首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The early loss of photoreceptors in some retinal degenerations in mice has been shown to have a profound effect on vascular development of the retina. To better characterize this relationship, we have examined the formation of retinal blood vessels during the first month of life in 8 lines of transgenic rats with different ages of onset and rates of photoreceptor cell loss mediated by the expression of mutant rhodopsin (P23H and S334ter). The number of capillary profiles in the superficial plexus (SP) and deep capillary plexus (DCP) of the retina were quantified in retinal sections taken at postnatal day (P) 8, 10, 12, 15 and 30. In normal wild-type rats, the SP and DCP had mostly established mature, adult patterns by P15, as previously shown. In the transgenic rats, the loss of photoreceptors had relatively little effect on the SP. By contrast, the loss of photoreceptors during vascular development had a major impact on the DCP. In the two lines with early and most rapid photoreceptor loss, S334ter-7 and S334ter-3, where about 90% and 65%, respectively, of the photoreceptors were already lost by P15, the DCP either failed to form (S334ter-7) or the number of capillary profiles was less than 7% of controls (S334ter-3). In lines where almost all photoreceptors were still present at P15 (S334ter-4, S334ter-9, P23H-2 and P23H-3), the number of profiles in the DCP were the same as in wild-type controls at P30. In two lines with an intermediate rate of degeneration (S334ter-5 and P23H-1), where only about 25% of the photoreceptors were lost by P15, there was an intermediate number of vascular profiles in the DCP at P30. Thus, a very close relationship between the number of photoreceptors and vessel profiles in the DCP during its development exists in the transgenic rats, and the loss of photoreceptors results in the failure or inhibition of the DCP to develop. Several mechanisms may explain this relationship including changes in the level of physiological oxygen tension or alteration in the release of angiogenic factors that normally drive vessel development. Analysis of older transgenic retinas up to 1 year of age revealed that (1) vascular profiles are lost from the DCP in essentially all lines once fewer than about 30-33% of photoreceptors remain; (2) in those lines where the DCP essentially did not develop (S334ter-7 and S334ter-3), the effect of photoreceptor absence was permanent, and there was no late vascularization of the DCP; (3) the number of capillary profiles in the SP remained no different from controls in any of the lines, despite long-standing loss of photoreceptors; and (4) neovascularization of the RPE by retinal capillaries occurred with a latency of 60-180 days after the loss of photoreceptors, except in S334ter-7 rats, where neovascularization essentially did not occur. Analysis of RCS rats was carried out for comparison.  相似文献   

2.
PURPOSE: To test whether high levels of cAMP promote apoptosis and shorten the life of retinal rod photoreceptors, the changes in cAMP levels during retinal degeneration were analyzed in two transgenic rat models that express rhodopsin P23H and S334ter mutations. METHODS: Dark- and light-adapted heterozygous P23H (lines 1 and 3; P23H-1 and -3), S334ter line 4 (S334ter-4), and Sprague-Dawley (control) rats were studied at 4 to 8 weeks by cAMP enzyme competitive immunoassay and by cAMP immunocytochemistry. RESULTS: In control animals retinal cAMP content reached a steady state level at 30 days of age. Dark-adapted control retinas had up to 97% higher cAMP content than light-adapted retinas, and photoreceptor cells were the major source of this increase. Dark-adapted photoreceptors in all three lines of transgenic rats at advanced stages of retinal degeneration had cAMP content different from that of the control. In rats that express mutant rhodopsin, the number of photoreceptor cells was progressively reduced, because of retinal degeneration, but dark-adapted cAMP levels did not decline accordingly. P23H transgenic animals of both lines had higher levels of cAMP per photoreceptor cell count than control animals. This elevation was more pronounced as degeneration progressed. S334ter animals showed smaller cAMP elevation than P23H rats at a similar stage of retinal degeneration, but at a point when S334ter rats were undergoing rapid retinal degeneration, whereas in P23H rats retinal degeneration was slowing down. CONCLUSIONS: All three lines of transgenic rats carrying rhodopsin mutations show an increase in dark-adapted photoreceptor cAMP levels. A complex relationship exists between cAMP levels and the rate of cell death in the retina. Although initially higher levels of cAMP may promote cell survival and slow down retinal degeneration, ultimately, elevated cAMP levels may become toxic and may contribute to retinal cell death.  相似文献   

3.
PURPOSE: We evaluated adeno-associated virus (AAV)-mediated gene transfer of basic fibroblast growth factor (FGF-2) as a therapy for photoreceptor degeneration in a transgenic rat model of retinitis pigmentosa. METHODS: Recombinant adeno-associated virus vector (rAAV) incorporating a constitutive cytomegalovirus (CMV) promoter was used to transfer the bovine FGF-2 gene to photoreceptors. AAV was administered by subretinal injection to transgenic rats (TgN S334ter-4) at postnatal day 15 (P15). Control eyes were uninjected, injected with PBS, or AAV-LacZ. Eyes were examined by histopathology, morphometric analysis, and electroretinography at P60. RESULTS: Expression of recombinant FGF-2 slowed the rate of photoreceptor degeneration. Morphologic studies demonstrated significantly more photoreceptors surviving in eyes injected with AAV-FGF-2 than in controls. Insignificant rescue effects were seen in retinas injected with buffer only. No significant inflammatory response or neovascularization was detected. Electroretinographic (ERG) responses of eyes injected with AAV-FGF-2 were increased compared with uninjected eyes; however, these amplitudes were not significantly larger than eyes receiving an AAV-LacZ control vector. CONCLUSIONS: Transduction of retinal cells with AAV-FGF-2 reduces the rate of photoreceptor degeneration in an S334ter-4 animal model. Despite the lack of significantly increased ERG amplitudes from eyes expressing FGF-2, a greater number of surviving photoreceptors was demonstrated. Delivery of FGF-2 using recombinant AAV has potential as a therapy for retinal degeneration.  相似文献   

4.
Previous studies evaluating neural stem cells transplanted into the mature retina have demonstrated limited levels of graft-host integration and photoreceptor differentiation. The purpose of this investigation is to enhance photoreceptor cell differentiation and integration of retinal progenitor cells (RPC) following subretinal transplantation into retinal degenerate rats by optimization of isolation, expansion, and transplantation procedures. RPCs were isolated from human placental alkaline phosphatase (hPAP)-positive embryonic day 17 (E17) rat retina and expanded in serum-free defined media. RPCs at passage 2 underwent in vitro induction with all trans retinoic acid or were transplanted into the subretinal space of post-natal day (P) 17 S334ter-3 and S334ter-5 transgenic rats. Animals were examined post-operatively by ophthalmoscopy and optical coherence tomography (OCT) at weeks 1 and 4. Differentiation profiles of RPCs, both in vitro and in vivo were analysed microscopically by immunohistochemistry for various retinal cell specific markers. Our results demonstrated that the majority of passage 2 RPCs differentiated into retina-specific neurons expressing rhodopsin after in vitro induction. Following subretinal transplantation, grafted cells formed a multi-layer cellular sheet in the subretinal space in both S334ter-3 and S334ter-5 rats. Prominent retina-specific neuronal differentiation was observed in both rat lines as evidenced by recoverin or rhodopsin staining in 80% of grafted cells. Less than 5% of the grafted cells expressed glial fibrillary acidic protein. Synapsin-1 (label for nerve terminals) positive neural processes were present at the graft-host interface. Expression profiles of the grafted RPCs were similar to those of RPCs induced to differentiate in vitro using all-trans retinoic acid. In contrast to our previous study, grafted RPCs can demonstrate extensive rhodopsin expression, organize into layers, and show some features of apparent integration with the host retina following subretinal transplantation in slow and fast retinal degenerate rats. The similarity of the in vitro and in vivo RPC differentiation profiles suggests that intrinsic signals may have a significant contribution to RPC cell fate determination.  相似文献   

5.
PURPOSE: To determine relative susceptibility to, and regional variation of, light-induced retinal damage in two rhodopsin-mutant rat models of retinitis pigmentosa, using slow- and fast-degenerating lines. METHODS: Transgenic S334ter (lines 4 and 9) and P23H (lines 2 and 3) rats were reared in dim cyclic light or darkness and then exposed to intense green light for 1 to 8 hours. Sections along the vertical meridian were collected for retinal morphology and photoreceptor morphometry 2 weeks later. Unexposed transgenic and normal Sprague-Dawley rats served as the control. Mean outer segment lengths and outer nuclear layer thicknesses were analyzed as a function of position along the vertical meridian and as averages across that vector. RESULTS: Rapidly degenerating S334ter-4 retinas, reared in dim cyclic light, exhibited no light-induced damage, whereas retinas in the other sublines sustained damage within a sensitive region in the superior hemisphere. Light-induced damage always involved loss of outer segment membrane and photoreceptors. In some cases, the retinal pigment epithelium and inner nuclear layer were also affected. Potentiation of light-induced damage by dark-rearing was increased by at least a factor of three, and in some sublines the sensitive region was enlarged to include the entire vertical meridian. CONCLUSIONS: A complex pattern of light-induced damage outcomes was identified in S334ter (sublines 4 and 9) and P23H (sublines 2 and 3) rats. The relative susceptibilities of each subline to damage by light were different, even within the same transgene, but consistent factors included a sensitive region in the superior hemisphere and potentiation by dark-rearing.  相似文献   

6.
PURPOSE: To determine relative light-induced retinal damage susceptibility in transgenic rats expressing mutations in the N- or C-terminal region of rhodopsin. METHODS: Heterozygous transgenic rats, including P23H sublines 2 and 3 and S334ter sublines 4 and 9, were reared in dim cyclic light or in darkness before visible light exposure starting at various times of the day or night. Before exposure to light, some rats were given the synthetic antioxidant dimethylthiourea (DMTU). At various times after intense light treatment, rats were killed for determinations of rhodopsin and retinal DNA recovery, DNA fragmentation patterns, and Northern blot analysis of retinal heme oxygenase (HO)-1 and interphotoreceptor retinol binding protein (IRBP). Rod outer segments (ROSs) were isolated for Western blot analysis of rhodopsin using N- and C- terminal-specific monoclonal antibodies. RESULTS: All rats incurred greater photoreceptor cell damage from exposure to light starting at 1 AM than from exposure at 5 PM. Among cyclic-light-reared rats, P23H line 3 animals were more susceptible to light-induced damage than P23H line 2 animals. S334ter rats exhibited retinal light damage profiles similar to those in normal rats. Dark-rearing potentiated retinal damage by light. However, dark-rearing alone prolonged photoreceptor cell life in P23H rats, but had no such effect in S334ter animals. DMTU pretreatment was effective in preventing or reducing light-induced retinal damage in all transgenic rats. S334ter rat ROSs contained the truncated form of rhodopsin. Intense light exposure resulted in DNA ladders typical of apoptotic cell death and the simultaneous induction of retinal HO-1 mRNA and reduced expression of IRBP. CONCLUSIONS: Light-induced retinal damage in transgenic rats depends on the time of day of exposure to light, prior light-or dark-rearing environment, and the relative level of transgene expression. Retinal light damage leads to apoptotic visual cell loss and appears to result from oxidative stress. These results suggest that reduced environmental lighting and/or antioxidant treatment may delay retinal degenerations arising from rhodopsin mutations.  相似文献   

7.
Aim of this study was to examine synaptic connectivity changes in the retina and the location and rate of apoptosis in transgenic S334ter line-3 and line-5 rats with photoreceptor degeneration. Heterozygous S334ter-line-3 and line-5 at P11-13, P30, P60, P90 and several control non-dystrophic rats (Long Evans and Sprague–Dawley) at P60, were studied anatomically by immunohistochemistry for various cell and synaptic markers, and by PNA and TUNEL label.- S334ter line-3 exhibited the fastest rate of degeneration with an early loss of photoreceptors, with 1–2 layers remaining at P30, and only cones left at P60. Line-5 had 4–5 layers left at P30, and very few rods left at P60-90. In both lines, horizontal cell processes (including dendrites and axon) were diminished at P11-13, showing gaps in the outer plexiform layer (OPL) at P60, and at P90, almost no terminal tips could be seen. Bipolar cells showed a retraction of their dendrites forming clusters along the OPL. Synaptic terminals of A-II amacrine cells in the IPL lost most of their parvalbumin-immunoreactivity. The apoptosis rate was different in both lines. Line-3 rats showed many photoreceptors affected at P11, occupying the innermost part of the outer nuclear layer. Line-5 showed a lower number of apoptotic cells within the same location at P13. In summary, the S334ter line-3 rat has a faster progression of degeneration than line-5. The horizontal and bipolar terminals are already affected at P11-P13 in both models. Apoptosis is related to the mutated rhodopsin transgene; the first photoreceptor cells affected are those close to the OPL.  相似文献   

8.
PURPOSE: To determine the extent to which rhodopsin mis-sorting and constitutive activation of the phototransduction cascade contribute to retinal degeneration in a transgenic rat model of retinitis pigmentosa. METHODS: Retinas from transgenic rats expressing truncated rhodopsin (Ser334ter) were examined by light and electron microscopic immunocytochemistry at several time points. Retinal degeneration in transgenic rats raised in darkness was evaluated by quantification of outer nuclear layer thickness and by electroretinography. RESULTS: Mutant rhodopsin was found at inappropriately high levels in the plasma membrane and cytoplasm of Ser334ter rat photoreceptors. When the cell death rate was high this mis-sorting was severe, but mis-sorting attenuated greatly at later stages of degeneration, as the cell death rate decreased. The distributions of two other outer segment proteins (the cGMP-gated channel and peripherin) were examined and found to be sorted normally within the photoreceptors of these rats. Raising Ser334ter transgenic rats in darkness resulted in minimal rescue from retinal degeneration. CONCLUSIONS: Because dark rearing Ser334ter rats results in little rescue, it is concluded that constitutive activation of the phototransduction cascade does not contribute significantly to photoreceptor cell death in this rat model. The nature of the rhodopsin sorting defect and the correlation between the severity of mis-sorting and rate of cell death indicate that truncated rhodopsin may cause apoptosis by interfering with normal cellular machinery in the post-Golgi transport pathway or in the plasma membrane.  相似文献   

9.
This study tests the potential of light restriction to optimise retinal structure and function in adulthood, using the P23H-3 rhodopsin-mutant transgenic rat as a model. P23H-3 rats were reared in scotopic (5 lux) or mesopic (40–60 lux) cyclic (12 h/12 h light/dark) light. A further 2 groups were reared in one of these light conditions to P(postnatal day)30, and then were transferred to the other condition. Retinae were examined at P30-365. Rod and cone function were assessed by the dark-adapted flash electroretinogram. The rate of photoreceptor death was assessed with the TUNEL technique, and photoreceptor survival by the thickness of the outer nuclear layer (ONL). Photoreceptor structural changes were assessed by immunohistochemistry. Mesopic rearing severely reduced the number, function and outer segment (OS) length of photoreceptors. Light restriction in the adult (achieved by moving mesopic-reared animals to scotopic conditions at P30) slowed photoreceptor death, induced recovery of the ERG and of OS length in survivors, resulting in an adult retina that matched the scotopic-reared in function, photoreceptor survival (stability) and structure. Conversely, light exposure in the adult (achieved by moving scotopic-reared animals to mesopic conditions at P30) accelerated photoreceptor death, shortened OSs and reduced the ERG, resulting in a retina that was as damaged and dysfunctional as a mesopic-reared retina, and showed greater photoreceptor instability. Present observations suggest, that the stability and function of adult photoreceptors are determined by both early and adult ambient light experience. Light restriction in the adult was effective in inducing the self-repair of photoreceptors, and the recovery of their function and stability. Light restriction in the juvenile (before P30) improved early photoreceptor survival but made adult photoreceptors vulnerable to brighter light experienced in adulthood. For comparable human dystrophies, these results suggest that light restriction begun after retinal maturation may be effective in optimising the structure, function and stability of the adult retina.  相似文献   

10.
The present experiments were undertaken to test recovery of function in the retina of the rhodopsin-mutant P23H-3 rat, in response to the management of ambient light. Observations were made in transgenic P23H-3 and non-degenerative Sprague-Dawley albino (SD) rats raised to young adulthood in scotopic cyclic light (12h 5 lx "daylight", 12h dark). The brightness of the day part of the cycle was increased to 300 lx (low end of daylight range) for 1 week, and then reduced to 5 lx for up to 5 weeks. Retinas were assessed for the rate of photoreceptor death (using the TUNEL technique), photoreceptor survival (thickness of the outer nuclear layer), and structure and function of surviving photoreceptors (outer segment (OS) length, electroretinogram (ERG)). Exposure of dim-raised rats to 300 lx for 1 week accelerated photoreceptor death, shortened the OSs of surviving photoreceptors, and reduced the ERG a-wave, more severely in the P23H-3 transgenics. Returning 300 lx-exposed animals to 5 lx conditions decelerated photoreceptor death and allowed regrowth of OSs and recovery of the a-wave. Recovery was substantial in both strains, OS length in the P23H-3 retina increasing from 17% to 90%, and a-wave amplitude from 33% to 45% of control values. Thinning of the ONL over the 6 week period studied was minimal. The P23H-3 retina thus shows significant recovery of function and outer segment structure in response to a reduction in ambient light. Restriction of ambient light may benefit comparable human forms of retinal degeneration in two ways, by reducing the rate of photoreceptor death and by inducing functional recovery in surviving photoreceptors.  相似文献   

11.
Two previous studies have shown that N(G)-nitro-L-arginine methyl ester (L-NAME), an inhibitor of neuronal nitric oxide synthase, protects retinas of albino rats and mice from damaging levels of light. The aims of the present study were two-fold: (1) to confirm the protective effect of L-NAME on wild type albino rats and (2) to determine if L-NAME protects the retinas of transgenic rats with P23H and S334ter rhodopsin mutations. In the first study, albino rats born and raised in 5-10 lux cyclic light were injected intraperitoneally with either L-NAME or its inactive isomer D-NAME 30 min before being placed in bright light (2700 lux) for 24hr. Electroretinograms (ERGs) were recorded before light treatment and 2 days after cessation of exposure, and eyes were enucleated for morphologic evaluation. L-NAME, but not D-NAME provided structural protection of photoreceptor cells from light damage. The functional rescue was not statistically significant between the drug treated groups. In the second study, albino WT, P23H transgenic, and S334ter transgenic rats were born and raised in 400 lux cyclic light. Three week old animals received daily intraperitoneal injections of L-NAME or D-NAME for 4 weeks, and the same drugs were added to their drinking water. At 7 weeks of age, the ERG sensitivity curves and the outer nuclear layer thickness of both transgenic groups were significantly reduced compared to WT controls. However, administration of L-NAME did not protect against retinal degeneration caused by the rhodopsin mutation in either strain of transgenic (P23H and S334ter) rats. Thus, although photoreceptor cell death in light damage and inherited retinal degenerations share a common apoptotic mechanism, there must be significant 'up-stream' differences that allow selective neuroprotection by L-NAME.  相似文献   

12.
Physiological consequences of early stages of photoreceptor degeneration were examined in heterozygous P23H rhodopsin transgenic (Tg) and in aging normal Sprague-Dawley rats. Rod photoreceptor and rod bipolar (RB) cell function were estimated with maximum value and sensitivity parameters of P3 and P2 components of the electroretinogram. In both Tg and aging normal rats, the age-related rate of decline of P3 amplitude was steeper than that of the P2 amplitude. Tg rats showed greater than normal sensitivity of the rods. A new model of distal RB pathway connectivity suggested photoreceptor loss could not be the sole cause of physiological abnormalities; there was an additional increase of post-receptoral sensitivity. We propose that changes at rod-RB synapses compensate for the partial loss of rod photoreceptors in senescence and in early stages of retinal degeneration.  相似文献   

13.
目的探讨骨髓基质干细胞(bone marrow stromal cell,BMSC)在新生S334转基因视网膜变性大鼠和(Sprague-Dawley)SD大鼠眼内生存、发育、分化的情况.方法人BMSC培养在含10%胎牛血清的(a-Modified Eagle Medium,a-MEM)培养基上扩增;实验分四组;第一组S334转基因鼠,细胞移植联合维甲酸(Retinoid acid)RA注射组;第二组S334转基因大鼠,细胞移植组;第三组SD大鼠,细胞移植联合RA注射组;第四组SD大鼠,细胞移植组.以上每组各5只.2μl细胞混悬液(约4×104个细胞)注入生后1 d大鼠的玻璃体腔.于生后14 d,生后23 d处死动物,取出眼球作塑料切片,进行组织学分析.结果本实验结果表明,BMSC移植到生后1 d S334杂合子转基因大鼠玻璃体腔,在外源性RA的作用下,可能参与宿主视网膜的后期发育,可见内核层细胞增多,整个神经视网膜增厚,但感光细胞层数不变.而无外源性RA移植组,在生后14 d时,可见移植细胞形成类似血岛样结构,而向神经分化的成分少.SD组,在联合RA注射时,生后23 d将动物处死,作组织学分析,发现移植细胞在眼内能移行分化,也可见视网膜内核层细胞增多,同时由于RA的作用,可见感光细胞增生.在无RA作用时,可见宿主神经视网膜结构紊乱,移植细胞增生形成非典型性增生细胞团.结论本实验初步研究结果提示,BMSC移植到新生S334视网膜变性转基因大鼠和SD大鼠眼内,能参与宿主视网膜的发育,并有向视网膜内核层细胞分化的可能性.将为自体细胞移植治疗视网膜变性性疾病提供又一细胞来源.  相似文献   

14.
Purpose. To assess structural, functional, and visual behavioral relationships in mutant rhodopsin transgenic (Tg) rats and to determine whether early optokinetic tracking (OKT) visual experience, known to permanently elevate visual thresholds in normal rats, can enhance vision in rats with photoreceptor degeneration. Methods. Eight lines of pigmented Tg rats and RCS rats were used in this study. OKT thresholds were tested at single ages (1, 2, 3, 4, and 6 months) in na?ve groups of rats, or daily in groups that began at eye-opening (P15) or 10 days later (P25). Electroretinogram (ERG) response amplitudes were recorded after OKT testing, and outer nuclear layer (ONL) thickness measurements were then obtained. Results. OKT thresholds, when measured at a single time point in na?ve Tg lines beginning at P30, did not decline until months after significant photoreceptor loss. Daily testing of Tg lines resulted mostly with OKT thresholds inversely related to photoreceptor degeneration, with rapid degenerations resulting in sustained OKT thresholds for long periods despite the rapid photoreceptor loss. Slower degenerations resulted in rapid decline of thresholds, long before the loss of most photoreceptors, which was even more pronounced when daily testing began at eye opening. This amplified loss of function was not a result of testing-induced damage to the rod or cone photoreceptors, as ERG amplitudes and ONL thicknesses were the same as untested controls. Conclusions. The unexpected lack of correlation of OKT testing with photoreceptor degeneration in the Tg rats emphasizes the need in behavioral therapeutic studies for careful analysis of visual thresholds of experimental animals prior to therapeutic intervention.  相似文献   

15.
PURPOSE: To determine whether a severely degenerated retina without photoreceptor outer segments and a non-recordable electroretinogram (ERG) can still show retinal ganglion cell (RGC) responses to retinal light stimulation. METHODS: The authors measured ERGs and retinal surface RGC responses from six week old rd mice and three month old homozygous S334ter line3 rats. Animal eyes were also studied by light microscopy, transmission electron microscopy, and immunohistochemistry (rats). RESULTS: The corneal ERGs were non-recordable and no photoreceptor outer segments were found in either retinal degeneration model. A few cell bodies (without outer segments) that were immunoreactive for cone opsin and rhodopsin were found in the outer nuclear layer of the rats. Light-driven ON-RGC responses, however, were recordable from six week old rd mice. In addition, light-driven ON and OFF-RGC responses were recordable from three month old homozygous S334ter line 3 rats. CONCLUSIONS: This study suggests that despite the apparent absence of photoreceptor outer segments and a non-recordable ERG, ganglion cell responses to retinal light stimulation may remain preserved in some severe retinal degenerate transgenic rodents.  相似文献   

16.
PURPOSE: To determine whether retinal transplantation can preserve visual responses in the superior colliculus (SC) of the S334ter-line-5 rat, a transgenic model for slow photoreceptor degeneration, which is more similar to human retinitis pigmentosa than the fast degeneration line 3 S334ter rat. METHODS: Visual responses to a light flash were recorded in the SC. Rats that had received embryonic day (E) 19-20 fetal retinal sheet transplants at the age of 26-30 days were tested at the ages of 200-254 days. Controls were age-matched rats without surgery and with sham surgery. As a baseline, in no-surgery line-5 rats, the temporal pattern of visual sensitivity loss was evaluated electrophysiologically in the SC from 60 days up to one year of age. RESULTS: In untreated S334ter-line-5 rats, decline in visual sensitivity in the SC was parallel to the photoreceptor loss. At 109 day of age, a relative scotoma developed in the area of the SC corresponding to the nasal retinal region. At 200-254 days of age, the majority of the SC was devoid of any light-driven responses. In contrast, at this time point, transplanted rats with 'good' retinal grafts with normal lamination had visual responses in the caudal region of the SC, the area corresponding topographically to the transplant location in the retina. In these rats, the various parameters of SC responses such as the latency of the onset of the visual response, the response peak amplitude and the consistency of the visual response were significantly different from the control groups (no-surgery, sham surgery, 'poor' transplants) and were more comparable to normal albino rats, however, with a slightly longer latency (70-90 vs. 30-50 msec). CONCLUSIONS: Fetal retinal sheet transplantation showed a long-term rescue effect on visual function in this animal model of slow photoreceptor degeneration.  相似文献   

17.
PURPOSE: To examine whether and how the retinal distribution of the chondroitin sulfate proteoglycan neurocan is affected after photoreceptor cell loss and whether it correlates with the multiple secondary cellular changes that accompany the photoreceptor degeneration. METHODS: Retinas from normal rats (Sprague-Dawley; postnatal days [P]0-P70), RCS rats with dystrophic retinas (P0-P300), RCS-rdy(+) congenic rats with nondystrophic retinas (P0-202), and rhodopsin mutant rats, P23H (P0-P257) and S334ter (P0-P220), were processed for immunohistochemistry using a polyclonal antibody to rat neurocan. RESULTS: The overall distribution of neurocan was similar in all retinas examined. Neurocan immunostaining was detected over the nerve fiber layer, the plexiform layers, the photoreceptor outer segments region, and the ciliary epithelium. With age, labeling throughout the plexiform layers decreased continuously. In RCS rats however, conspicuous labeling was also seen in association with retinal vessels, from P15 onward. CONCLUSIONS: Accumulation of neurocan in association with the retinal vasculature does not correlate with photoreceptor cell loss, because it was not observed in the rhodopsin mutant rats. During the earliest stages of the disease, accumulation of debris in the subretinal space in RCS rats may be sufficient per se to initiate a cascade of metabolic changes that result in accumulation of neurocan. With time, the neurocan accumulated perivascularly may, by interaction with other matrix molecules, modulate at least some of the vascular alterations observed in this animal model.  相似文献   

18.
PURPOSE: To map the spatiotemporal decline in retinally driven activity in the superior colliculus (SC) of transgenic S334ter-line-3 rats that express a mutated rhodopsin, which causes photoreceptor degeneration. To determine whether transplantation of fetal retinal sheets into the subretinal space of these rats can recover visual activity in the SC. METHODS: A visual stimulus was presented to the eye, and responses were recorded across the SC of untreated S334ter-line-3 rats aged 28 to 288 days. These data were used to draw a map of the developing scotoma. Intact retinal sheets from embryonic day 19 rats were transplanted into the subretinal space of S334ter-line-3 rats between 21 and 28 days of age. Responses to retinal stimulation were mapped in the SC of transplanted and sham control rats 78 to 163 days after surgery. The morphology of the retinas in all groups was examined. RESULTS: Photoreceptor cell loss in untreated rats matched the decline in visual activity in the SC. At 28 days, there was a scotoma in the area of the SC that represents the central retina and, by 63 days, it had enlarged to cover the entire retinal representation. Visual responses were evoked in 64% of rats with retinal transplants. These retinally driven responses were confined to a small, contiguous region of the SC that represents the sector of the retina where the transplant was placed. Visual responses were absent in the SC outside this area in transplant recipients and throughout the SC of untreated and sham control rats. CONCLUSIONS: Transplantation of fetal retinal sheets induced recovery of visual activity in the SC in this model of RP. The mechanisms underlying this functional recovery remain to be resolved, but these results suggest that transplantation should be further explored as a therapy for RP.  相似文献   

19.
PURPOSE: To relate the oxygen environment of the retina to photoreceptor stability, protection, and function in the P23H rat. METHODS: Heterozygote P23H-3 (Line 3) rats were studied. Photoreceptor death rates were assessed with the TUNEL technique for detection of fragmenting DNA, in a developmental series from postnatal day (P)16 to P105 (adult). In adult retinas, trophic factor status was assessed with immunohistochemistry, intraretinal oxygen environment with O(2)-sensing electrodes, and photoreceptor function by the flash-evoked, dark-adapted electroretinogram (ERG), recorded in anesthetized animals. RESULTS: Photoreceptor death begins by P16; peaks at P25, when the frequency of TUNEL(+) profiles exceeds 70/mm of retina; and then declines to low (<5/mm) adult rates. Compared with that in nondegenerative Sprague-Dawley (SD) rats, the rate of photoreceptor death is abnormally high from P16 and remains several-fold higher than normal into young adulthood. In addition, the outer nuclear layer is reduced to approximately half of control thickness, and the levels of ciliary neurotrophic factor (CNTF), glial fibrillary acidic protein (GFAP), fibroblast growth factor (FGF)-2, and FGF-2/FGFR1 colocalization are markedly upregulated. O(2) tension and uptake are relatively normal in the inner retina, but uptake is considerably reduced, and O(2) tension is significantly raised in the outer retina. Surviving photoreceptors generate an a-wave with normal peak latency but sharply reduced amplitude. CONCLUSIONS: Excess photoreceptor degeneration in the P23H-3 retina begins just after eye opening, peaks in early postnatal life, and then slows, but persists into adulthood. In the adult retina, surviving photoreceptors operate in an environment that is chronically hyperoxic (and therefore toxic) and in which protective factors (CNTF, FGF-2) are chronically upregulated. The net result, slow degeneration and degraded function in an environment that is both toxic and protective, may be representative of adult photoreceptor status in a number of human retinal degenerations. Hyperoxia-induced photoreceptor death may be a self-reinforcing factor that increases oxidative stress in surviving photoreceptors.  相似文献   

20.
PURPOSE: To measure the intraretinal oxygen environment at different stages in the Royal College of Surgeons (RCS) rat model of retinal degeneration to determine whether changes in oxygen level are an important aspect of the disease. METHODS: Oxygen-sensitive microelectrodes were used to measure oxygen tension as a function of depth through the retina of anesthetized, mechanically ventilated RCS rats at ages ranging from postnatal day (P)20 to P104. The oxygen profiles were correlated with histologic observations of the cellular changes within the dystrophic retinas and compared with those in RCS-rdy(+) control animals and published values in normal mature rats. RESULTS: Although the youngest rats studied exhibited some differences in intraretinal oxygen distribution compared with mature animals, the distribution in dystrophic RCS rats at P20 was not significantly different from that in age-matched control subjects. However, the intraretinal oxygen distribution in dystrophic RCS rats was clearly affected after approximately P30, reflecting a loss of photoreceptor oxygen consumption consistent with histologic observations. In contrast, oxygen uptake by the inner retina was still evident long after the loss of photoreceptors was essentially complete. CONCLUSIONS: There was no significant tissue hypoxia during photoreceptor degeneration in the dystrophic RCS rat. The changes in intraretinal oxygen distribution are consistent with the loss of outer retinal oxygen uptake but the preservation of inner retinal oxygen metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号