首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human mesial temporal lobe epilepsy is characterized by hippocampal seizures associated with pyramidal cell loss in the hippocampus and dispersion of dentate gyrus granule cells. A similar histological pattern was recently described in a model of extensive neuroplasticity in adult mice after injection of kainate into the dorsal hippocampus [Suzuki et al. (1995) Neuroscience 64, 665-674]. The aim of the present study was to determine whether (i) recurrent seizures develop in mice after intrahippocampal injection of kainate, and (ii) the electroencephalographic, histopathological and behavioural changes in such mice are similar to those in human mesial temporal lobe epilepsy. Adult mice receiving a unilateral injection of kainate (0.2 microg; 50 nl) or saline into the dorsal hippocampus displayed recurrent paroxysmal discharges on the electroencephalographic recordings associated with immobility, staring and, occasionally, clonic components. These seizures started immediately after kainate injection and recurrid for up to eight months. Epileptiform activities occurred most often during sleep but occasionally while awake. The pattern of seizures did not change over time nor did they secondarily generalize. Glucose metabolic changes assessed by [14C]2-deoxyglucose autoradiography were restricted to the ipsilateral hippocampus for 30 days, but had spread to the thalamus by 120 days after kainate. Ipsilateral cell loss was prominent in hippocampal pyramidal cells and hilar neurons. An unusual pattern of progressive enlargement of the dentate gyrus was observed with a marked radial dispersion of the granule cells associated with reactive astrocytes. Mossy fibre sprouting occurred both in the supragranular molecular layer and infrapyramidal stratum oriens layer of CA3. The expression of the embryonic form of the neural cell adhesion molecule coincided over time with granule cell dispersion. Our data describe the first histological, electrophysiological and behavioural evidence suggesting that discrete excitotoxic lesions of the hippocampus in mice can be used as an isomorphic model of mesial temporal lobe epilepsy.  相似文献   

2.
The immunosuppressant, cyclosporin A (CsA), is neuroprotective following brain injury. Previous studies suggest that CsA treatment ameliorates seizure severity during status epilepticus (SE) or cell death following SE. The antiepileptic effects of CsA on recurrent seizures, however, have not been investigated. In the present study, the effects of CsA on spontaneous recurrent seizures (SRSs) in a kainate (KA)-induced mouse model of mesial temporal lobe epilepsy (TLE) were examined. Moreover, the effects of CsA on epileptiform activity in a 4-aminopyridine (4-AP)-induced in vitro seizure model were investigated. A mesial TLE mouse model was generated with a unilateral intrahippocampal injection of KA. SRSs were determined in the ipsilateral hippocampal CA1 region with a long-term video-EEG. CsA was systemically administrated to the epileptic mice exhibiting a stable occurrence of SRSs. A 1-mg/kg dose of CsA did not have any effect on SRSs in the epileptic mice. However, a 5-mg/kg dose of CsA significantly reduced the number of SRSs and decreased the severity of the seizures in the epileptic mice. Additionally, CsA treatment inhibited spontaneous burst discharges in 4-AP-treated hippocampal slices. The results of the present study demonstrate that CsA inhibits recurrent seizures in a mouse model of mesial TLE and suggest that CsA may afford both neuroprotection against SE and antiepileptic effects during the chronic period of epilepsy.  相似文献   

3.
An intrahippocampal injection of quisqualic acid (QA) was made in chronically implanted freely moving unanesthetized cats and electrographic and clinical observations were made. Fourteen to 40 micrograms of QA injection resulted in a mild limbic seizure within 24 h after QA injection. Some cats demonstrated a pure hippocampal seizure on an electroencephalogram. Electrographic changes and clinical manifestations were less prominent as compared with those of kainic acid. Histopathological examination showed a selective loss of pyramidal cell layer of the CA3 portion in the injected side of the dorsal hippocampus. A mild but constant epileptogenic potency of QA has an advantage for an experimental model of temporal lobe epilepsy in man.  相似文献   

4.
The effects of a hippocampal mossy fiber lesion have been determined on neuronal degeneration and limbic seizures provoked by the subsequent intracerebroventricular administration of kainic acid to unanesthetized rats. Mossy fiber lesions were made either by transecting this pathway unilaterally or by destroying the dentate granule cells unilaterally or bilaterally with colchicine. All control rats eventually developed status epilepticus and each temporally discrete seizure that preceded status epilepticus was recorded from the hippocampus ipsilateral to the kainic acid infusion before the contralateral hippocampus. A mossy fiber lesion of the ipsilateral hippocampus prevented the development of status epilepticus in 26% of subjects and in 52% of subjects seizures were recorded from the contralateral hippocampus before the ipsilateral hippocampus. Unlike electrographic records from other treatment groups, those from rats which had received a bilateral colchicine lesion exhibited no consistent pattern indicative of seizure propagation from one limbic region to another. A bilateral, but not a unilateral, mossy fiber lesion also dramatically attenuated the behavioral expression of the seizures. Regardless of its effects on kainic acid-induced electrographic and behavioral seizures, a mossy fiber lesion always substantially reduced or completely prevented the degeneration of ipsilateral hippocampal CA3-CA4 neurons. This protective effect was specific for those hippocampal neurons deprived of mossy fiber innervation. Neurons in other regions of the brain were protected from degeneration only when the mossy fiber lesion also prevented the development of electrographic status epilepticus. These results suggest that the hippocampal mossy fibers constitute an important, though probably not an obligatory, link in the circuit responsible for the spread of kainic acid seizures. Degeneration of CA3-CA4 neurons appears to depend upon (1) the duration of hippocampal seizure activity and (2) an as yet undefined influence of or interaction with the mossy fiber projection which enhances the neurodegenerative effect of the seizures.  相似文献   

5.
Intrahippocampal injection of a subtoxic dose of kainate in mice has been shown to induce a dispersion of granule cells of the dentate gyrus, which is a characteristic morphological change often seen in human hippocampal sclerosis. In addition, it has been shown recently that such injections lead to recurrent hippocampal seizures and changes in glucose metabolism, which are reminiscent of temporal lobe epilepsy. Previous reports on human hippocampal sclerosis have shown an increase of the expression of the GluR2 alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate subunits in the dispersed granule cell somata. However, no such changes have been observed so far in animal models of epilepsy with hippocampal sclerosis. In this study, the expression of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor subunits was examined by immunohistochemistry following intrahippocampal injection of kainate in mice and rats. In mice, such injection induced a persistent increase of GluR2 immunoreactivity in the granule cells for up to 180 days. By contrast, GluR1 immunoreactivity was transiently increased during the first four days after the injection and progressively decreased thereafter. By contrast, intrahippocampal injection of kainate in rats did not result in granule cell dispersion and no changes in GluR1 immunoreactivity or GluR2 immunoreactivity were observed.These results show that, in addition to morphological, clinical and metabolical similarities, intrahippocampal injection of kainate results in a persistent increase of GluR2 associated with granule cell dispersion, as in human hippocampal sclerosis. These data suggest the existence of common mechanisms between granule cell dispersion and regulation of GluR2 subunits associated with hippocampal sclerosis.  相似文献   

6.
The influence of epileptiform seizures evoked by intrahippocampal injection of kainic acid on morphological changes of hippocampus and related brain regions was analyzed in rabbits using catecholamine histofluorescence, monoamine oxidase, acetylcholinesterase and Nissl staining methods. It was found that kainic acid induced generalized electroencephalographic seizures and a disappearance of hippocampal neurons. These effects did not affect the volume of neurons in septum and locus coeruleus. In the injected hippocampus, kainic acid destroyed hippocampal pyramidal cells and induced some sprouting of catecholamine, acetylcholinesterase-positive and monoamine oxidase-positive nerve fibers near the injection site.These results indicate that intrahippocampal kainic acid injection does not provoke a retrograde, transsynaptic degeneration in the medial septum and locus coeruleus, the brain regions which innervate the hippocampus.  相似文献   

7.
Experimentally evoked seizures can activate the intrinsic mitochondrial cell death pathway, components of which are modulated in the hippocampus of patients with temporal lobe epilepsy. Bcl-2 family proteins are critical regulators of mitochondrial dysfunction, but their significance in this setting remains primarily untested. Presently, we investigated the mitochondrial pathway and role of anti-apoptotic Bcl-2 proteins using a mouse model of seizure-induced neuronal death. Status epilepticus was evoked in mice by intra-amygdala kainic acid, causing cytochrome c release, processing of caspases 9 and 7, and death of ipsilateral hippocampal pyramidal neurons. Seizures caused a rapid decline in hippocampal Bcl-w levels not seen for either Bcl-2 or Bcl-xl. To test whether endogenous Bcl-w was functionally significant for neuronal survival, we investigated hippocampal injury after seizures in Bcl-w-deficient mice. Seizures induced significantly more hippocampal CA3 neuronal loss and DNA fragmentation in Bcl-w-deficient mice compared with wild-type mice. Quantitative electroencephalography analysis also revealed that Bcl-w-deficient mice display a neurophysiological phenotype whereby there was earlier polyspike seizure onset. Finally, we detected higher levels of Bcl-w in hippocampus from temporal lobe epilepsy patients compared with autopsy controls. These data identify Bcl-w as an endogenous neuroprotectant that may have seizure-suppressive functions.  相似文献   

8.
Studies were conducted to characterize a chronic epileptic condition that follows recurrent seizures induced by intrahippocampal tetanus toxin injection in infancy. Wistar rat pups received a single injection of tetanus toxin in the right CA3 region on postnatal day 10. Animals were monitored for epileptiform activity by video electroencephalographic or visual observation during the following three to five days. Repeat evaluation six months later demonstrated interictal discharges in 79% (11 of 14) and electrographic seizures in 42% (six of 14) of adult rats with tetanus toxin-induced seizures in infancy. Five of the animals had interictal activity which occurred focally in either the left (n = 2) or right (n = 3) hippocampus. One animal had focal interictal activity independently in these regions and in the left and right cortical regions. The remaining five animals had interictal activity in the hippocampus and synchronously in the ipsilateral cortex or the contralateral hippocampus. Electrographic seizures were focal (nine of 14) or bilateral (five of 14) in onset. The behaviors that accompanied these seizures were quite variable. Clonic face and forelimb movements were observed in some animals. However, a significant portion of rats had electrographic seizures with no associated behavioral change. Timm staining was performed on hippocampal sections from experimental and control animals. There was a significantly greater Timm score (aberrant Timm granules) in the inner molecular layer of the dentate gyrus in tetanus toxin-treated rats than in control rats. Our findings suggest that intrahippocampal tetanus toxin injection in infant rats results in a chronic focal epilepsy that persists for at least six months and is associated with aberrant mossy fiber sprouting in the dentate gyrus. The model described here contributes significantly to the evidence for chronic effects of recurrent seizures in early life, and provides a model for investigation of the molecular and cellular events that contribute to the development of chronic epilepsy.  相似文献   

9.
Wu K  Leung LS 《Neuroscience》2003,116(2):599-616
We used kainic acid in rats as an animal model of temporal lobe epilepsy, and studied the synaptic transmission in hippocampal subfield CA1 of urethane-anesthetized rats in vivo. Dendritic currents were revealed by field potential mapping, using a single micropipette or a 16-channel silicon probe, followed by current source density analysis. We found that the population excitatory postsynaptic potentials in the basal dendrites and distal apical dendrites of CA1 were increased in kainate-treated as compared with control rats following paired-pulse, but not single-pulse, stimulation of CA3b or medial perforant path. In contrast, the trisynaptic midapical dendritic response in CA1 following medial perforant path stimulation was decreased in kainate-treated as compared with control rats. Increased coupling between excitatory postsynaptic potential and the population spike in CA1 was found after kainate seizures. Short-latency, presumably monosynaptic CA1 population spikes following medial perforant path stimulation was found in kainate-treated but not control rats. An enhancement of dendritic excitability was evidenced by population spikes that invaded into or originated from the distal apical dendrites of CA1 in kainate-treated but not control rats. Reverberation of hippocampo-entorhinal activity was evidenced by recurrent excitation of CA1 following CA3b stimulation in kainate-treated but not control rats. Blockade of inhibition by intraventricularly administered bicuculline induced excitatory potentials in CA1 that were stronger and more prolonged in kainate-treated than control rats. The bicuculline-induced excitation was mainly blocked by non-N-methyl-D-aspartate receptor antagonists. We conclude that kainate seizures induced disinhibition in CA1 that unveiled excitation at the basal and distal apical dendrites, resulting in enhancement of the direct entorhinal cortex to CA1 input and reverberations via the hippocampo-entorhinal loop. These changes in the output of the hippocampus from CA1 are likely detrimental to the behavioral functions of the hippocampus and they may contribute to increased seizure susceptibility after kainate seizures.  相似文献   

10.
The functional role of the calcium-binding proteins parvalbumin, calretinin, and calbindin D-28k for epileptogenesis and long-term seizure-related alterations of the hippocampal formation was assessed in single- and double-knockout mice, using a kainate model of mesial temporal lobe epilepsy. The effects of a unilateral intrahippocampal injection of kainic acid were assessed at one day, 30 days, and four months post-injection, using various markers of GABAergic interneurons (GABA-transporter type 1, GABA(A)-receptor alpha1 subunit, calretinin, calbindin D-28k, somatostatin, and neuropeptide Y). Parvalbumin-deficient, parvalbumin/calbindin-deficient, and parvalbumin/calretinin-deficient mice exhibited no difference in cytoarchitecture of the hippocampal formation and in the number, distribution, or morphology of interneurons compared to wild-type mice. Likewise, mutant mice were not more vulnerable to acute kainate-induced excitotoxicity or to long-term effects of recurrent focal seizures, and exhibited the same pattern of neurochemical alterations (e.g., bilateral induction of neuropeptide Y in granule cells) and morphogenic changes (enlargement and dispersion of dentate gyrus granule cells) as wild-type animals. Quantification of interneurons revealed no significant difference in neuronal vulnerability among the genotypes.These results indicate that the calcium-binding proteins investigated here are not essential for determining the neurochemical phenotype of interneurons. Furthermore, they are not protective against kainate-induced excitotoxicity in this model, and do not appear to modulate the overall level of excitability of the hippocampus. Finally, seizure-induced changes in gene expression in granule cells, which normally express high levels of calcium-binding proteins, apparently were not affected by the gene deletions analysed.  相似文献   

11.
Genetic influences contribute to susceptibility to seizures and to excitotoxic injury, but it is unclear if/how these susceptibilities are linked. This study assessed the impact of genetic background on mouse strain seizure susceptibility, seizure phenotype, mortality, and hippocampal histopathology. A subcutaneous (s.c.) kainic acid multiple injection protocol was developed. Five mouse strains were tested: a and b) C57BL/6J and 129/SvJ, strains commonly used in gene targeting experiments; c) C3HeB/FeJ, a strain with reported sensitivity to the convulsant effects of kainic acid (KA); d) 129/SvEms, a strain reportedly susceptible to hippocampal excitotoxic cell death; and e) a mixed genetic background strain (129/SvJXC57BL/6J) from which targeted gene deletion experiments have been carried out. Histopathological features were examined at early (7-10 day), delayed (2-4 month), and late (6-13 month) time points.Mouse background strains can be genetically segregated based on excitotoxin sensitivity, seizure phenotype, mortality, and hippocampal histopathology. When injected with KA, C3HeB/FeJ and C57BL/6J strains were resistant to cell death and synaptic reorganization despite severe behavioral seizures, while 129/SvEms mice developed marked pyramidal cell loss and mossy fiber sprouting despite limited seizure activity. The mixed background 129/SvJXC57BL/6J group exhibited features of both parental strains. In the mouse strains tested, the duration or severity of seizure activity was not predictive of subsequent hippocampal pyramidal cell death and/or synaptic reorganization. Unlike rats, mice exhibiting prolonged high-grade KA-induced seizure activity did not develop subsequent spontaneous behavioral seizures.  相似文献   

12.
We examined whether acupuncture can reduce both the incidence of seizures and hippocampal cell death using a mouse model of kainic acid (KA)-induced epilepsy. ICR mice were given acupuncture once a day at acupoint HT8 (sobu) bilaterally during 2 days before KA injection. After an intracerebroventricular injection of 0.1 microg of KA, acupuncture treatment was subsequently administered once more (total 3 times), and the degree of seizure was observed for 20 min. Three hours after injection, the survival of neuronal cells and the expressions of c-Fos, c-Jun, and glutamate decarboxylase (GAD)-67 in the CA1 and CA3 were determined using immunohistochemistry and Western blotting techniques. Acupuncture reduced the severity of the KA-induced epileptic seizure and the rate of neural cell death, and it also decreased the expressions of c-Fos and c-Jun induced by KA in the hippocampus. Furthermore, acupuncture increased GAD-67 expressions in the same areas. These results demonstrated that it could inhibit the KA-induced epileptic seizure and hippocampal cell death by increasing GAD-67 expressions.  相似文献   

13.
Field potentials of the hippocampus and the medial septal-diagonal band complex (MSDB) were recorded in the control and during the kindling stimulation of the perforant path in waking guinea pigs. Changes in the correlation of activities of these structures during stimulation-evoked seizures (model of acute epilepsy) and during epileptogenesis elicited by the kindling (model of chronic epilepsy) were analysed. In the control, a high correlation between the background activities of the hippocampus and MSDB was observed. In the first days of stimulation at the parameters that evoked seizure discharges in the hippocampus, the MSDB did not show the epileptiform activity; however, repeated daily stimulation gave rise to epileptiform discharges, which increased with time. As a result of kindling, the MSDB became capable of generating seizure activity irrespective of the hippocampus. The degree of correlation between the activities of the two structures sharply decreased during "acute" and "chronic" seizures. In the process of kindling, a progressive disintegration of activities of the hippocampus and MSDB was revealed, indicating the disturbance of the functioning of septohippocampal network during epileptogenesis. The data obtained add to the knowledge about the mechanisms of temporal lobe epilepsy and may help to develop new approaches to the therapy of this disease.  相似文献   

14.
We have previously demonstrated that an acute pharmacological interruption of the afferent inputs from the hypothalamus to the hippocampus resulted in the blockade of the genesis and spread of intra-amygdala kainate-induced seizure activity in the hippocampus. This finding suggests that a sustained interruption of the hypothalamic stimulative influences may completely prevent amygdaloid seizure-induced hippocampal neuron damage. To test this assumption, we delivered antisense oligodeoxynucleotides (ODNs) against synaptotagmin I, a regulatory protein of the transmitter release machinery, into the hypothalamus by using a Hemagglutinating virus of Japan (HVJ)-liposome-mediated gene transfer technique. Four days prior to the induction of status epilepticus by intra-amygdala injection of kainate, the synaptotagmin I antisense was injected into the supramammillary nucleus (SuM) of the hypothalamus to chronically suppress the stimulative influences to the hippocampus via the reduction of transmitter release. The synaptotagmin I hypothalamic knockdown resulted in the almost complete prevention of seizure-induced damage of hippocampal neurons but not of entorhinal neurons following the kainate-induced amygdaloid seizures. This result suggests that the hypothalamic stimulative influences to the hippocampus have a major contribution to the amygdaloid seizure-induced hippocampal sclerosis, probably via disinhibition mechanism.  相似文献   

15.
Brief, non-harmful seizures can activate endogenous protective programmes which render the brain resistant to damage caused by prolonged seizure episodes. Whether protection in epileptic tolerance is long-lasting or influences the subsequent development of epilepsy is uncertain. Presently, we investigated the relationship between hippocampal pathology, neuropeptide Y rearrangement and spontaneous seizures in sham- and seizure-preconditioned mice after status epilepticus induced by intra-amygdala kainate. Seizure-induced neuronal death at 24 h was significantly reduced in the ipsilateral hippocampal CA3 and hilus of tolerance mice compared to sham-preconditioned animals subject to status epilepticus. Damage to the CA3-hilus remained reduced in tolerance mice 21 days post-status. In sham-preconditioned mice subject to status epilepticus correlative statistics showed there was a strong inverse relationship between CA3, but not hilar, neuron counts and the number of spontaneous seizures. A strong positive association was also found between neuropeptide Y score and spontaneous seizure count in these mice. In contrast, there was no significant association between spontaneous seizure count and CA3 neuron loss or neuropeptide Y rearrangement in the tolerance mice. These data show that tolerance-conferred neuroprotection is long-lasting and that tolerance disrupts the normal association between CA3 damage, synaptic rearrangement and occurrence of spontaneous seizures in this model  相似文献   

16.
While the onset and extent of epilepsy increases in the aged population, the reasons for this increased incidence remain unexplored. The present study used two inbred strains of mice (C57BL/6J and FVB/NJ) to address the genetic control of age-dependent neurodegeneration by building upon previous experiments that have identified phenotypic differences in susceptibility to hippocampal seizure-induced cell death. We determined if seizure induction and seizure-induced cell death are affected differentially in young adult, mature, and aged male C57BL/6J and FVB/NJ mice administered the excitotoxin, kainic acid. Dose response testing was performed in three to four groups of male mice from each strain. Following kainate injections, mice were scored for seizure activity and brains from mice in each age group were processed for light microscopic histopathologic evaluation 7 days following kainate administration to evaluate the severity of seizure-induced brain damage. Irrespective of the dose of kainate administered or the age group examined, resistant strains of mice (C57BL/6J) continued to be resistant to seizure-induced cell death. In contrast, aged animals of the FVB/NJ strain were more vulnerable to the induction of behavioral seizures and associated neuropathology after systemic injection of kainic acid than young or middle-aged mice. Results from these studies suggest that the age-related increased susceptibility to the neurotoxic effects of seizure induction and seizure-induced injury is regulated in a strain-dependent manner, similar to previous observations in young adult mice.  相似文献   

17.
目的研究头孢曲松钠(Cef)对颞叶癫痫模型小鼠的抗癫痫效果以及对谷氨酸转运蛋白(GLT-1)表达情况的作用。方法首先构建颞叶癫痫小鼠模型,利用同步视频脑电监测(v EEG)技术,24 h不间断记录小鼠癫痫发作情况。实验组腹腔注射Cef 200 mg/(kg·d),对照组腹腔注射0.9%氯化钠溶液,从癫痫发作频率、间期棘波及海马硬化等方面评价Cef对癫痫发作的控制情况,并用Western blot检测其对谷氨酸转运蛋白GLT-1表达情况的影响。结果单侧海马注射200 ng海人酸(KA)可模拟内侧颞叶癫痫患者反复自发性癫痫发作和海马硬化等两个疾病症状,成功构建内侧颞叶癫痫模型。Cef处理使癫痫发作次数从2.145次/d降低到1.597次/d,平均发作次数降低了31.2%(P0.05)。KA癫痫小鼠较正常小鼠GLT-1表达明显降低,但Cef处理并未明显提升GLT-1的表达。结论腹腔注射Cef部分抑制KA癫痫小鼠的慢性自发性癫痫发作,但无明显提升海马中GLT-1的表达,提示其可能并非是通过提高星形胶质细胞的谷氨酸清除能力而抑制癫痫发作。  相似文献   

18.
目的:探讨同步录像脑电图(VEEG)和皮质脑电图(ECoG)在伴有海马病变的难治性癫痫诊断中的应用价值。方法:回顾性分析26例难治性癫痫患者临床发作类型、术前MRI与VEEG检查、术中ECoG及深部电极脑电图监测结果,术后病理检查证实所有患者海马均有病变。结果:在连续或超过24h VEEG监测中,18例有临床发作(69%),其中1例简单部分性发作,6例复杂部分性发作,9例全身强直发作,2例失神发作。各例均可见痫样波活动,多数集中于颞叶。术中ECoG监测颞区皮质均有棘波发放(100%),深部电极监测海马区有痴波放电25例(96%)。结论:VEEG和ECoG在伴有海马病变的难治性癫痫中具有重要的诊断和定位价值。  相似文献   

19.
Interictal spikes are brief paroxysmal electrographic discharges observed between spontaneous recurrent seizures in epileptic patients. The relationship between interictal spikes and the seizures that define acquired epilepsy has been debated for decades. Recent studies using long-term continuous electrographic recordings from the hippocampus and cortex in rats with kainate-induced epilepsy suggest that electrographic spikes, with waveforms similar to interictal spikes, precede the occurrence of the first spontaneous epileptic seizure. These data raise the possibility that spikes might serve as a surrogate marker of ongoing chronic epileptogenesis. Additionally, electrographic spikes might actually contribute to the development and maintenance of the epileptic state (i.e., the increased probability of spontaneous recurrent seizures). Correlational evidence for such a causal relationship has recently also been obtained in an in vitro model of epileptogenesis using organotypic hippocampal slices. Testing for a causal relationship will ultimately require selective anti-spike medications. Although no such agents currently exist, this new preparation is amenable to moderate-throughput screening, which should accelerate their discovery. Anti-spike agents may also be of benefit in ameliorating the cognitive dysfunctions associated with epilepsy, to which spike activity may contribute.  相似文献   

20.
Mesial temporal lobe epilepsy (MTLE), the most common epilepsy in adults, is generally intractable and is suspected to be the result of recurrent excitation or inhibition circuitry. Recurrent excitation and the development of seizures have been associated with aberrant mossy fiber sprouting in the hippocampus. Of the animal models developed to investigate the pathogenesis of MTLE, post-status epilepticus models have received the greatest acceptance because they are characterized by a latency period, the development of spontaneous motor seizures, and a spectrum of lesions like those of MTLE. Among post-status epilepticus models, induction of systemic kainic acid or pilocarpine-induced epilepsy is less labor-intensive than electrical-stimulation models and these models mirror the clinicopathologic features of MTLE more closely than do kindling, tetanus toxin, hyperthermia, post-traumatic, and perinatal hypoxia/ischemia models. Unfortunately, spontaneous motor seizures do not develop in kindling or adult hyperthermia models and are not a consistent finding in tetanus toxin-induced or perinatal hypoxia/ischemia models. This review presents the mechanistic hypotheses for seizure induction, means of model induction, and associated pathology, especially as compared to MTLE patients. Animal models are valuable tools not only to study the pathogenesis of MTLE, but also to evaluate potential antiepileptogenic drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号