessor blinded to the children’s condition. TrPs were identified with palpation and considered active when local and referred pains reproduce headache pain attacks. The referred pain areas were drawn on anatomical maps, digitalized, and also measured. The total number of TrPs was significantly greater in children with CTTH as compared to healthy children (P < 0.001). Active TrPs were only present in children with CTTH (P < 0.001). Within children with CTTH, a significant positive association between the number of active TrPs and headache duration (r s = 0.315; P = 0.026) was observed: the greater the number of active TrPs, the longer the duration of headache attack. Significant differences in referred pain areas between groups (P < 0.001) and muscles (P < 0.001) were found: the referred pain areas were larger in CTTH children (P < 0.001), and the referred pain area elicited by suboccipital TrPs was larger than the referred pain from the remaining TrPs (P < 0.001). Significant positive correlations between some headache clinical parameters and the size of the referred pain area were found. Our results showed that the local and referred pains elicited from active TrPs in head, neck and shoulder shared similar pain pattern as spontaneous CTTH in children, supporting a relevant role of active TrPs in CTTH in children.  相似文献   

12.
Referred pain and pain characteristics evoked from the upper trapezius muscle was investigated in 20 patients with chronic tension-type headache (CTTH) and 20 age- and gender-matched controls. A headache diary was kept for 4 weeks in order to confirm the diagnosis and record the pain history. Both upper trapezius muscles were examined for the presence of myofascial trigger points (TrPs) in a blinded fashion. The local and referred pain intensities, referred pain pattern, and pressure pain threshold (PPT) were recorded. The results show that referred pain was evoked in 85% and 50% on the dominant and non-dominant sides in CTTH patients, much higher than 55% and 25% in controls (P<0.01). Referred pain spread to the posterior-lateral aspect of the neck ipsi-lateral to the stimulated muscle in both patients and controls, with additional referral to the temple in most patients, but none in controls. Nearly half of the CTTH patients (45%) recognized the referred pain as their usual headache sensation, i.e. active TrPs. CTTH patients with active TrPs in the right upper trapezius muscle showed greater headache intensity and frequency, and longer headache duration than those with latent TrPs. CTTH patients with bilateral TrPs reported significantly decreased PPT than those with unilateral TrP (P<0.01). Our results showed that manual exploration of TrPs in the upper trapezius muscle elicited referred pain patterns in both CTTH patients and healthy subjects. In CTTH patients, the evoked referred pain and its sensory characteristics shared similar patterns as their habitual headache pain, consistent with active TrPs. Our results suggest that spatial summation of perceived pain and mechanical pain sensitivity exists in CTTH patients.  相似文献   

13.
Our aim was to describe the differences in the presence of myofascial trigger points (TrPs) in neck and shoulder muscles after 2 surgery approaches for breast cancer: mastectomy or lumpectomy. Thirty-two women (mean age: 50 ± 7 years) who received lumpectomy, 16 women (mean age: 48 ± 10 years) who had received mastectomy after breast cancer, and 16 women (mean age: 49 ± 9 years) with breast cancer who had not received either surgical treatment, participated. Myofascial TrPs in the upper trapezius, sternocleidomastoid, levator scapulae, scalene, infraspinatus and pectoralis major muscles were bilaterally explored by an assessor blinded to the women's condition. TrPs were considered active when palpation reproduced local and referred pain symptoms recognized by the patient as familiar pain symptoms. The number of active TrPs within mastectomy (mean ± SD: 4.6 ± 1) and lumpectomy (mean ± SD: 4.5 ± 1) groups was significantly higher (P < 0.001) as compared to the control group (mean ± SD: 1.1 ± 1.3), but not significantly different between them (P = 0.641). Women who received either lumpectomy or mastectomy showed similar distribution of active TrPs and a higher prevalence of active TrPs as compared to the control group. Active TrPs in the pectoralis major muscle were the most prevalent in both surgery groups The number of active TrPs was weakly correlated with neck (r(s) = 0.385; P = 0.029) and shoulder/axillary (r(s) = 0.397; P = 0.024) pain intensity within the lumpectomy, but not the mastectomy group. This study found active TrPs in neck and shoulder musculature in women who had received lumpectomy or mastectomy. The induced local and referred pain pattern from active TrPs reproduced neck and shoulder/axillary symptoms and pain patterns in women after breast cancer surgery. Few active TrPs were found in a control group of women with breast cancer who had not received any surgical treatment.  相似文献   

14.
Michael J. Cohen  Ph.D. 《Headache》1978,18(4):189-196
SYNOPSIS
Typically migraine and muscle contraction headaches are thought to be different disorders. Recently some investigators have argued that these headache categories are quantitatively, but not qualitatively distinct. Studies of vasomotor and electromyographic (EMG) reflexes and treatments for these headaches were reviewed to elucidate similarities and differences. Similarities include for both types of headaches high levels of tension in the muscles of the head and neck, a vasoconstrictive component, a responsiveness to treatment by relaxation or reduction of frontalis muscle tension. Differences between migraine and muscle contraction headaches relate to the status of the temporal artery between and during headaches and the standard medical treatments used for each. Systematic research is needed to establish if fundamental differences exist between these two major categories of headache.  相似文献   

15.
Pathophysiology and clinical manifestation of cervicogenic headache   总被引:1,自引:0,他引:1  
Cervicogenic headache (CH) originates from disorders of the neck but is recognized as a referred pain in the head. Primary sensory afferents from the cervical roots C1-C3 converge with afferents from the occiput and trigeminal afferents on the same second-order neuron in the upper cervical spine. Consequently, the anatomical structures innervated by the cervical roots C1-C3 are potential sources of CH. In normal volunteers, the painful stimulation of different anatomical structures of the neck produced headache. In CH, particular structures have been selectively anesthetized in order to identify possible sources of pain. In summary, CH can origin from different muscles and ligaments of the neck, from intervertebral discs,and, particularly, from the atlantooccipital, atlantoaxial, and C2/C3 zygapophyseal joints. Diagnosis of CH should adhere strictly to the published diagnostic criteria to avoid misdiagnosis and confusion with primary headache disorders such as migraine and tension type headache.  相似文献   

16.
Cervicogenic headache (CH) is pain referred from the neck. Two common causes are cervical facet arthropathy and occipital neuralgia. Clinical diagnosis is difficult because of the overlying features between primary headaches such as migraine, tension-type headache, and CH. Interventional pain physicians have focused on supporting the clinical diagnosis of CH with confirmatory blocks. The treatment of cervical facet arthropathy as the source of CH is best approached with a multidimensional plan focusing on physical therapy and/or manual therapy. The effective management of occipital neuralgia remains challenging, but both injections and neuromodulation are promising options.  相似文献   

17.
OBJECTIVE: To assess the local and referred pain areas and pain characteristics evoked from temporalis muscle trigger points (TrPs) in chronic tension-type headache (CTTH). METHODS: Thirty CTTH patients and 30 age and sex-matched controls were studied. A headache diary was kept for 4 weeks to substantiate the diagnosis and record the pain history. Both temporalis muscles were examined for the presence of myofascial TrPs in a blinded fashion. The local and referred pain intensities, referred pain pattern, and pressure pain threshold were recorded. RESULTS: Referred pain was evoked in 87% and 54% on the dominant and nondominant sides in CTTH patients, which was significantly higher (P<0.001) than in controls (10% vs. 17%, respectively). Referred pain spread to the temple ipsilateral to the stimulated muscle in both patients and controls, with additional referral behind the eyes in most patients, but none in controls. CTTH patients reported a higher local [visual analog scale (VAS): 5.6+/-1.2 right side, 5.3+/-1.4 left side] and referred pain (VAS: 4.7+/-2 right side, 3.5+/-2.8 left side) intensity than healthy controls (VAS: 0.8+/-0.7 right side, 0.7+/-0.7 left side for local pain; and 0.3+/-0.2 right side, 0.4+/-0.3 left side for referred pain) in both temporalis muscles (both, P<0.001). The local and referred pain areas were larger in patients than in controls (P<0.001). Twenty-three out of 30 CTTH patients (77%) had active TrPs in the temporalis muscle leading to their usual headache (17 patients on the right side; 12 on the left side, whereas 6 with bilateral active TrPs). CTTH patients with active TrPs in either right or left temporalis muscle showed longer headache duration than those with latent TrPs (P=0.004). CTTH patients showed significantly (P<0.001) lower pressure pain threshold (1.1+/-0.2 right side, 1.2+/-0.3 left side) as compared with controls (2.5+/-0.5 right side, 2.6+/-0.4 left side). CONCLUSIONS: In CTTH patients, the evoked local and referred pain from active TrPs in the temporalis muscle and its sensory characteristics shared similar patterns as their habitual headache pain. Local and referred pain from active TrPs in the temporalis muscles may constitute one of the sources contributing to the pain profile of CTTH.  相似文献   

18.
Abstract

Thoracic spine pain is as disabling as neck and low back pain; however, it has not received as much attention as the cervical and lumbar spine in the scientific literature. Among the different structures that can refer pain to the thoracic spine, muscles often play a relevant role. In fact, myofascial trigger points (TrPs) from several neck, shoulder and spinal muscles can induce pain in the region of the thoracic spine. There is a lack of evidence reporting the presence of myofascial TrPs in the thoracic spine, but clinical evidence suggests that TrPs can be a potential source of thoracic spine pain. The current paper discusses the role of myofascial TrPs in the thoracic spine and summarises the proper and safe application of dry needling (DN) for the management of myofascial TrPs in two main spinal muscles involved in thoracic spine pain: the thoracic multifidi and longissimus thoracis. In addition, this paper discusses the application of DN in other tissues such as tendons, ligaments and scars.  相似文献   

19.
Abstract

The relationship between muscle trigger points (TrPs) and joint hypomobility is frequently recognized by clinicians. Among different manual therapies aimed at inactivating muscle TrPs, ischemic compression and spinal manipulation have shown moderately strong evidence for immediate pain relief. Reduction of joint mobility appears related to local muscles innervated from the segment, which suggests that muscle and joint impairments may be indivisible and related disorders in pain patients. Two clinical studies have investigated the relationship between the presence of muscle TrPs and joint hypomobility in patients with neck pain. Both studies reported that all patients exhibited segmental hypomobility at C3-C4 zygapophyseal joint and TrPs in the upper trapezius, sternocleidomastoid, or levator scapulae muscles. There are several theories that have discussed the relationship between TrP and joint hypomobility. First, increased tension of the taut muscular bands associated with a TrP and facilitation of motor activity can maintain displacement stress on the joint. Alternatively, it may be that the abnormal sensory input from the joint hypomobility may reflexively activate TrPs. It is also conceivable that TrPs provide a nociceptive barrage to the dorsal horn neurons and facilitate joint hypomobility. There is scientific evidence showing change in muscle sensitivity in muscle TrP after spinal manipulation, which suggests that clinicians should include treatment of joint hypomobility in the management of TrPs. Nevertheless, the order in which these muscle and joint impairments should be treated is not known and requires further investigation.  相似文献   

20.

Objective

The purpose of this preliminary study was to determine feasibility of a clinical trial to measure the effects of manual therapy on sternocleidomastoid active trigger points (TrPs) in patients with cervicogenic headache (CeH).

Methods

Twenty patients, 7 males and 13 females (mean ± SD age, 39 ± 13 years), with a clinical diagnosis of CeH and active TrPs in the sternocleidomastoid muscle were randomly divided into 2 groups. One group received TrP therapy (manual pressure applied to taut bands and passive stretching), and the other group received simulated TrP therapy (after TrP localization no additional pressure was added, and inclusion of longitudinal stroking but no additional stretching). The primary outcome was headache intensity (numeric pain scale) based on the headaches experienced in the preceding week. Secondary outcomes included neck pain intensity, cervical range of motion (CROM), pressure pain thresholds (PPT) over the upper cervical spine joints and deep cervical flexors motor performance. Outcomes were captured at baseline and 1 week after the treatment.

Results

Patients receiving TrP therapy showed greater reduction in headache and neck pain intensity than those receiving the simulation (P < .001). Patients receiving the TrP therapy experienced greater improvements in motor performance of the deep cervical flexors, active CROM, and PPT (all, P < .001) than those receiving the simulation. Between-groups effect sizes were large (all, standardized mean difference, > 0.84).

Conclusion

This study provides preliminary evidence that a trial of this nature is feasible. The preliminary findings show that manual therapy targeted to active TrPs in the sternocleidomastoid muscle may be effective for reducing headache and neck pain intensity and increasing motor performance of the deep cervical flexors, PPT, and active CROM in individuals with CeH showing active TrPs in this muscle. Studies including greater sample sizes and examining long-term effects are needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号